|本期目录/Table of Contents|

[1]甘琦杰,刘建亮,陈槐.野外增温方法研究进展[J].应用与环境生物学报,2021,27(04):1092-1102.[doi:10.19675/j.cnki.1006-687x.2020.09059]
 GAN Qijie,LIU Jianliang & CHEN Huai.Progress in research on field warming methods[J].Chinese Journal of Applied & Environmental Biology,2021,27(04):1092-1102.[doi:10.19675/j.cnki.1006-687x.2020.09059]
点击复制

野外增温方法研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年04期
页码:
1092-1102
栏目:
综述
出版日期:
2021-08-25

文章信息/Info

Title:
Progress in research on field warming methods
作者:
甘琦杰刘建亮陈槐
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
GAN Qijie1 2 LIU Jianliang1? & CHEN Huai1?
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
野外增温装置主动增温被动增温土柱移地长期增温实验
Keywords:
field warming device active warming passive warming soil column moving long-term warming experiment
DOI:
10.19675/j.cnki.1006-687x.2020.09059
摘要:
全球变暖是目前人类面临的主要环境问题之一,过快的温度增幅对于植物生理、植被分布、土壤微生物活性、土壤有机物矿化和物质循环等将产生深远的影响,因此全球变暖的相关研究近几十年来一直是各国科学家研究的热点. 野外增温实验是研究全球变暖最常用的手段之一,因研究区地理环境、植被类型特征和研究目标的不同,增温实验中根据增温设备增温效果及实验需求衍生出了各种不同的类型,对于空气增温、植被增温和土壤增温,在不同研究中各种设备的适用性有所差异. 本文总体将增温装置归纳为减少太阳辐射能量耗散的被动增温和依赖电力进行能量输入的主动增温两大类,从增温装置增温原理及方法、野外实验中实际增温效果以及野外气候条件下实施难度及维护等方面,重点论述了各种增温设备的优缺点及适用性,并归纳总结了增温设备在使用过程中的局限性. 湿地生态系统暂时或长期地表淹水及土壤高湿和水的高比热容带来的增温难度与森林生态系统高大树冠增温的实施难度是未来增温需要解决的问题. 此外,建议对未来增温采用大规模长周期变温实验,结合模型预测,实现更准确的增温模拟,以获取更加真实的生态系统响应. (图1 表1 参100)
Abstract:
Global warming is one of the main environmental challenges faced by humans. An extremely fast temperature increase will have a profound effect on plant physiology, vegetation distribution, soil microbial activity, soil organic matter mineralization, and material cycling. Therefore, research on global warming has been a popular topic for scientists worldwide in recent decades. Field warming experiments are one of the most commonly used methods for studying global warming. Owing to the different geographical environments, vegetation type characteristics, and research objectives in the study area, various types of warming experiments have been designed according to the warming effect of warming equipment and experimental requirements. The heating effects and applicability of different research equipment are different. In this study, warming devices were classified into two categories: passive warming, which reduces the energy dissipation of solar radiation, and active warming, which depends on the power input. This review discusses the advantages, disadvantages, and applicability of all types of temperature increasing equipment from the principle and method of the device, the actual warming effect, and the implementation difficulty and maintenance under field climate conditions and summarizes the limitations of the heating equipment during use. The challenges to be solved in the future are the difficulty in temperature increase caused by temporary or long-term surface flooding, high soil moisture in wetland ecosystems, and high specific heat capacity of water, as well as the difficulty in implementing high canopy temperature increases in forest ecosystems. In addition, it is suggested that large-scale, long-term temperature change experiments should be adopted for future warming in order to achieve accurate warming simulations and obtain real ecosystem responses.

