|本期目录/Table of Contents|

 LING Xiaofang,XIE Tian,?,et al.Microplastics in the environment and chemical products and remediation strategies[J].Chinese Journal of Applied & Environmental Biology,2021,27(04):1110-1118.[doi:10.19675/j.cnki.1006-687x.2020.08031]





Microplastics in the environment and chemical products and remediation strategies
1成都产品质量检验研究院有限责任公司 成都 6101992中国科学院成都生物研究所中国科学院环境与应用微生物重点实验室 成都 6100413中国科学院成都生物研究所环境微生物四川省重点实验室 成都 610041
LING Xiaofang1 XIE Tian2 3? LI Ming1 & WU Yu1
1 Chengdu Institute of Product Quality Inspection Co. Ltd., Chengdu 610199, China2 Key Laboratory of Environmental and Applied Microbiology of Chinese Academy of Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China3 Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
microplastic chemical product environmental pollution prevention and control strategy bioremediation
微塑料是直径< 5 mm的塑料物质,是环境中广泛分布的持久性污染物,对人类和其他生物的健康造成威胁. 综述微塑料的危害、污染现状及组成来源、在食品和化工产品中的赋存现状,并着重探讨化工产品及环境中微塑料的防控. 微塑料对生物体具有直接危害,同时在环境中释放塑料添加剂,并吸附环境中的其他污染物形成复合污染. 微塑料在水、大气及土壤中普遍存在,在海洋、河流及大气中的迁移作用较强. 微塑料按照来源可分为初生微塑料和次生微塑料. 化工产品是初生微塑料的重要来源,根据具体情况可以对其含有的微塑料采用禁用、使用替代物质、调整添加量等方式控制,也可以通过产品替代控制使用. 根据环境中微塑料的污染情况,可组合使用物理、化学和生物的治理技术,重点使用包含酶、微生物或二者组合的生物修复技术对散布于水和土壤中的微塑料进行治理. 目前,角质酶和Ideonella sakaiensis 201-F6菌可以有效降解聚酯类塑料,而对于聚烯烃类及其他塑料,现有微生物及酶的降解效率低,降解机制尚不清楚. 检测方法、分布特征、使用情况及防控方案将是应对化工产品中微塑料问题的研究重点;实现常温下有效降解芳香族聚酯类塑料,发掘能有效降解聚烯烃类塑料的微生物和酶,解析相关的分子机制,将是生物修复微塑料的研究方向;保证生物修复技术的安全性是其应用的前提. (图1 表2 参92)
Plastic particles (diameter < 5 mm) are defined as microplastics (MPs), which are persistent pollutants that are widely distributed in the environment, threatening the health of humans and other organisms. This study reviewed the hazards, pollution, constituents and sources, and occurrence of MPs in food and chemical products and emphasized their prevention and control in chemical products and the environment. In addition to direct harm to organisms, MPs can release plastic additives to the environment and absorb other pollutants in the environment, resulting in compound pollution. MPs are ubiquitous in the water, atmosphere, and soil. The migration of MPs in seas, rivers, and the atmosphere is intense. MPs can be divided into primary and secondary MPs according to their sources. Chemical products are the primary source of MPs. According to the specific situation, using MPs in chemical products can be controlled by forbidding, using substitutes, and adjusting the amount added. The use of MPs can also be controlled by product substitution. According to the pollution, physical, chemical, and biological techniques can be combined to deal with MP pollution in the environment. Bioremediation techniques, including enzymes, microorganisms, or a combination of the two, are preferred for the treatment of MPs dispersed in water and soil. Currently, cutinase and Ideonella sakaiensis 201-F6 can degrade polyester MPs effectively; however, microorganisms and enzymes cannot effectively degrade polyalkene and other plastics, and the degradation mechanisms are not fully understood. Finally, this study highlighted that the detection method, distribution characteristics, usage, and control plans of MPs in chemical products will become the research focus to manage the use of MPs in chemical products, degrading aryl polyester plastics at normal temperatures, and discovering new microorganisms and enzymes to effectively degrade polyalkene plastics. Moreover, elucidating the molecular mechanisms will be the main research focus for the biological remediation of MPs; assuring the safety of techniques is the foundation of biological remediation techniques.


