|本期目录/Table of Contents|

[1]欧朝蓉,袁加远,雷晨雨,等.元谋干热河谷生态交错带森林生态系统服务价值空间分异特征[J].应用与环境生物学报,2021,27(02):357-360.[doi:10.19675/j.cnki.1006-687x.2021.01045]
 OU Zhaorong,YUAN Jiayuan,LEI Chenyu & SUN Yongyu?.Spatial differentiation characteristics of forest ecosystem service values in the Yuanmou dry-hot valley ecotone[J].Chinese Journal of Applied & Environmental Biology,2021,27(02):357-360.[doi:10.19675/j.cnki.1006-687x.2021.01045]
点击复制

元谋干热河谷生态交错带森林生态系统服务价值空间分异特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年02期
页码:
357-360
栏目:
国家重点研发计划项目之西南干旱河谷专题
出版日期:
2021-04-25

文章信息/Info

Title:
Spatial differentiation characteristics of forest ecosystem service values in the Yuanmou dry-hot valley ecotone
作者:
欧朝蓉袁加远雷晨雨孙永玉
1西南林业大学地理与生态旅游学院 昆明 6502242中国林业科学研究院资源昆虫研究所,云南元谋干热河谷生态系统国家定位观测研究站 昆明 6502243西南林业大学林学院 昆明 650224
Author(s):
OU Zhaorong1 YUAN Jiayuan2 LEI Chenyu3 & SUN Yongyu2?
1 College of Geography and Ecotourism, Southwest Forestry University, Kunming 650224, China2 Research Institute of Resources Insects, Yuanmou Desert Ecosystem Research Station, Chinese Academy of Forestry, Kunming 650224, China3 Forestry College, Southwest Forestry University, Kunming 650224, China
关键词:
生态交错带森林生态系统生态系统服务价值价值当量因子元谋干热河谷
Keywords:
ecotone forest ecosystem ecosystem service value value equivalent factor Yuanmou dry-hot valley
DOI:
10.19675/j.cnki.1006-687x.2021.01045
摘要:
以具有干热河谷生态交错带典型环境特征的云南省元谋县大哨林场为例,以当量因子生态系统服务价值化法为基本评价方法,采用材积源生物量法确定各林种的森林生态系统服务当量因子,以GIS技术分析森林生态系统服务价值(ESV)在海拔、坡度和坡向方面的空间分异特征. 结果表明:(1)栎类的单位面积森林ESV最高,为21 017.23元/hm2. 灌丛单位面积森林ESV最低,为18 424.56元/hm2. 云南松在供给服务和支持服务方面的价值最高,栎类在调节服务方面价值最高,灌丛在文化价值方面最高. (2)随着海拔的提升,云南松的森林ESV呈上升态势,栎类呈“倒v”型特征,而灌丛呈下降态势. 1 200-1 350 m的高程范围森林ESV最低,为122 523.32元. 1 550-1 600 m的高程范围森林ESV最大,为5 894 008.23元. (3)斜坡中的森林ESV最高,为6 786 937.13元. 平坡和陡坡中栎类的森林ESV占森林总ESV价值比例最高,在缓坡和斜坡中云南松的森林ESV占森林总ESV价值比例最高,4个坡度类别中灌丛的森林ESV占森林总ESV价值比例差异性相对较小. (4)半阳坡的森林ESV最高,为6 966 170.63元,半阴坡的森林ESV最低,为1 228 173.99元. 阳坡和半阳坡中云南松的森林ESV占森林总ESV价值比例最高. 半阴坡中栎类和云南松的森林ESV占森林总ESV价值比例较为接近,阴坡中3个林种的森林ESV占森林总ESV价值比例差距不大. 综上所述,各高程范围的森林ESV有着明显的空间分异特征,不同坡度类别和坡向中各林种的森林ESV有一定空间差异性,森林ESV的空间分异性是森林植被对干热河谷生态交错带生态环境异质性的响应;高程引起的水、热、蒸发比的变化对森林ESV空间分异性影响最为关键,不同林种对坡度和坡向的适应差异性使得坡度和坡向对森林ESV产生一定的影响. (图4 表2 参57)
Abstract:
Taking Dashao Forest Farm in Yuanmou County, Yunnan Province, which has environmental characteristics typical of the dry-hot valley ecotone, as an example, the volume source biomass method was used to determine the ecosystem service value (ESV) equivalent factors of each forest species, and then the spatial differentiation characteristics of the forest ESVs in altitude, slope, and aspect classes were analyzed using GIS technology. The results indicated that (1) Quercus had the highest ESV per unit area at 21 017.23 yuan, whereas the ESV of shrubs per unit