参考文献/References:

1 IPCC (Intergovernmental Panel of Climate Change). Climate Change 2014 Synthesis Report: Summary for Policymakers [M]. 2014: 4-6
2 McCarty JP. Ecological consequences of recent climate change [J]. Conserv Biol, 2001, 15 (2): 320-331
3 Hughes L. Biological consequences of global warming: is the signal already apparent? [J]. Trends Ecol Evol, 2000, 15 (2): 56-61
4 Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F. Ecological responses to recent climate change [J]. Nature, 2002, 416 (6879): 389-395
5 Menzel A, Fabian P. Growing season extended in Europe [J]. Nature, 1999, 397 (6721): 659-659
6 Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. Climate extremes: observations, modeling, and impacts [J]. Science, 2000, 289 (5487): 2068-2074
7 Batjes NH. Total carbon and nitrogen in the soils of the world [J]. Eur J Soil Sci, 1996, 47 (2): 151-163
8 Raich JW, Potter CS. Global patterns of carbon-dioxide emissions from soils [J]. Global Biogeochem Cycles, 1995, 9 (1): 23-36
9 Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kroel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Penuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, Bradford MA. Quantifying global soil carbon losses in response to warming [J]. Nature, 2016, 540 (7631): 104
10 卫云燕,尹华军,刘庆,黎云祥. 气候变暖背景下森林土壤碳循环研究进展[J]. 应用与环境生物学报, 2009, 15 (6): 888-894 [Wei YY, Yin HJ, Liu Q, Li YX. Advance in research of forest carbon cycling under climate warming [J]. Chin J Appl Environ Biol, 2009, 15 (6): 888-894]
11 Luo YQ, Wan SQ, Hui DF, Wallace LL. Acclimatization of soil respiration to warming in a tall grass prairie [J]. Nature, 2001, 413 (6856): 622-625
12 Zhang W, Parker KM, Luo Y, Wan S, Wallace LL, Hu S. Soil microbial responses to experimental warming and clipping in a tallgrass prairie [J]. Glob Chang Biol, 2005, 11 (2): 266-277
13 智慧温室. 世界温室发展史[EB/OL]. (2019-06-21) [2020-09-26] https: //www.sohu.com/a/322052660_567506. [Zhihui Greenhouse. Development history of greehouse worldwide [EB/OL]. (2019-06-21)[2020-09-26]. https: //www.sohu.com/a/322052660_567506
14 Mandl RH, Weinstein LH, McCune DC, Keveny M. A cylindrical, open-top chamber for the exposure of plants to air pollutants in the field [J]. J Environ Qual, 1973, 2 (3): 371
15 Zeiher CA, Brown PW, Silvertooth JC, Matumba N, Mitton N.The effect of night temperature on cotton reproductive development [R]//Cotton J. Silvertooth College of Agriculture Report, The University of Arizona, Tucson, 1994: 89-96
16 Walker MD, Walker DA, Welker JM, Arft AM, Bardsley T, Brooks PD, Fahnestock JT, Jones MH, Losleben M, Parsons AN, Seastedt TR, Turner PL. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra [J]. Hydrol Process, 1999, 13 (14-15): 2315-2330
17 Vancleve K, Oechel WC, Hom JL. Response of black spruce (Piceamariana) ecosystems to soil temperature modification in interior Alaska [J]. Can J For Res, 1990, 20 (9): 1530-1535
18 Harte J, Torn MS, Chang FR, Feifarek B, Kinzig AP, Shaw R, Shen K. Global warming and soil microclimate: results from a meadow-warming experiment [J]. Ecol Appl, 1995, 5 (1): 132-150
19 IPCC (Intergovernmental Panel of Climate Change). Climate change 2001: The Scientific Basis. The Third Assessment Report of Working Group [M]. Cambrige: Cambridge University Press, 2001
20 Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Levesque E, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA. Open-top designs for manipulating field temperature in high-latitude ecosystems [J]. Glob Chang Biol, 1997, 3: 20-32
21 牛书丽, 韩兴国, 马克平, 万师强. 全球变暖与陆地生态系统研究中的野外增温装置[J]. 植物生态学报, 2007, 31 (2): 94-103 [Niu SL, Han XG, Ma KP, Wan SQ. Field facilities in global warming and terrestrial ecosystem research [J]. J Plant Ecol, 2007, 31 (2): 262-271]
22 Chapin FS, Shaver GR. Individualistic Growth Response of Tundra Plant Species to Environmental Manipulations in the Field [J]. Ecology, 1985, 66 (2): 564-576