1 Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made [J]. Sci Adv, 2017, 3 (7): e1700782
2 Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, Mcgonigle D, Russell AE. Lost at sea: where is all the plastic? [J]. Science, 2004, 304 (5672): 838-838
3 Worm B, Lotze HK, Jubinville I, Wilcox C, Jambeck J. Plastic as a persistent marine pollutant [J]. Annu Rev Environ Resour, 2017, 42 (1): 1-26
4 Carbery M, O’Connor W, Thavamani P. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health [J]. Environ Int, 2018, 115: 400-409
5 Wang W, Gao H, Jin S, Li R, Na G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: a review [J]. Ecotox Environ Safe, 2019, 173: 110-117
6 Bhagat J, Zang L, Nishimura N, Shimada Y. Zebrafish: an emerging model to study microplastic and nanoplastic toxicity [J]. Sci Total Environ, 2020, 728: 138707
7 Nolte TM, Hartmann NB, Kleijn JM, Garn?s J, Dik VDM, Jan Hendriks A, Baun A. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption [J]. Aquat Toxicol, 2017, 183: 11-20
8 Bhattacharya P, Lin S, Turner JP, Ke PC. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis [J]. J Phys Chem C, 2010, 114 (39): 16556-16561
9 Nadia VM, Patricia BH, Angela KH. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure [J]. Environ Sci Technol, 2012, 46: (20) 11327-11335
10 Blarer P, Burkhardt-Holm P. Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum [J]. Environ Sci Pollut Res, 2016, 23: 23522-23532
11 Kosuth M, Mason S, Wattenberg E. Anthropogenic contamination of tap water, beer, and sea salt [J]. PLoS ONE, 2018, 13 (4): e0194970
12 Vianello A, Jensen RL, Li L, Vollertsen J. Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin [J]. Sci Rep, 2019, 9: 8670
13 Schirinzi G, Pérez-Pomeda I, Sanchís Sandoval J, Rossini C, Farré M, Barcelo D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells [J]. Environ Res, 2017, 159: 579-587
14 Zhu BK, Fang YM, Zhu D, Christie P, Ke X, Zhu YG. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus [J]. Environ Pollut, 2018, 239: 408-415
15 Ju H, Zhu D, Qiao M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida [J]. Environ Pollut, 2019, 247: 890-897
16 Lahive E, Walton A, Horton AA, Spurgeon DJ, Svendsen C. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure [J]. Environ Pollut, 2019, 255 (Pt 2): 113174
17 Wang J, Coffin S, Sun C, Schlenk D, Gan J. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil [J]. Environ Pollut, 2019, 249: 776-784
18 Lwanga EH, Thapa B, Yang XM, Gertsen H, Salánki T, Geissen V, Garbeva P. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration [J]. Sci Total Environ, 2018, 624: 753-757
19 Guo J-J, Huang X-P, Xiang L, Wang Y-Z, Wong M-H. Source, migration and toxicology of microplastics in soil [J]. Environ Int, 2020, 137: 105263
20 Lee WS, Cho HJ, Kim E, Huh YH, Kim HJ, Kim B, Kang T, Lee JS, Jeong J. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos [J]. Nanoscale, 2019, 11 (7): 3173-3185
21 Canesi L, Ciacci C, Fabbri R, Balbi T, Salis A, Damonte G, Cortese K, Caratto V, Monopoli MP, Dawson K, Bergami E, Corsi I. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: role of soluble hemolymph proteins [J]. Environ Res, 2016, 150: 73-81
22 Nanoplastic should be better understood (editorial). Nat Nanotechnol, 2019, 14 (4): 299
23 Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Takada H. Transport and release of chemicals from plastic to the environment and to wildlife [J]. Philos T R Soc B, 2009, 364 (1526): 2027-2045
24 Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: uating the current understanding to identify the knowledge gaps and future research priorities [J]. Sci Total Environ, 2017, 586: 127-141
25 Hermabessiere L, Dehaut A, Paul-Pont I, Lacroix C, Jezequel R, Soudant P, Duflos G. Occurrence and effects of plastic additives on marine environments and organisms: a review [J]. Chemosphere, 2017, 182: 781-793
