|本期目录/Table of Contents|

[1]张豪迪,孙晓倩,朱弼成,等.环境噪声对蛙类通讯行为的影响及蛙类的适应策略[J].应用与环境生物学报,2021,27(04):1085-1091.[doi:10.19675/j.cnki.1006-687x.2020.10020]
 ZHANG Haodi,SUN Xiaoqian,et al.Effects of environmental noise on communication behavior of frogs and their adaptive strategies[J].Chinese Journal of Applied & Environmental Biology,2021,27(04):1085-1091.[doi:10.19675/j.cnki.1006-687x.2020.10020]
点击复制

环境噪声对蛙类通讯行为的影响及蛙类的适应策略()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年04期
页码:
1085-1091
栏目:
综述
出版日期:
2021-08-25

文章信息/Info

Title:
Effects of environmental noise on communication behavior of frogs and their adaptive strategies
作者:
张豪迪孙晓倩朱弼成崔建国
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
ZHANG Haodi1 2 SUN Xiaoqian1 2 ZHU Bicheng1? & CUI Jianguo1?
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
噪声声音通讯多模通讯适应策略蛙类
Keywords:
noise acoustic communication multimodal communication adaptive strategy frog
DOI:
10.19675/j.cnki.1006-687x.2020.10020
摘要:
声音通讯是蛙类最主要的通讯方式;但在环境噪声等压力的驱动下,一些蛙类进化出了视觉、化学和多模等通讯方式. 噪声在影响信号产生、传递以及接收和处理的同时,也促进了蛙类性信号的复杂性进化. 综述了噪声对蛙类通讯行为的影响以及蛙类的适应策略. (1)噪声对蛙类通讯行为的影响:噪声不仅会遮蔽声音信号,阻碍个体对特定信号的追踪与识别,还会造成交叉感官干扰,影响大脑处理视觉信息和多模信息;(2)蛙类应对噪声干扰的适应策略:蛙类通过调整空间位置,确保鸣声与噪声在空间上分离;通过调整时域、频域和振幅等鸣声特征,获得较高信噪比;通过听觉系统的敏感频率与鸣声频率相匹配,过滤大部分环境噪声;通过多种感官通道传递信息. 建议今后加强以下研究:(1)噪声对蛙类视觉和多模信号的影响;(2)在更多物种、更多模态中进一步验证非模补整效应;(3)多种环境污染源对动物通讯行为影响的多模态效应. (图4 参85)
Abstract:
Acoustic communication is the most important form of communication for frogs. Visual, chemical and multimodal communications have evolved in some anurans, owing to pressures such as environmental noise. Noise affects the production, transmission, and perception of signals and fosters the evolution of signal complexity in frogs. We reviewed the effects of environmental noise on the communication behavior of frogs and their adaptive strategies. (1) The effects of noise on frog communication: masking sound signals and hindering individual identification and recognition of specific signals. It also causes cross-sensory interference, which alters the brain’s processing of visual and multimodal information. (2) Adaptation strategies of frogs to noise masking: adjusting the position to ensure that calls and noise are separated spatially; modifying the time domain, frequency domain, and amplitude to achieve a higher signal-to-noise rate; filtering out most of the noise by matching the spectral structure of vocalizations and hearing sensitivity; and transmitting information through multiple sensory channels. Finally, we propose three directions for future research: (1) effects of noise on the visual and multimodal signals of frogs; (2) further verification of amodal completion in additional species and modalities; and (3) multimodal effects of multiple pollution sources on animal communication.