23 Wookey PA, Parsons AN, Welker JM, Potter JA, Callaghan TV, Lee JA, Press MC. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants [J]. Oikos, 1993, 67 (3): 490-502
24 Coulson S, Hodkinson ID, Strathdee A, Bale JS, Block W, Worland MR, Webb NR. Simulated climate change: the interaction between vegetation type and microhabitat temperature at Ny Alesund, Svalbard [J]. Polar Biol, 1993, 13 (1): 67-70
25 Henry GHR, Molau U. Tundra plants and climate change: The international tundra experiment (ITEX) [J]. Glob Chang Biol, 1997, 3: 1-9
26 Li N, Wang G, Yang Y, Gao Y, Liu G. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau [J]. Soil Biol Biochem, 2011, 43 (5): 942-953
27 宗宁, 石培礼. 模拟增温对西藏高原高寒草甸土壤供氮潜力的影响[J]. 生态学报, 2019, 39 (12): 4356-4365 [Zong N, Shi P. Effects of simulated warming on soil nitrogen supply potential in an alpine meadow on the Tibetan Plateau [J]. Acta Ecol Sin, 2019, 39 (12): 4356-4365]
28 Wahren CHA, Walker MD, Bret-Harte MS. Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment [J]. Glob Chang Biol, 2005, 11 (4): 537-552
29 Schimel JP, Bilbrough C, Welker JA. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities [J]. Soil Biol Biochem, 2004, 36 (2): 217-227
30 Hinkel KM, Jr Hurd JK. Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, USA [J]. Arct Antarct Alp Res, 2006, 38 (4): 530-539
31 Pomeroy JW, Brun E. Physical properties of snow. Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems [M]. Cambrige: Cambridge University Press, 2001: 45-126
32 Walker DA, Billings WD, de Molenaar JG. Snow-vegetation interactions in tundra environments [M]//Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems. Cambrige: Cambridge University Press, 2001
33 Schuur EAG, McGuire AD, Sch?del C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE. Climate change and the permafrost carbon feedback [J]. Nature, 2015, 520 (7546): 171-179
34 Natali SM, Schuur EAG, Trucco C, Pries CEH, Crummer KG, Lopez AFB. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra [J]. Glob Chang Biol, 2011, 17 (3): 1394-1407
35 Nobrega S, Grogan P. Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra [J]. Ecosystems, 2007, 10 (3): 419-431
36 Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG. Observational evidence of recent change in the northern high-latitude environment [J]. Clim Change, 2000, 46 (1-2): 159-207
37 Sturm M, Racine C, Tape K. Climate change - Increasing shrub abundance in the Arctic [J]. Nature, 2001, 411 (6837): 546-547
38 Liston GE, McFadden JP, Sturm M, Pielke RA. Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs [J]. Glob Chang Biol, 2002, 8 (1): 17-32
39 Beier C, Emmett B, Gundersen P, Tietema A, Penuelas J, Estiarte M, Gordon C, Gorissen A, Llorens L, Roda F, Williams D. Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming [J]. Ecosystems, 2004, 7 (6): 583-597
40 Luxmoore RJ, Hanson PJ, Beauchamp JJ, Joslin JD. Passive nighttime warming facility for forest ecosystem research [J]. Tree Physiol, 1998, 18 (8-9): 615-623
41 Peterjohn WT, Melillo JM, Bowles FP, Steudler PA. Soil warming and trace gas fluxes: experimental design and preliminary flux results [J]. Oecologia, 1993, 93 (1): 18-24
42 Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. Soil warming and carbon-cycle feedbacks to the climate system [J]. Science, 2002, 298 (5601): 2173-2176
43 Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM. A method for experimental heating of intact soil profiles for application to climate change experiments [J]. Glob Chang Biol, 2011, 17 (2): 1083-1096
44 谭凯炎, 房世波, 任三学, 张新时. 非对称性增温对农业生态系统影响研究进展[J]. 应用气象学报, 2009 (5): 634-641 [Tan KY, Fang SB, Ren SX, Zhang XS. Asymmetric trends of daily maximum and minimum temperature in global warming and its effects on agriculture ecosystems [J]. J Appl Meteorol Sci, 2009 (5): 634-641]