area was the lowest at 18 424.56 yuan. Pinus yunnanensis had the highest ESV for supply and support services, Quercus had the highest ESV for regulation services, and shrubs had the highest ESV for cultural services. (2) With the increase in altitude, the forest ESV of P. yunnanensis showed an upward trend, that of Quercus showed an “inverted V” curve, and that of shrubs showed a downward trend. The forest ESV was the lowest at 122 523.32 yuan in the high elevation area of 1 200–1 350 m. The forest ESV was the highest at 5 894 008.23 yuan in the high elevation area of 1 550–1 600 m. (3) The forest ecosystem on the slope had the highest ESV of 6 786 937.13 yuan. The forest ESV of oak forests accounted for the greatest proportion of the total forest ESV on flat and steep slopes, and the forest ESV of Yunnan pine accounted for the greatest proportion of the total forest ESV on gentle slopes. There was a small difference in the ratio of the forest ESV of shrubs to the total forest ESV in the four slope categories. (4) The forest ESV on the semi-sunny slope was the highest at 6 966 170.63 yuan and that on the semi-shady slope was the lowest at 1 228 173.99 yuan. The forest ESV of Yunnan pine accounted for the greatest proportion of the total forest ESV on the sunny slope and semi-sunny slope. The forest ESVs of Quercus and Yunnan pine on semi-shady slopes accounted for similar proportions of the total forest ESV, whereas there was little difference among the forest ESVs of the three forest species. Elevation was the key factor causing spatial differences in the forest ESVs in the study area. Slope and aspect affected the spatial differences in the forest ESVs. The forest ESVs in different elevation ranges showed clear spatial differentiation. There were spatial differences in the forest ESVs of various forest types in different slope categories and slope directions. The spatial differentiation of the forest ESV was the response of forest vegetation to the difference in the ecological environment in the dry-hot valley ecotone. The changes in the water, heat, and evaporation ratio caused by elevation had the most significant influence on the spatial differentiation of the forest ESV. Slope and aspect affected the forest ESV because of the different adaptability of each forest species to slope and aspect.

参考文献/References:

1 余新晓, 鲁绍伟, 靳芳, 陈丽华, 饶良懿, 陆贵巧. 中国森林生态系统服务功能价值评估[J]. 生态学报, 2005, 25 (8): 2096-2102 [Yu XX, Lu SW, Jin F, Chen LH, Rao LY, Lu GQ. The assessment of the forest ecosystem services uation in China [J]. Acta Ecol Sin, 2005, 25 (8): 2096-2102]
2 欧朝蓉, 孙永玉, 邓志华, 冯德枫. 森林生态系统服务权衡: 认知, 方法和驱动[J]. 中国水土保持科学, 2020, 18 (4): 154-164 [Ou ZR, Sun YY, Deng ZH, Feng DF. Trade-offs in forest ecosystem services: cognition, approach and driving [J]. China Sci Soil Water Conserv, 2020, 18 (4): 154-164]