26 Kong S, Ji Y, Liu L, Chen L, Sun Z. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China [J]. Environ Pollut, 2012, 170: 161-168
27 Wang J, Luo Y, Teng Y, Ma W, Christie P, Li Z. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film [J]. Environ Pollut, 2013, 180: 265-273
28 Rochman CM, Hoh E, Kurobe T, Teh SJ. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress [J]. Sci Rep, 2013, 3: 3623
29 Mark Anthony B, Niven SJ, Galloway TS, Rowland SJ, Thompson RC. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity [J]. Curr Biol, 2013, 23 (23): 2388-2392
30 Pannetier P, Cachot J, Clerandeau C, Faure F, Van Arkel K, de Alencastro LF, Levasseur C, Sciacca F, Bourgeois J-P, Morin B. Toxicity assessment of pollutants sorbed on environmental sample microplastics collected on beaches: Part Ⅰ-adverse effects on fish cell line [J]. Environ Pollut, 2019, 248: 1088-1097
31 Napper IE, Bakir A, Rowland SJ, Thompson RC. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics [J]. Mar Pollut Bull, 2015, 99 (1-2): 178-185
32 Mark Anthony B, Phillip C, Niven SJ, Emma T, Andrew T, Tamara G, Richard T. Accumulation of microplastic on shorelines woldwide: sources and sinks [J]. Environ Sci Technol, 2011, 45 (21): 9175-9179
33 Zhang K, Gong W, Lü J, Xiong X, Wu C. Accumulation of floating microplastics behind the Three Gorges Dam [J]. Environ Pollut, 2015, 204: 117-123
34 Kara Lavender L, Skye MF, Maximenko NA, Giora P, Peacock EE, Jan H, Reddy CM. Plastic accumulation in the North Atlantic subtropical gyre [J]. Science, 2010, 329 (5996): 1185-1188
35 Andrés C, Fidel E, J Ignacio GG, Xabier I, Bárbara U, Santiago HL, Palma AT, Sandra N, Juan GDL, Andrea R. Plastic debris in the open ocean [J]. PNAS, 2014, 111 (28): 10239-10244
36 Pan Z, Guo H, Chen H, Wang S, Sun X, Zou Q, Zhang Y, Lin H, Cai S, Huang J. Microplastics in the northwestern Pacific: abundance, distribution, and characteristics [J]. Sci Total Environ, 2018, 650: 1913-1922
37 Alomar C, Estarellas F, Deudero S. Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size [J]. Mari Environ Res, 2016, 115: 1-10
38 Cordova MR, Purwiyanto AIS, Suteja Y. Abundance and characteristics of microplastics in the northern coastal waters of Surabaya, Indonesia [J]. Mar Pollut Bull, 2019, 142: 183-188
39 Carson HS, Colbert SL, Kaylor MJ, Mcdermid KJ. Small plastic debris changes water movement and heat transfer through beach sediments [J]. Mar Pollut Bull, 2011(8): 1708-1713
40 Zhou Q, Zhang HB, Fu CC, Yang D, Li ZF. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea [J]. Geoderma, 2018, 322: 201-208
41 Zhao S, Zhu L, Li D. Characterization of small plastic debris on tourism beaches around the South China Sea [J]. Reg Stud Mar Sci, 2015, 1: 55-62
42 Kara Lavender L, Morét-Ferguson SE, Goodwin DS, Zettler ER, Emelia D, Tobias K, Giora P. Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set [J]. Environ Sci Technol, 2014, 48 (9): 4732-4738
43 Cauwenberghe LV, Vanreusel A, Mees J, Janssen CR. Microplastic pollution in deep-sea sediments [J]. Environ Pollut, 2013, 182: 495-499
44 Wong KHJ, Lee KK, Ho DTK, Yap P-S. Microplastics in the freshwater and terrestrial environments: prence, fates, impacts and sustainable solutions [J]. Sci Total Environ, 2020, 719: 137512
45 Chae Y, An YJ. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review [J]. Environ Pollut, 2018, 240: 387-395
46 Rillig MC. Microplastic in terrestrial ecosystems and the soil? [J]. Environ Sci Technol, 2012, 46 (12): 6453-6454
47 Scopetani C, Chelazzi D, Mikola J, Leini? V, Pellinen J. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples [J]. Sci Total Environ, 2020, 733: 139338
48 Liu K, Wang XH, Fang T, Xu P, Zhu LX. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai [J]. Sci Total Environ, 2019, 675: 462-471
49 Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments [J]. Environ Pollut, 2017, 221: 453-458