45 Saleska SR, Harte J, Torn MS. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow [J]. Glob Chang Biol, 1999, 5 (2): 125-141
46 Xu M, Peng F, You Q, Guo J, Tian X, Liu M, Xue X. Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China [J]. J Arid Land, 2015, 7 (2): 189-204
47 Wang Y, Liu S, Wang J, Chang SX, Luan J, Liu Y, Lu H, Liu X. Microbe-mediated attenuation of soil respiration in response to soil warming in a temperate oak forest [J]. Sci Total Environ, 2020: 711-718
48 Zhu B, Cheng W. Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition [J]. Soil Biol Biochem, 2011, 43 (4): 866-869
49 Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT. Response of bog and fen plant communities to warming and water-table manipulations [J]. Ecology, 2000, 81 (12): 3464-3478
50 马胜兰, 吴鹏飞. 增温对森林土壤有机碳含量的影响[J]. 西南农业学报, 2019, 32 (6): 1335-1339 [Ma SL, Wu PF. Effects of temperature increasing on soil organic carbon contents in forest ecosystems [J]. SW Chin J Agric Sci, 2019, 32 (6): 1335-1339]
51 常晨晖, 苟小林, 吴福忠, 杨万勤, 殷睿, 熊莉, 肖洒. 利用海拔差异模拟增温对高山森林土壤溶解性有机碳和有机氮含量的影响[J]. 应用生态学报, 2016, 27 (3): 663-671 [Chang CH, Gou XL, Wu FZ, Yang WQ, Yin R, Xiong L, Xiao S. Effects of simulated warming on soil DOC and DON concentrations in the alpine forest of western Sichuan based on altitudinal gradient experiment [J]. Chin J Appl Ecol, 2016, 27 (3): 663-671]
52 黄锦学, 熊德成, 刘小飞, 杨智杰, 谢锦升, 杨玉盛. 增温对土壤有机碳矿化的影响研究综述[J]. 生态学报, 2017, 37 (1): 12-24 [Huang JX, Xiong DC, Liu XF, Yang ZJ, Xie JS, Yang YS. Effects of warming on soil organic carbon mineralization: a review [J]. Acta Ecol Sin, 2017, 37 (1): 12-24]
53 Bridgham SD, Pastor J, Dewey B, Weltzin JF, Updegraff K. Rapid carbon response of peatlands to climate change [J]. Ecology, 2008, 89 (11): 3041-3048
54 Sun S, Liu J, Chang SX. Temperature sensitivity of soil carbon and nitrogen mineralization: impacts of nitrogen species and land use type [J]. Plant Soil, 2013, 372 (1-2): 597-608
55 Iglesias Briones MJ, Ostle NJ, McNamara NR, Poskitt J. Functional shifts of grassland soil communities in response to soil warming [J]. Soil Biol Biochem, 2009, 41 (2): 315-322
56 Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world [J]. Science, 2017, 358 (6359): 101-104
57 Ngao J, Epron D, Brechet C, Granier A. Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using C-13-depleted litter [J]. Glob Chang Biol, 2005, 11 (10): 1768-1776
58 宋新章, 江洪, 张慧玲, 余树全, 周国模, 马元丹, Chang SX. 全球环境变化对森林凋落物分解的影响[J]. 生态学报, 2008 (9): 4414-4423 [Song XZ, Jiang H,Zhang HL, Yu SQ, Zhou GM, Ma YD, Chang SX. A review on the effects of global environment change on litter decomposition [J]. Acta Ecol Sin, 2008 (9): 4414-4423]
59 Wood TE, Cavaleri MA, Reed SC. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes [J]. Biol Rev, 2012, 87 (4): 912-927
60 比买热木?阿不都艾海提, 艾克拜尔?伊拉洪, 热依汗古丽?阿布力孜, 艾力江?买买提, 帕丽扎提?艾合买提. 新疆典型草原黑钙土腐殖质组分的垂直变化规律[J]. 新疆农业科学, 2012, 49 (5): 954-960 [Bimairemu A, Aikebaier Y, Reyihanguli A, Ailijiang Maimaiti, Palizati Aihemaiti. Study on the vertical distribution regularity of soil humus contents in typical grassland chernozem soil in Xinjiang, China [J]. Xinjiang Agric Sci, 2012, 49 (5): 954-960]
61 Chen H, Yang G, Peng C, Zhang Y, Zhu D, Zhu Q, Hu J, Wang M, Zhan W, Zhu E, Bai Z, Li W, Wu N, Wang Y, Gao Y, Tian J, Kang X, Zhao X, Wu J. The carbon stock of alpine peatlands on the Qinghai-Tibetan Plateau during the Holocene and their future fate [J]. Quat Sci Rev, 2014, 95: 151-158
62 Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales [J]. Glob Chang Biol, 2013, 19 (5): 1325-1346
63 Mitsch WJ, Bernal B, Nahlik AM, Mander U, Zhang L, Anderson CJ, Jorgensen SE, Brix H. Wetlands, carbon, and climate change [J]. Landsc Ecol, 2013, 28 (4): 583-597
