|本期目录/Table of Contents|

[1]姚建,苟敏,汤岳琴.“绿色塑料”聚羟基脂肪酸酯生物合成研究进展[J].应用与环境生物学报,2021,27(06):1662-1671.[doi:10.19675/j.cnki.1006-687x.2020.08007]
 YAO Jian,GOU Min,et al.Research progress on biosynthesis of “green plastics”: polyhydroxyalkanoates[J].Chinese Journal of Applied & Environmental Biology,2021,27(06):1662-1671.[doi:10.19675/j.cnki.1006-687x.2020.08007]
点击复制

“绿色塑料”聚羟基脂肪酸酯生物合成研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年06期
页码:
1662-1671
栏目:
综 述
出版日期:
2021-12-25

文章信息/Info

Title:
Research progress on biosynthesis of “green plastics”: polyhydroxyalkanoates
作者:
姚建苟敏汤岳琴
1四川大学建筑与环境学院 成都 6100652四川省环境保护有机废弃物资源化利用重点实验室 成都 610065
Author(s):
YAO Jian1 2 GOU Min1 2 & TANG Yueqin1 2?
1 College of Architecture and Environment, Sichuan University, Chengdu 610065, China2 Sichuan Environmental Protection Key Laboratory of Resource Utilization of Organic Wastes, Chengdu 610065, China
关键词:
聚羟基脂肪酸酯PHA合成基因工程代谢工程混合菌发酵
Keywords:
polyhydroxyalkanoate PHA synthesis genetic engineering metabolic engineering mixed microbial culture
DOI:
10.19675/j.cnki.1006-687x.2020.08007
摘要:
由于化石资源日益枯竭和塑料污染加剧,迫切需求环境友好可降解的“绿色塑料”. 由细菌合成的具有良好生物降解性和生物相容性的聚羟基脂肪酸酯(polyhydroxyalkanoates,PHAs)被认为是最有前景的“绿色塑料”之一. 概述PHAs的结构、材料特性和应用、生物合成代谢路径以及发酵方式,指出高昂的生产成本是限制PHAs大规模生产和应用的关键问题;总结以降低PHAs生产成本为目标的PHAs生物合成研究进展,包括PHAs合成菌株的基因工程和代谢工程优化、在开放条件下使用富集菌群发酵以及采用极端微生物合成特定PHAs. 以低品质废弃生物质为原料,在开放条件下利用富集菌群合成PHAs的研究尤其受到关注,是废弃生物质高值资源化利用的一条重要途径. 未来的研究中需进一步提升PHAs生产菌株的合成能力以及生产工艺的效率;有关基于富集菌群的PHAs生产,需对菌群结构和功能调控进行深入研究,构建稳定高效的PHAs合成菌群和工艺流程,以实现PHAs的低成本合成和广泛应用.
Abstract:
Due to the depletion of fossil fuel resources and serious plastic pollution, there is an urgent need for environmentally friendly “green plastics”. Polyhydroxyalkanoates (PHAs) synthesized by bacteria are biodegradable, biocompatible, and are one of the most promising “green plastics”. This review summarizes the structure, material properties, and applications of PHAs, their biosynthetic metabolic pathways, and fermentation modes, and points out that high production cost is the key problem limiting large-scale PHA production and application. It summarizes the research progress of PHA biosynthesis aimed at reducing the production cost of PHAs, including genetic engineering and metabolic engineering optimization of PHA-synthesizing strains, fermentation with enriched flora under open conditions, and synthesis of specific PHAs by extreme microorganisms. In particular, the study of PHA synthesis with enriched floras under open conditions using low-quality waste biomass as a raw material has attracted more attention. PHA production is an important method for the high-value resource utilization of waste biomass. In future, to achieve low-cost synthesis and the wide application of PHAs, it is necessary to further improve the PHA synthesis ability of the production strains, as well as the efficiency of the production process. For enriched flora-based PHA production, a thorough study of the structure and function of microbial flora is crucial for constructing stable and efficient PHA-synthesizing flora and efficient processes.