3 Daily G C. Natures Science: Societal Dependence on Natural Ecosystems [M]. Washington DC: Island Press, 1997
4 Costanza R, D’arge R, de Groot RS, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, G Raskin R, Sutton P, Belt M. The value of the world’s ecosystem services and natural capital [J]. Nature, 1997, 387: 253-260
5 Mamat Z, Halik ?, Keyimu M, Keram A, Nurmamat K. Variation of the floodplain forest ecosystem service value in the lower reaches of Tarim River, China [J]. Land Deg Dev, 2018, 29 (1): 47-57
6 Ahammad R, Stacey N, Eddy IMS, Tomscha SA, Sunderland TCH. Recent trends of forest cover change and ecosystem services in eastern upland region of Bangladesh | Center for International Forestry Research [J]. Sci Total Environ, 2018, 647 (1): 379-389
7 Kibria A, Costanza R, Groves C, Behie AM. Does higher access ensure greater wellbeing? In the perspective of forest ecosystem services of the Sundarbans mangrove forest, Bangladesh [J]. Ocean Coast Manag, 2019, 177 (7): 22-30
8 Loft L, Le DN, Pham T, Yang AL, Tjajadi JS, Wong GY. Whose equity matters? National to local equity perceptions in Vietnam’s payments for forest ecosystem services scheme[J]. Ecol Econ 2017, 135: 164-175
9 Jonsson M, Bengtsson J, Moen J, Jon M, Lars G, Tord S. Stand age and climate influence forest ecosystem service delivery and multifunctionality [J]. Environ Res Letter, 2020, 15 (9): 1-9
10 Lamsal P, Kumar L, Atreya K, Pant KP. Forest ecosystem services in Nepal: a retrospective synthesis, research gaps and implications in the context of climate change[J]. Inter For Rev, 2018, 20 (4): 506-523
11 Naudiyal N, Schmerbeck J. The changing Himalayan landscape: pine-oak forest dynamics and the supply of ecosystem services [J]. J Forest Res, 2017, 28 (3): 431-443
12 Iqbal M H. Valuing ecosystem services of Sundarbans Mangrove forest: approach of choice experiment [J]. Glob Ecol Conserv, 2020, 24: 1-10
13 Hansen K, Malmaeus M. Ecosystem services in Swedish forests [J]. Scand J For Res, 2016, 31 (6): 626-640
14 Pui Y L, Prince S, Baiocchi G, Dymond C, Xi W, Hurtt G. Impact of fire anda harvest on forest ecosystem services in a species-rich area in the southern Appalachians [J]. Ecosphere, 2020, 11 (6): 1-16
15 Ward C, Stringer L, Holmes G. Changing governance, changing inequalities: protected area co-management and access to forest ecosystem services: a Madagascar case study [J]. Ecosyst Serv, 2018, 30: 137-148
16 Diaz-Balteiro L, Alonso R, Rafael, Martinez-Jauiregui M, Maria JM, Pardos M. Selecting the best forest management alternative by aggregating ecosystem services indicators over time: a case study in central Spain [J]. Ecol Indic, 2017, 72 (1): 322-329