64 Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quere C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G. Three decades of global methane sources and sinks [J]. Nat Geosci, 2013, 6 (10): 813-823
65 Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D. Global atmospheric methane: budget, changes and dangers [J]. Philos Trans R Soc A: Math Phys Eng Sci, 2011, 369 (1943): 2058-2072
66 Bousquet P, Ringeval B, Pison I, Dlugokencky EJ, Brunke EG, Carouge C, Chevallier F, Fortems-Cheiney A, Frankenberg C, Hauglustaine DA, Krummel PB, Langenfelds RL, Ramonet M, Schmidt M, Steele LP, Szopa S, Yver C, Viovy N, Ciais P. Source attribution of the changes in atmospheric methane for 2006-2008 [J]. Atmospheric Chem. Phys., 2011, 11 (8): 3689-3700
67 Nykanen H, Alm J, Lang K, Silvola J, Martikainen PJ. Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland [J]. J Biogeogr, 1995, 22 (2-3): 351-357
68 Laine J, Silvola J, Tolonen K, Alm J, Nykanen H, Vasander H, Sallantaus T, Savolainen I, Sinisalo J, Martikainen PJ. Effect of water-level drawdown on global climatic warming: northern peatlands [J]. Ambio, 1996, 25 (3): 179-184
69 Yu L, Wang H, Wang Y, Zhang Z, Chen L, Liang N, He J-S. Temporal variation in soil respiration and its sensitivity to temperature along a hydrological gradient in an alpine wetland of the Tibetan Plateau [J]. Agric For Meteorol, 2020: 282-290
70 Davenport JM, Fishback L, Hossack BR. Effects of experimental warming and nutrient enrichment on wetland communities at the Arctic’s edge [J]. Hydrobiologia, 2020, 847: 3677-3690
71 Pan Y, Birdsey RA, Phillips OL, Jackson RB. The structure, distribution, and biomass of the world’s forests [J]. Annu Rev Ecol Evol Syst, 2013, 44 (1): 593
72 Jobbagy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecol Appl, 2000, 10 (2): 423-436
73 Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Roedenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate [J]. Science, 2010, 329 (5993): 834-838
74 IPCC (Intergovernmental Panel of Climate Change). Climate change 2007: The physical science basis. The Fourth Assessment Report of Working Group [M]. Cambrige: Cambridge University Press, 2007
75 Mora C, Frazier AG, Longman RJ, Dacks RS, Walton MM, Tong EJ, Sanchez JJ, Kaiser LR, Stender YO, Anderson JM, Ambrosino CM, Fernandez-Silva I, Giuseffi LM, Giambelluca TW. The projected timing of climate departure from recent variability [J]. Nature, 2013, 502 (7470): 183
76 Wright SJ, Muller-Landau HC, Schipper J. The future of tropical species on a warmer planet [J]. Conserv Biol, 2009, 23 (6): 1418-1426
77 Heinrich Krause G, Cheesman AW, Winter K, Krause B, Virgo A. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures [J]. J Plant Physiol, 2013, 170 (9): 822-827
78 Quan X, Wang N, Wang C. Thermal acclimation of leaf dark respiration of Larix gmelinii: A latitudinal transplant experiment [J]. Sci Total Environ, 2020, 140634
79 Wu T, Thomas TD, Li X, Liu SZ, Chu GW, Zhou GY, Li YL, Zheng MH, Meng Z, Liu JX. Long-term effects of 7-year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species [J]. Glob Chang Biol, 2020: 153-155
80 Park HJ, Lim SS, Yang HI, Lee KS, Kwak JH, Park SI, Kim HY, Lee SM, Choi WJ. Nitrogen effects on quantity, chemistry, and decomposability of Pinus densiflora and Quercus variabilis litters under elevated CO2 and warming [J]. For Ecol Manag, 2020, 473: 118315
81 Norby RJ, Luo YQ. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world [J]. New Phytol, 2004, 162 (2): 281-293
82 Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jonsdottir IS, Laine K, Levesque E, Marion GM, Molau U, Molgaard P, Nordenhall U, Raszhivin V, Robinson CH, Starr G, Stenstrom A, Stenstrom M, Totland O, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA. Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment [J]. Ecol Monogr, 1999, 69 (4): 491-511