参考文献/References:

1 Narins PM, Feng AS, Fay R, Popper AN. Hearing and Sound Communication in Amphibians [M]. New York: Springer-Verlag, 2006
2 Zhu BC, Wang JC, Zhao LH, Sun ZX, Brauth SE, Tang YZ, Cui JG. Bigger is not always better: females prefer males of mean body size in Philautus odontotarsus [J]. PLoS ONE, 2016, 11 (2): e0149879
3 Cui JG, Tang YZ, Narins PM. Real estate ads in Emei music frog vocalizations: female preference for calls emanating from burrows [J]. Biol Lett, 2011, 8 (3): 337-340
4 Zhu BC, Wang JC, Zhao LH, Chen QH, Sun ZX, Yang Y, Brauth SE, Tang YZ, Cui JG. Male-male competition and female choice are differentially affected by male call acoustics in the serrate-legged small treefrog, Kurixalus odontotarsus [J]. PeerJ, 2017, 5: e3980
5 Zhu BC, Wang JC, Sun ZX, Yang Y, Wang TL, Brauth SE, Tang YZ, Cui JG. Competitive pressures affect sexual signal complexity in Kurixalus odontotarsus: insights into the evolution of compound calls [J]. Biol Open, 2017, 6 (12): 1913-1918
6 Bush Sl. Vocal behavior of males and females in the majorcan midwife toad [J]. J Herpetol, 1997, 31 (2): 251
7 Hopkins R, Folt B. Screaming calls of Leptodactylus savagei (smoky jungle frog) function as an alarm for conspecifics [J]. J Herpetol, 2019, 53 (2): 154-157
8 Hettyey A, Herczeg G, Hoi H. Testing the phenotype-linked fertility hypothesis in male moor frogs (Rana arvalis) exhibiting a conspicuous nuptial colouration [J]. Amphibia-Reptilia, 2009, 30: 581-586
9 Gomez D, Richardson C, Lengagne T, Plenet S, Joly P, Léna JP, Théry M. The role of nocturnal vision in mate choice: females prefer conspicuous males in the European tree frog (Hyla arborea) [J]. P Roy Soc B-Biol Sci, 2009, 276 (1666): 2351-2358
10 Augusto-Alves G, Dena SA, Toledo LF. Visual communication and aggressive behaviour in a giant mute torrent-frog, Megaelosia apuana (Anura; Hylodidae) [J]. Amphibia-Reptilia, 2018, 39 (2): 260-264
11 Preininger D, Boeckle M, H?dl W. Communication in noisy environments ii: visual signaling behavior of male foot-flagging frogs Staurois Latopalmatus [J]. Herpetologica, 2009, 65: 166-173
12 Forti LR, Castanho LM. Behavioural repertoire and a new geographical record of the torrent frog Hylodes cardosoi (Anura: Hylodidae) [J]. Herpetol Bull, 2012, 121 (121): 17-22
13 Caldwell MS, Johnston G, Mcdaniel JG, Warkentin K. Vibrational signaling in the agonistic interactions of red-eyed treefrogs [J]. Curr Boil, 2010, 20 (11): 1012-1017
14 Sá FP, Zina J, Haddad C. Sophisticated communication in the Brazilian torrent frog Hylodes japi [J]. PLoS ONE, 2016, 11 (1): e0145444
15 Rosenthal GG, Rand AS, Ryan MJ. The vocal sac as a visual cue in anuran communication: an experimental analysis using video playback [J]. Anim Behav, 2004, 68: 55-58
16 Starnberger I, Poth D, Peram PS, Schulz S, Vences M, Knudsen J, Barej MF, R?del MO, Walzl M, H?dl W. Take time to smell the frogs: Vocal sac glands of reed frogs (Anura: Hyperoliidae) contain species-specific chemical cocktails [J]. Biol J Linn Soc, 2013, 110 (4): 828-838
17 Halfwerk W, Page RA, Taylor RC, Wilson PS, Ryan MJ. Crossmodal comparisons of signal components allow for relative-distance assessment [J]. Curr biol, 2014, 24 (15): 1751-1755
18 Taylor RC, Klein BA, Stein J, Ryan MJ. Faux frogs: multimodal signalling and the value of robotics in animal behaviour [J]. Anim Behav, 2008, 76 (3): 1089-1097