17 Roos A, Eggers J, Mark-Herbert C, Lindhagen A. Using von Thünen rings and service-dominant logic in balancing forest ecosystem services [J]. Land Use Policy, 2018, 79: 622-632
18 Sheremet O, Ruokamo E, Juutinene A, Svento R, Hanley N. Incentivising participation and spatial coordination in payment for ecosystem service schemes: forest disease control programs in Finland [J]. Ecol Econ, 2018, 152 (10): 260-272
19 黄龙生, 王兵, 牛香, 宋庆丰. 济南市森林生态系统服务功能空间格局研究[J]. 生态学报, 2019, 39 (17): 6447-6486 [Huang LS, Wang B, Niu X, Song QF. Spatial pattern of the ecosystem service function of forests in Jinan City [J]. Acta Ecol Sin, 2019, 39 (17): 6447-6486]
20 殷莎, 赵永华, 韩磊, 王耀斌, 蔡健. 秦岭森林生态系统服务价值的时空演变[J]. 应用生态学报, 2016, 27 (12): 3777-3786 [Yin S, Zhao YH, Han L,Wang YB, Cai J. uation of the forest ecosystem service values in Qinling, China [J]. Chin J Appl Ecol,2016, 27 (12): 3777-3786]
21 张静静, 朱文博, 朱连奇, 李艳红. 伏牛山地区森林生态系统服务权衡/协同效应多尺度分析[J]. 地理学报, 2020, 75 (5): 89-102 [Zhang JJ, Zhu WB, Zhu LQ, Li YH. Multi-scale analysis of trade-off/synergy effects of forest ecosystem services in the Funiu mountain region [J]. Acta Geograp Sin, 2020, 75 (5): 89-102]
22 邱书志, 王伟, 丁骞, 杨永林, 汪淑筠, 王少明, 闫毓斌, 赵亮生. 洮河林区森林生态系统服务功能及价值评估[J]. 中南林业科技大学学报, 2018, 38 (2): 97-102 [Qiu SZ, Wang W, Ding Q, Yang YL, Wang SJ, Wang SM, Yan YB, Zhao LS. Forest ecosystem service function and value uation in Taohe forest area [J]. J Central S Univ F&T, 2018, 38 (2): 97-102]
23 孙庆祥, 周华荣. 阿尔泰山森林生态系统服务功能及其价值评估[J]. 干旱区地理, 2020, 43 (5): 1327-1336 [Sun QX, Zhou HR. Service function and value uation of the Altai mountains forest ecosystem [J]. Arid Land Geograp, 2020, 43 (5): 1327-1336]
24 楚鑫磊, 李乐, 曾立雄, 黄志霖, 刘常富, 肖文发. 三峡库区建坝前后森林生态系统服务动态[J]. 长江流域资源与环境, 2019, 28 (8): 1977-1986 [Chu XL, Li L, Zeng LX, Huang ZL, Liu CF, Xiao WF. Dynamics of forest ecosystem services before and after dam construction of the Three Gorges Reservoir area [J]. Res Environ Yangtze Basin, 2019, 28 (8): 1977-1986]
25 徐雨晴, 周波涛, 於琍, 石英, 徐影. 气候变化背景下中国未来森林生态系统服务价值的时空特征[J]. 生态学报, 2018, 38 (6): 1952-1963 [Xu YQ, Zhou BT, Yu L, Shi Y, Xu Y. Spatio-temporal dynamic pattern of forest ecosystem services value affected by climate changes in the future in China [J]. Acta Ecol Sin, 2018, 38 (6): 1952-1963]
26 朱建佳, 戴尔阜, 郑度, 王晓莉. 采伐影响下人工林木材生产与固碳功能权衡特征: 以湖南会同森林生态实验站为例[J]. 地理学报, 2018, 73 (1): 152-163 [Zhu JJ, Dai EF, Zheng D, Wang XL. Characteristics of tradeoffs between timber production and carbon storage for plantation under harvesting impact: a case study of Hunan Huitong national research station of forest ecosystem [J]. Acta Geograp Sin, 2018, 73 (1): 152-163]
27 Groot RSD, Wilson MA, Boumans RMJ. A typology for the classification description and valuation of ecosystem functions, goods and services [J]. Ecol Econ, 2002, 41 (3): 393- 408