50 Liu K, Wang X, Song Z, Wei N, Li D. Global inventory of atmos-pheric fibrous microplastics input into the ocean: an implication from the indoor origin [J]. J Hazard Mater, 2020, 400: 123223
51 Barboza LGA, Frias JPGL, Booth AM, Vieira LR, Masura J, Baker J, Foster G, Guilhermino L. Microplastics pollution in the marine environment [C]//Charles Sheppard. World Seas: an Environmental uation || . Netherlands: Elsevier Ltd, 2019: 329-351 [2020]. https://doi.org/10.1016/B978-0-12-805052-1.0020-6
52 Boucher J, Friot D. Primary Microplastics in the Oceans: A Global uation of Source [M]. Switzerland: IUCN, 2017: 46
53 Wezel AV, Caris I, Kools SAE. Release of primary microplastics from consumer products to wastewater in the Netherlands [J]. Environ Toxicol Chem, 2016, 35:1627-1631
54 Zhang Q, Zhao Y, Li J, Shi H. Microplastics in food: health risks [C]//He, Defu, Luo, Yongming. Microplastics in Terrestrial Environments. Switzerland: Springer, Cham, 2020: 343-356
55 Martin P, Lenka C, Katerina N, Petra P, Tomas C, Vaclav J. Occurrence of microplastics in raw and treated drinking water [J]. Sci Total Environ, 2018, 643: 1644-1651
56 Li Q, Sun C, Wang Y, Cai H, Shi H. Fusion of microplastics into the mussel byssus [J]. Environ Pollut, 2019, 252A: 420-426
57 Barboza, LGA, Dick, Vethaak, Lavorante, BRBO, Lundebye, AK, Guilhermino. Marine microplastic debris: an emerging issue for food security, food safety and human health [J]. Mar Pollut Bull, 2018, 133: 336-348
58 Xie J, Yang Y, Gao B, Wan Y, Li YC, Xu J, Zhao Q. Biomimetic superhydrophobic biobased polyurethane-coated fertilizer with atmosphere “Outerwear” [J]. Acs Appl Mater Inter, 2017, 9 (18): 15868-15879
59 Browne MA, Galloway T, Thompson R. Microplastic--an emerging contaminant of potential concern? [J]. Integr Environ Assess Manage, 2007, 3 (4): 559-561
60 Lei K, Qiao F, Liu Q, Wei Z, Qi H, Cui S, Yue X, Deng Y, An L. Microplastics releasing from personal care and cosmetic products in China [J]. Mar Pollut Bull, 2017, 123 (1-2): 122-126
61 Todd G, Nicola R, Rainer L, Geoff H. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic [J]. Environ Sci Technol, 2011, 45 (4): 1466-1472
62 Cirujeda A, Aibar J, Anzalone ?, Martín-Closas L, Meco R, Moreno MM, Pardo A, Pelacho AM, Rojo F,Royo-Esnal A. Biodegradable mulch instead of polyethylene for weed control of processing tomato production [J]. Agron Sustain Dev, 2012, 32 (4): 889-897
63 Dentzman K, Goldberger JR. Plastic scraps: biodegradable mulch films and the aesthetics of ‘good farming’ in US specialty crop production [J]. Agric Human Values, 2020, 37 (1): 83-96
64 Rahimi A, García JM. Chemical recycling of waste plastics for new materials production [J]. Nat Rev Chem, 2017, 1: 0046
65 Vollmer DI, Jenks MJF, Roelands DMCP, White DRJ, Harmelen DTv, Wild DPd, Laan DGPVD, Meirer DF, Keurentjes PJTF, Weckhuysen PBM. Beyond mechanical recycling: giving new life to plastic waste [J]. Angew Chem Int Ed, 59 (36): 15402-15423
66 Chen C-C, Dai L, Ma L, Guo R-T. Enzymatic degradation of plant biomass and synthetic polymers [J]. Nat Rev Chem, 2020, 4: 114-126
67 Nakajima R, Tsuchiya M, Lindsay DJ, Kitahashi T, Fujikura K, Fukushima T. A new small device made of glass for separating microplastics from marine and freshwater sediments [J]. PeerJ, 2019, 7: e7915
68 Van Melkebeke M, Janssen C, De Meester S. Characteristics and sinking behavior of typical microplastics including the potential effect of biofouling: implications for remediation [J]. Environ Sci Technol, 2020, 54 (14): 8668-8680
69 Shen M, Song B, Zhu Y, Zeng G, Zhang Y, Yang Y, Wen X, Chen M, Yi H. Removal of microplastics via drinking water treatment: Current knowledge and future directions [J]. Chemosphere, 2020, 251: 126612
70 Miao F, Liu Y, Gao M, Yu X, Xiao P, Wang M, Wang S, Wang X. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode [J]. J Hazard Mater, 2020, 399: 123023