19 Halfwerk W, Jones PL, Taylor RC, Ryan MJ, Page RA. Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display [J]. Science, 2014, 343 (6169): 413-416
20 Narins PM, H?dl W, Grabul DS. Bimodal signal requisite for agonistic behavior in a dart-poison frog, Epipedobates femoralis [J]. PNAS, 2003, 100 (2): 577-580
21 Pearl CA, Cervantes M, Chan M, Ho U, Shoji R, Thomas E. Evidence for a mate-attracting chemosignal in the dwarf African clawed frog Hymenochirus [J]. Horm Behav, 2000, 38 (1): 67-74
22 Shannon CE. A mathematical theory of communication [J]. Bell Syst Technol J, 1948, 27 (4): 623-656
23 Wood WE, Yezerinac SM. Song Sparrow (Melospiza melodia) song varies with urban noise [J]. Auk, 2006, 123 (3): 650-659
24 Brumm H, Slabbekoorn H. Acoustic communication in noise [J]. Adv Stud Behav, 2005, 35: 151-209
25 Halfwerk W, Oers KV. Anthropogenic noise impairs foraging for cryptic prey via cross-sensory interference [J]. P Roy Soc B-Biol Sci, 2020, 287 (1924): 20192951
26 Brumm H, Naguib M. Environmental acoustics and the evolution of bird song [J]. Adv Study Behav, 2009, 40 (9): 1-33
27 Narins PM, Wagner I. Noise susceptibility and immunity of phase locking in amphibian auditory-nerve fibers [J]. J Acoust Soc Am, 1989, 85 (3): 1255-1265
28 Mcgregor PK. Animal Communication Networks [M]. New York: Cambridge University Press, 2005
29 Wollerman L, Wiley RH. Background noise from a natural chorus alters female discrimination of male calls in a Neotropical frog [J]. Anim Behav, 2002, 63 (1): 15-22
30 Naguib M. Living in a noisy world: indirect effects of noise on animal communication [J]. Behaviour, 2013, 150 (9-10): 1069-1084
31 McDermott JH. The cocktail party problem [J]. Curr Biol, 2009, 19 (22): R1024-1027
32 Bee MA, Swanson EM. Auditory masking of anuran advertisement calls by road traffic noise [J]. Anim Behav, 2007, 74 (6): 1765-1776
33 Sun J, Narins PM. Anthropogenic sounds differentially affect amphibian call rate [J]. Biol Conserv, 2005, 121 (3): 419-427
34 Wollerman L. Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata [J]. Anim Behav, 1999, 57 (3): 529-536
35 Páez VP, Bock B, Rand AS. Inhibition of evoked calling of Dendrobates pumilio due to acoustic interference from cicada calling [J]. Biotropica. 1993, 25 (2): 242-245
36 Nelson DI, Nelson RY, Concha-Barrientos M, Fingerhut M. The global burden of occupational noise-induced hearing loss [J]. Am J Ind Med, 2005, 48 (6): 446-458
37 Simmons DD, Lohr R, Wotring H, Burton MD, Hooper RA, Baird RA. Recovery of otoacoustic emissions after high-level noise exposure in the American bullfrog [J]. J Exp Biol, 2014, 217 (12): 1626-1636
38 Grafe TU, Tony JA. Temporal variation in acoustic and visual signalling as a function of stream background noise in the Bornean foot-flagging frog, Staurois parvus [J]. J Ecoacoustics, 2017, 1 (1): 2
39 Tro?anowski M, Condette C. Traffic noise affects colouration but not calls in the European treefrog (Hyla arborea) [J]. Behaviour, 2015, 152 (6): 821-836
40 Halfwerk W, Ryan MJ, Wilson PS. Wind- and rain-induced vibrations impose different selection pressures on multimodal signaling [J]. Am Nat, 2016, 188 (3): 279-288
41 McClure CJ, Ware HE, Carlisle JD, Kaltenecker G, Barber JR. An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road [J]. P Roy Soc B-Biol Sci, 2013, 280 (1773): 20132290