28 Costanza R. Ecosystem services: multiple classification systems are needed [J]. Biol Conserv, 2008, 141 (2): 350-352
29 Costanza R, De Groot RS, Sutton P, Ploegb S, Anderson SJ, Kubiszewski I, Farber S, Turner RK. Changes in the global value of ecosystem services [J]. Global Environ Chang, 2014, 26: 152-158
30 MA (Millennium Ecosystem Assessment). Ecosystems and Human Well-being: Synthesis [R]. Washington, DC: Island Press/World Resources Institute, 2005
31 Kremen C. Economic incentives for rain forest conservation across scales [J]. Science, 2000, 288 (5472): 1828-1832
32 Ouyang ZY, Zheng H, Xiao Y, Polasky S, Liu JG, Xu WH, Wang Q, Zhang L, Xiao Y, Rao E, Jiang L, Lu F,Wang XK, Yang GB, Gong SH,Wu BF, Zeng Y, Yang W, Daily GC. Improvements in ecosystem services from investments in natural capital [J]. Science, 2016, 352 (6292): 1455
33 谢高地, 鲁春霞, 冷允法, 郑度, 李双成. 青藏高原生态资产的价值评估[J]. 自然资源学报, 2003, 18 (2): 189-196 [Xie GD, Lu CX, Leng YF, Zheng D, Li SC. Ecological assets valuation of the Tibetan Plateau [J]. J Nat Res, 2003, 18 (2): 189-196]
34 谢高地, 张彩霞, 张雷明, 陈文辉, 李士美. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30 (8): 1243-1254 [Xie GD, Zhang CX, Zhang LM, Zheng WH, Li SM. Improvement of the uation method for ecosystem service value based on per unit area [J]. J Nat Res, 2015, 30 (8): 1243-1254]
35 张荣祖. 横断山区干旱河谷[M]. 北京: 科学出版社, 1992 [Zhang RZ. Arid Valley in Hengduan Mountain Area [M]. Beijing: Science Press, 1992]
36 余娇娥, 司宏敏, 吴雪涛, 张彧, 苏文华, 周睿. 海拔梯度下元谋干热河谷植物群落特征[J]. 生态环境学报, 2018, 27 (11): 41-46 [Yu JE, Si HM, Wu XT, Zhang Y, Su WH, Zhou R. Characteristics of plant communities in Yuanmou dry-hot valley under different elevation gradient [J]. Ecol Environ, 2018, 27 (11): 41-46]
37 欧朝蓉, 朱清科, 孙永玉. 元谋干热河谷林地生态系统服务价值变化[J]. 林业科学研究, 2017, 30 (5): 831-840 [Ou ZR, Zhu QK, Sun YY. Forest ecosystem service value change in Yuanmou dry-hot valley [J]. For Res, 2017, 30 (5): 831-840]
38 欧朝蓉, 朱清科, 孙永玉. 干热河谷区土地利用与生态系统服务价值: 以云南省元谋县为例[J]. 农业现代化研究, 2018, 39 (3): 394-402 [Ou ZR, Zhu QK, Sun YY. Land use and ecosystem service value in the dry-hot region: a case study in Yuanmou county, Yunnan province [J]. Res Agric Mod, 2018, 39 (3): 394-402]
39 周红艺, 熊东红, 杨忠. 元谋干热河谷土地利用变化对生态系统服务价值的影响[J]. 农业工程学报, 2008, 24 (3):135-138 [Zhou HY, Xiong DH, Yang Z. Effects of land use change on ecosystem service value in Yuanmou dry-hot valley [J]. Trans Chin Soc Agri Eng, 2008, 24 (3): 135-138.]
40 刘方炎, 李昆, 孙永玉, 唐国勇, 张春华. 横断山区干热河谷气候及其对植被恢复的影响[J]. 长江流域资源与环境, 2010, 19 (12): 1386-1391 [ Liu FY, Li K, Sun YY, Tang GY, Zhang CH. Effects of climate on vegetation recovery in dry hot valleys of Hengduan mountainous region in Southwest China [J]. Res Environ Yangtze Basin, 2010, 19 (12): 1386-1391 ]