71 Wei R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? [J]. Microb Biotechnol, 2017, 10 (6): 1308-1322
72 Danso D, Chow J, Streit WR. Plastics: environmental and biotechnological perspectives on microbial degradation [J]. Appl Environ Microbiol, 2019, 85 (19): e01095-19
73 Ariza-Tarazona MC, Villarreal-Chiu JF, Barbieri V, Siligardi C, Cedillo-González EI. New strategy for microplastic degradation: green photocatalysis using a protein-based porous N-TiO2 semiconductor [J]. Ceram Int, 2019, 45 (7): 9618-9624
74 Tofa TS, Kunjali KL, Paul S, Dutta J. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods [J]. Environ Chem Lett, 2019, 17 (3): 1341-1346
75 Ariza-Tarazona MC, Villarreal-Chiu JF, Hernandez-Lopez JM, Rivera De la Rosa J, Barbieri V, Siligardi C, Cedillo-Gonzalez EI. Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process [J]. J Hazard Mater, 2020, 395: 122632
76 Nabi I, Bacha AU, Li K, Cheng H, Wang T, Liu Y, Ajmal S, Yang Y, Feng Y, Zhang L. Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film [J]. iScience, 2020, 23 (7): 101326
77 Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields [J]. Appl Microbiol Biotechnol, 2019, 103 (11): 4253-4268
78 Fujisawa M, Hirai H, Nishida T. Degradation of polyethylene and nylon-66 by the laccase-mediator system [J]. J Polym Environ, 2001, 9 (3): 103-108
79 Das MP, Kumar S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens [J]. 3 Biotech, 2015, 5 (1): 81-86
80 Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic Tests [J]. Environ Sci Technol, 2015, 49 (20): 12080-12086
81 Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms [J]. Environ Sci Technol, 2015, 49 (20): 12087-12093
82 Auta HS, Emenike CU, Fauziah SH. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation [J]. Environ Pollut, 2017, 231 (Pt 2): 1552-1559
83 Tian L, Kolvenbach B, Corvini N, Wang S, Tavanaie N, Wang L, Ma Y, Scheu S, Corvini PF, Ji R. Mineralisation of (14)C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment [J]. New Biotech, 2017, 38 (Pt B): 101-105
84 Wu WM, Yang J, Criddle CS. Microplastics pollution and reduction strategies [J]. Front Env Sci Eng, 2017, 11 (1): 6
85 Jeyakumar D, Chirsteen J, Doble M. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes [J]. Bioresour Technol, 2013, 148: 78 - 85
86 Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber [J]. Int Biodeter Biodegr, 2013, 84: 204-210
87 Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate) [J]. Science, 2016, 353 (6278): 1196-1199
88 Müller R-J, Schrader H, Profe J, Dresler K, Deckwer WD. Enzymatic degradation of poly(ethylene terephthalate): rapid Hydrolyse using a hydrolase from T. fusca [J]. Macromol Rapid Comm, 2005, 26: 1400 - 1405
89 Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach [J]. Appl Environ Microbiol, 2012, 78 (5): 1556-1562
90 Tournier V, Topham CM, Gilles A, David B, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles [J]. Nature, 2020, 580 (7802): 216-219
91 Moog D, Schmitt J, Senger J, Zarzycki J, Maier UG. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation [J]. Microb Cell Fact, 2019, 18: 171
92 Yan F, Wei R, Cui Q, Bornscheuer UT, Liu YJ. Thermophilic whole‐cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum [J]. Microb Biotechnol, 2020: doi 10.1111/1751-7915.13580


 CAI Yayun,ZHAO Jiayue,et al.Retention of polystyrene particles of different sizes in zebrafish gills and their effect on toxicity of anthracene to gill cells[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):1154.[doi:10.3724/SP.J.1145.2016.12051]
 RAO Dan,JIAN Minfei,YANG Zixuan,et al.The presence of and ecological risk from microplastics and heavy metal pollutants in the near-shore moss zone of the five rivers in Poyang Lake[J].Chinese Journal of Applied & Environmental Biology,2021,27(04):1246.[doi:10.19675/j.cnki.1006-687x.2021.02052]

更新日期/Last Update: 2021-08-25