42 Grace M, Noss R. Evidence for selective avoidance of traffic noise by anuran amphibians [J]. Anim Conserv, 2018, 21 (4): 343-351
43 Caorsi VZ, Both C, Cechin S, Antunes R, Borges-Martins M. Effects of traffic noise on the calling behavior of two Neotropical hylid frogs [J]. PLoS ONE, 2017, 12 (8): e0183342
44 Vargas-Salinas F, Amézquita A. Traffic noise correlates with calling time but not spatial distribution in the threatened poison frog Andinobates bombetes [J]. Behaviour, 2013, 150 (6): 569-584
45 Estrela M, Sim?es C, Vieira G, Araújo C. Predicting the effects of noise on Anuran spatial distribution: the case of Scinax nebulosus [J]. Bioacoustics, 2019, 29 (4): 481-497
46 Hoskin CJ, James S, Grigg GC. Ecology and taxonomy-driven deviations in the frog call-body size relationship across the diverse Australian frog fauna [J]. P Zool Soc London, 2010, 278 (1): 36-41
47 Bee M. Sound source segregation in grey treefrogs: spatial release from masking by the sound of a chorus [J]. Anim Behav, 2007, 74 (3): 549-558
48 Bee M. Finding a mate at a cocktail party: Spatial release from masking improves acoustic mate recognition in grey treefrogs [J]. Anim behav, 2008, 75 (5): 1781-1791
49 Wells SKD. Interspecific acoustic interactions of the neotropical treefrog Hyla ebraccata [J]. Behav Ecol Sociobiol, 1984, 14 (3): 211-224
50 Walker TJ. Acoustic synchrony: two mechanisms in the snowy tree cricket [J]. Science, 1969, 166 (3907): 891-894
51 Schwartz JJ. The function of call alternation in anuran amphibians: a test of three hypotheses [J]. Evolution, 1987, 41 (3): 461-471
52 Ey E, Fischer J. The “Acoustic Adaptation Hypothesis” - a review of the evidence from birds, anurans and mammals [J]. Bioacoustics, 2009, 19 (1): 21-48
53 Zhao LH, Sun XQ, Chen QH, Yang Y, Wang JC, Ran JH, Brauth SE, Tang YZ, Cui JG. Males increase call frequency, not intensity, in response to noise, revealing no Lombard effect in the little torrent frog [J]. Ecol Evol, 2018, 8 (23): 11733-11741
54 Feng AS, Narins PM, Xu CH, Lin WY, Yu ZL, Qiu Q, Xu ZM, Shen JX. Ultrasonic communication in frogs [J]. Nature, 2006, 440 (7082): 333-336
55 Shen JX, Xu ZM, Feng AS, Narins PM. Large odorous frogs (Odorrana graminea) produce ultrasonic calls [J]. J Comp Physiol A, 2011, 197 (10): 1027-1030
56 Zhang F, Chen P, Chen ZQ, Zhao J. Ultrasonic frogs call at a higher pitch in noisier ambiance [J]. Curr Zool, 2015, 61 (6): 996-1003
57 Parris KM, Velik-Lord M, North J. Frogs call at a higher pitch in traffic noise [J]. Ecol Soc, 2009, 14 (1): 25
58 Cynx J, Lewis R, Tavel B, Tse H. Amplitude regulation of vocalizations in noise by a songbird, Taeniopygia guttata [J]. Anim Behav, 1998, 56 (1): 107-113
59 Manabe K, Sadr EI, Dooling RJ. Control of vocal intensity in budgerigars (Melopsittacus undulatus): differential reinforcement of vocal intensity and the Lombard effect [J]. J Acoust Soc Am, 1998, 103 (2): 1190-1198
60 Sinnott JM, Stebbins WC, Moody DB. Regulation of voice amplitude by the monkey [J]. J Acoust Soc Am, 1975, 58 (2): 412-414
61 Halfwerk W, Lea AM, Guerra MA, Page RA, Ryan MJ. Vocal responses to noise reveal the presence of the Lombard effect in a frog [J]. Behav Ecol, 2016, 27 (2): 669-676
62 Shen JX, Xu ZM. The Lombard effect in male ultrasonic frogs: Regulating antiphonal signal frequency and amplitude in noise [J]. Sci Rep, 2016, 6: 27103