41 韩姣姣, 段旭, 赵洋毅, 熊好琴.元谋干热河谷不同土地利用类型下土壤水分特征及其主控因子[J].干旱区资源与环境, 2018, 32 (1): 168-173 [Han JJ, Duan X, Zhao YY, Xiong HQ. Soil moistures and the dominating factors under different landuse types of Yuanmou [J]. J Arid Land Res Environ, 2018, 32 (1): 168-173]
42 起树华, 王建彬. 元谋干热河谷气候生态环境变化的初步分析[J]. 气象研究与应用, 2007, 28 (S2): 125-127 [Qi SH, Wang JB. Preliminary analysis of climate and ecological environment change in Yuanmou dryhot valley [J]. J Meteorol Res Appl, 2007, 28 (S2): 125-127 ]
43 张建平. 元谋干热河谷区土地荒漠化研究[J]. 云南地理环境研究, 2000, 12 (1): 3-10 [ Zhang JP. Studies on land desertification in Yuanmou dry-hot valley [J]. Yunnan Geograp Environ Res, 2000, 12 (1): 3-10 ]
44 赵培仙, 冯永刚, 许国莲, 柴守权. 元谋德昌松毛虫空间分布型及生命表初步研究[J]. 西南林学院学报, 2002, 22 (3): 42-46 [Zhao PX, Feng YG, Xu GL, Chai SQ. A preliminary study on spatial distribution pattern and life table of Dendrolimus punctatus tehchangensis in Yuanmou [J]. J SW For Univ, 2002, 22 (3): 42-46]
45 李晓赛, 朱永明, 赵丽, 田京京, 李静. 基于价值系数动态调整的青龙县生态系统服务价值变化研究[J]. 中国生态农业学报, 2015, 23 (3): 373-381 [Li XS, Zhu YM, Zhao L, Tian JJ, Li J. Ecosystem services value change in Qinglong county from dynamically adjusted value coefficients [J]. Chin J Eco-Agric, 2015, 23 (3): 373-381]
46 方精云, 柯金虎, 唐志尧, 陈安平. 生物生产力的“4P”概念、估算及其相互关系[J]. 植物生态学报, 2001, 25 (4): 414-419 [Fang JY, Ke JH, Tang ZY, Chen AP. Implications and estimation of four terrestrial productivity parameters [J]. Chin J Plant Ecol, 2001, 25 (4): 414-419]
47 Ketterings QM, Coe R, Noordwijk MV, Ambagau Y, Palm CA. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests [J]. For Ecol Manag, 2001, 146 (1-3): 199-209
48 刘方炎, 王小庆, 李昆, 孙永玉, 张志翔, 张春华. 金沙江干热河谷锥连栎群落物种组成与多样性特征[J]. 广西植物, 2012, 32 (1): 56-62 [Liu FY, Wang XQ, Li K, Sun YY, Zhang ZX, Zhang CH. Species composition and diversity characteristics of Querus frachetii communities in the dry-hot valley of Jinsha river [J]. Guangxi Plant, 2012, 32 (1): 56-62]
49 刘方炎, 张志翔, 王小庆, 李昆, 孙永玉, 张春华. 生境异质性对金沙江干热河谷锥连栎天然更新幼苗早期生长的影响[J]. 应用与环境生物学报, 2011, 17 (3): 338-344 [Liu FY, Zhang ZX, Wang XQ, Li K, Sun YY, Zhang CH. Effects of habitat heterogeneity on early growth of Quercus franchetii natural regeneration seedlings in the Jinsha river dry-hot valley [J]. Chin J Appl Environ Biol, 2011, 17 (3): 338-344]
50 刘伦辉. 横断山区干旱河谷植被类型[J]. 山地学报, 1989, 7 (3): 175-182 [Liu LH. Vegetational types of the arid valleys in the Hengduan mountains region [J]. J Mount Sci, 1989, 7 (3): 175-182]
51 周跃. 元谋干热河谷植被的生态及其成因[J]. 生态学杂志, 1987(5): 41-45 [Zhou Y. Vegetation ecology and its causes in Yuanmou dry-hot valley [J]. Chin J Ecol, 1987(5): 41-45]
52 张映翠. 乡土草本植物对干热河谷退化土壤修复的生态效应及机制研究[D]. 重庆: 西南农业大学, 2005 [Zhang YC. Ecological effect and mechanism of native herbaceous plants on remediation of degraded soil in dry-hot valley [D]. Chongqing: Southwest Agricultural University, 2005]