83 Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jonsdottir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland O, Turner PL, Tweedie CE, Webber PJ, Wookey PA. Plant community responses to experimental warming across the tundra biome [J]. PNAS, 2006, 103 (5): 1342-1346
84 Hopple AM, Wilson RM, Kolton M, Zalman CA, Chanton JP, Kostka J, Hanson PJ, Keller JK, Bridgham SD. Massive peatland carbon banks vulnerable to rising temperatures [J]. Nat Commun, 2020, 11 (1): 1-7
85 Hollister RD, Webber PJ, Tweedie CE. The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses [J]. Glob Chang Biol, 2005, 11 (4): 525-536
86 Wang J, Zhang Q, Song J, Ru J, Zhou Z, Xia J, Dukes JS, Wan S. Nighttime warming enhances ecosystem carbon-use efficiency in a temperate steppe [J]. Funct Ecol, 2020: doi org/10.1111/1365-2435.13579
87 Luo DL, Jin HJ, He RX, Wang XF, Muskett RR, Marchenko SS, Romanovsky VE. Characteristics of water-heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai-Tibet Plateau [J]. J Geophys Res Atmos, 2018, 123 (18): 10404-10422
88 Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethe C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 [J]. Clim Dyn, 2013, 40 (9-10): 2123-2165
89 Seferian R, Nabat P, Michou M, Saint-Martin D, Voldoire A, Colin J, Decharme B, Delire C, Berthet S, Chevallier M, Senesi S, Franchisteguy L, Vial J, Mallet M, Joetzjer E, Geoffroy O, Gueremy JF, Moine MP, Msadek R, Ribes A, Rocher M, Roehrig R, Salas-y-Melia D, Sanchez E, Terray L, Valcke S, Waldman R, Aumont O, Bopp L, Deshayes J, Ethe C, Madec G. Evaluation of cnrm earth system model, cnrm‐esm2‐1: role of earth system processes in present‐day and future climate [J]. J Adv Model Earth Syst, 2019, 11 (12): 4182-4227
90 Cavaleri MA, Reed SC, Smith WK, Wood TE. Urgent need for warming experiments in tropical forests [J]. Glob Chang Biol, 2015, 21 (6): 2111-2121
91 Moreno-Mateos D, Power ME, Comin FA, Yockteng R. Structural and functional loss in restored wetland ecosystems [J]. PLOS Biol, 2012, 10 (1): e1001247
92 Jorgenson MT, Racine CH, Walters JC, Osterkamp TE. Permafrost degradation and ecological changes associated with a warming climate in central Alaska [J]. Clim Change, 2001, 48 (4): 551-579
93 Schuur EAG, McGuire AD, Schaedel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE. Climate change and the permafrost carbon feedback [J]. Nature, 2015, 520 (7546): 171-179
94 Harrison RB, Footen PW, Strahm BD. Deep soil horizons: Contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change [J]. For Sci, 2011, 57 (1): 67-76
95 Jia J, Cao Z, Liu C, Zhang Z, Lin L, Wang Y, Haghipour N, Wacker L, Bao H, Dittmar T, Simpson MJ, Yang H, Crowther TW, Eglinton TI, He J-S, Feng X. Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland [J]. Glob Chang Biol, 2019, 25 (12): 4383-4393
96 Aerts R. The freezer defrosting: global warming and litter decomposition rates in cold biomes [J]. J Ecol, 2006, 94 (4): 713-724
97 Pausas JG. Litter fall and litter decomposition in Pinus sylvestris forests of the eastern Pyrenees [J]. J Veg Sci, 1997, 8 (5): 643-650
98 Moore TR, Trofymow JA, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S. Litter decomposition rates in Canadian forests [J]. Glob Chang Biol, 1999, 5 (1): 75-82
99 张晓宁, 刘振亚, 李丽萍, 王行, 张贇, 孙梅, 肖德荣. 大气增温对滇西北高原典型湿地湖滨带优势植物凋落物质量衰减的影响[J]. 生态学报, 2017, 37 (23): 7811-7820 [Zhang XN, Liu ZY, Li LP, Wang H, Zhang Y, Sun M, Xiao DR. Effect of experimental warming on the decomposition of litter from dominant lakeside plants in a typical wetland of northwestern Yunnan Plateau, China [J]. Acta Ecol Sin, 2017, 37 (23): 7811-7820]
100 O’Neill EG, Johnson D W, Ledford J, Todd DE. Acute seasonal drought does not permanently alter mass loss and nitrogen dynamics during decomposition of red maple (Acer rubrum L.) litter [J]. Glob Chang Biol, 2002, 9 (1): 117-123

更新日期/Last Update: 2021-08-25