63 Love EK, Bee MA. An experimental test of noise-dependent voice amplitude regulation in Cope’s grey treefrog, Hyla chrysoscelis [J]. Anim Behav, 2010, 80 (3): 509-515
64 Hemingway CT, Ryan MJ, Page RA. Transitive foraging behaviour in frog-eating bats [J]. Anim Behav, 2019, 154: 47-55
65 Parris KM. More bang for your buck: the effect of caller position, habitat and chorus noise on the efficiency of calling in the spring peeper [J]. Ecol Model, 2002, 156 (2-3): 213-224
66 Ewert JP, Capranica RR, Ingle DJ. Advances in Vertebrate Neuroethology [M]. New York: Plenum Press, 1983
67 Shen JX, Xu ZM, Yu ZL, Wang S, Zheng DZ, Fan SC. Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity [J]. Nat Commun, 2011, 2: 342
68 Yang Y, Zhu BC, Wang JC, Brauth SE, Tang YZ, Cui JG. A test of the matched filter hypothesis in two sympatric frogs, Chiromantis doriae and Feihyla vittata [J]. Bioacoustics, 2018, 28 (9): 1-15
69 Partan SR, Marler P. Issues in the classification of multimodal communication signals [J]. Am Nat, 2005, 166 (2): 231-45
70 Preininger D, Boeckle M, Freudmann A, Starnberger I, Sztatecsny M, H?dl W. Multimodal signaling in the small torrent frog (Micrixalus saxicola) in a complex acoustic environment [J]. Behavl Ecol Sociobiol, 2013, 67 (9): 1449-1456
71 Partan SR, Fulmer AG, Gounard MAM, Redmond JE. Multimodal alarm behavior in urban and rural gray squirrels studied by means of observation and a mechanical robot [J]. Curr Zool, 2010, 56 (03): 313-326
72 Ryan MJ. Anuran Communication [M]. Washington DC: Smithsonian Institution Press, 2001
73 Grafe TU, Preininger D, Sztatecsny M, Kasah R, Dehling JM, Proksch S, H?dl W. Multimodal communication in a noisy environment: a case study of the bornean rock frog Staurois parvus [J]. PLoS ONE, 2012, 7: e37965
74 Poth D, Wollenberg VK, Vences M, Schulz S. Volatile amphibian pheromones: macrolides from Mantellid frogs from Madagascar [J]. Angew Chem Int Ed, 2012, 51 (9): 2254-2254
75 Narins PM. Seismic communication in anuran amphibians [J]. Bioscience, 1990, 40 (4): 268-274
76 De Jong K, Amorim MCP, Fonseca PJ, Heubel KU. Noise affects multimodal communication during courtship in a marine fish [J]. Front Ecol Evol, 2018, 6: 113
77 Bregman AS. Auditory Scene Analysis: The Perceptual Organization of Sound [M]. Cambridge: The MIT Press, 1994
78 Nagasaka Y, Lazareva OF, Wasserman EA. Prior experience affects amodal completion in pigeons [J]. Percept Psychophys, 2007, 69 (4): 596-605
79 Miller CT, Dibble E, Hauser MD. Amodal completion of acoustic signals by a nonhuman primate [J]. Nat Neurosci, 2001, 4 (8): 783-784
80 Petkov CI, O’Connor KN, Sutter ML. Illusory sound perception in macaque monkeys [J]. J Neurosci, 2003, 23 (27): 9155-9161
81 Seeba F, Klump GM. Stimulus familiarity affects perceptual restoration in the European starling (Sturnus vulgaris) [J]. PLoS ONE, 2009, 4 (6): e5974
82 Seeba F, Schwartz JJ, Bee MA. Testing an auditory illusion in frogs: perceptual restoration or sensory bias? [J]. Anim Behav, 2010, 79 (6): 1317-1328
83 Baugh AT, Ryan MJ, Bernal XE, Rand AS. Female Túngara frogs do not experience the continuity illusion [J]. Behav Neurosci, 2016, 130 (1): 62-74
84 Petkov C, Sutter ML. Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration [J]. Hearing Res, 2011, 271 (1-2): 54-65
85 Halfwerk W, Slabbekoorn H. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance [J]. Biol Lett, 2015, 11 (4): 20141051

更新日期/Last Update: 2021-08-25