53 张明忠, 何光熊, 方海东, 熊东红, 冉林, 张宝军, 史亮涛. 元谋干热河谷优势乡土草群落水土保持效益研究[J].水土保持研究, 2017, 24 (2): 101-104 [Zhang MZ, He GX, Fang HD, Xiong DH, Ran L, Zhang BJ, Shi LT. Effects of dominant native grasses constructed communities oil soil and water conservation in dry-Hot valley of Yuanmou [J]. Res Soil Water Conserv, 2017, 24 (2): 101-104]
54 朱红业. 封禁恢复扭黄茅群落对退化燥红土土壤结构、水分和肥力的影响[D]. 北京: 中国农业大学, 2005 [ Zhu HY. Effects of closure and restoration on soil structure, water content and fertility of degenerated-dry laterite [D]. Beijing: China Agricultural University, 2005]
55 李昆, 曾觉民. 元谋干热河谷区9种造林树种的水分生理特性比较[J]. 云南林业科技, 1999 (1): 70-75 [Li K, Zeng JM. Comparison of water physiological characteristics of 9 planting species in Yuanmou dry hot valley and hot valleys areas [J]. Yunnan Fore Sci Technol, 1999 (1): 70-75]
56 段青松, 何丙辉, 余建新, 张川, 字淑慧, 杨旸, 李亚伟. 金沙江干热河谷乡土草本植物根系固土能力原位测定[J]. 云南大学学报(自然科学版), 2015, 37 (5): 779-785 [Duan QS, He BH, Yu JX, Zhang C, Zi SH, Yang Y, Li YW. In situ measurement on the capability of fixing soil of local herbaceous roots in dry-hot valley of Jinsha river [J]. J Yunnan Univ (Nat Sci Ed), 2015, 37 (5): 779-785]
57 何毓蓉, 黄成敏. 云南省元谋干热河谷的土壤系统分类[J]. 山地学报, 1995, 13 (2): 73-78 [He YR, Huang CM. Soil taxonomic classification in Yuanmou dry hot Valley, Yunnan Province [J]. J Mount Sci, 1995, 13 (2): 73-78]

相似文献/References:

[1]李娜,张雪萍,张利敏.红松人工林与天然次生林大型土壤动物功能类群[J].应用与环境生物学报,2014,20(01):22.[doi:10.3724/SP.J.1145.2014.00022]
 LI Na,ZHANG Xueping,ZHANG Limin.Macro-soil fauna guilds in Korean pine plantation forest and secondary forest[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):22.[doi:10.3724/SP.J.1145.2014.00022]
[2]杨开军,杨万勤,庄丽燕,等.四川盆地西缘都江堰大气氮素湿沉降特征[J].应用与环境生物学报,2018,24(01):107.[doi:10.19675/j.cnki.1006-687x.2017.04001]
 YANG Kaijun,YANG Wanqin,ZHUANG Liyan,et al.Characteristics of atmospheric wet nitrogen deposition in Dujiangyan, western edge of Sichuan Basin[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):107.[doi:10.19675/j.cnki.1006-687x.2017.04001]
[3]李丹丹,梁进,尹华军,等.亚高山森林不同演替阶段物种间作用对土壤酶的影响及其对不同肥料的响应[J].应用与环境生物学报,2021,27(03):587.[doi:10.19675/j.cnki.1006-687x.2021.01067]
 LI Dandan,LIANG Jin,YIN Huajun & LIU Qing.Effects of interactions between dominant tree species at different succession stages of subalpine forest on soil enzymes and their responses to different fertilizers[J].Chinese Journal of Applied & Environmental Biology,2021,27(02):587.[doi:10.19675/j.cnki.1006-687x.2021.01067]
[4]王娇,关欣,黄苛,等.酸沉降对森林生态系统碳循环关键过程的影响研究进展[J].应用与环境生物学报,2021,27(03):776.[doi:10.19675/j.cnki.1006-687x.2020.06040]
 WANG Jiao,GUAN Xin,et al.Effect of acid deposition on the key processes in the carbon cycle of forest ecosystems: a review[J].Chinese Journal of Applied & Environmental Biology,2021,27(02):776.[doi:10.19675/j.cnki.1006-687x.2020.06040]

更新日期/Last Update: 2021-04-25