参考文献/References:

1 Martin K. A review on established and emerging fermentation schemes for microbial production of polyhydroxyalkanoate (PHA) biopolyesters [J]. Fermentation, 2018, 4 (2): 30-55
2 Findlay RH, White DC. Polymeric β-hydroxyalkanoates from environmental samples and Bacillus megaterium [J]. Appl Environ Microbiol, 1983, 45 (1): 71-78
3 Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters [J]. Prog Polym Sci, 2000, 25 (10): 1503-1555
4 Choi SY, Cho IJ, Lee Y, Kim YJ, Lee SY. Microbial polyhydroxyalkanoates and nonnatural polyesters [J]. Adv Mater, 2020: 1907138
5 Ge L, Tan GY, Wang L, Chen CL, Li L, Tan SN, Wang JY. Determination of monomeric composition in polyhydroxyalkanoates by liquid chromatography coupled with on-line mass spectrometry and off-line nuclear magnetic resonance [J]. Talanta, 2016, 146: 107-113
6 Sagong HY, Son HF, Choi SY, Lee SY, Kim KJ. Structural insights into polyhydroxyalkanoates biosynthesis [J]. Trends Biochem Sci, 2018, 43 (10): 790-805
7 Madalina EG, Ramona MG, Lorena L, Rodica MI, Catalin Z, Elena RA. Methods of synthesis, properties and biomedical applictaions of polyhydroxyalkanoates: a review [J]. J Biomater Sci Polym Ed, 2019, 30 (9): 695-712
8 Polyak P, Dohovits E, Nagy GN, Vertessy BG, Voros G, Pukanszky B. Enzymatic degradation of poly-[(R)-3-hydroxybutyrate]: mechanismm, kinetics, consequences [J]. Int J Macromol, 2018, 112: 156-162
9 Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J. The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases [J]. BMC Bioinformatics, 2009, 10 (2009): 20-29
10 Saratale RG, Saratale GD, Cho SK, Kim DS, Ghodake GS, Kadam A, Kumar G, Bharagava RN, Banu R, Shin HS. Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization [J]. Bioresour Technol, 2019, 282: 75-80
11 Lemechko P, Fellic ML, Bruzaud S. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using agro-industrial effluents with tunable proportion of 3-hydroxyvalerate monomer units [J]. Int J Biol Macromol, 2019, 128: 429-434
12 Gopi S, Kontopouiou M, Ramsay B, Ramsay JA. Manipulating the structure of medium-chain-length polyhydroxyalkanoate (MCL-PHA) to enhance thermal properties and crystallization kinetics [J]. Int J Biol Macromol, 2018, 119: 1248-1255
13 Sanhueza C, Diaz-Rodriguez P, Villegas P, Gonalez A, Seeger M, Suarez-Gonzalez J, Concheiro A, Alvarez-Lorenzo C, Acevedo F. Influence of the carbon source on the properties of plou-(3)-hydroxybutyrate produced by Paraburkholderia xenovorans LB400 and its electrospu fibers [J]. Int J Biol Macromol, 2020, 1 (152): 11-20
14 Shen R, Ning ZY, Lan YX, Chen JC, Chen GQ. Manipulation of polyhydroxyalkanoate granular sizes in Halomonas bluephagenesis [J]. Metab Eng, 2019, 54: 117-126
15 Nishihata S, Kondo T, Tanaka K, Ishikawa S, Takenaka S, Kang CM, Yoshida KI. Bradyrhizobium diazoefficiens USDA110 PhaR function for pleiotropic regulation of cellular processes besides PHB accumulation [J]. BMC Microbiol, 2018, 18 (1): 156
16 Lee TR, Lin JS, Wang SS, Shaw GC. PhaQ, a new class of poly-β-hydroxybutyrate (PHB)-responsive repressor, regulates phaQ and phaP (phasin) expression in Bacillus megaterium through interaction with PHB [J]. J Bacteriol, 2004, 186 (10): 3015-3021
17 Bresan S, Jendrossek D. New insights into PhaM-PhaC-mediated localization of polyhydroxybutyrate granules in Ralstonia eutropha H16 [J]. Appl Environ Microbiol, 2017, 83 (12): e00505-17
18 Kim KJ, Joo S, Cho IJ, Seo H, Son HF, Sagong HY, Shin TJ, Choi SY, Lee SY. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation [J]. Nat Commun, 2018, 9 (1): 382
19 Yuan W, Jia Y, Tian J, Snell KD, Müh U, Sinskey AJ, Lambalot RH, Walsh CT, Stubbe JA. Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies [J]. Arch Biochem Biophys, 2001, 394 (1): 87-98
20 Stubbe JA, Tian J. Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase [J]. Nat Prod Rep, 2003, 20 (5): 445-457
21 Rehm BHA. Polyester synthases: natural catalysts for plastics [J]. Biochem J, 2003, 376 (1): 15-33
22 Rehm BH, Qi Q, Beerman BB, Hinz HJ, Steinbuchel A. Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli [J]. Biochem J, 2001, 358 (1): 263-268
23 Liebergesel M, Rahalka S, Steinbüchel A. Analysis of the Thiocapsa pfennigii polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme [J]. Appl Microbiol Biotechnol, 2000, 54 (2): 186-194
24 Manami H, Satoshi T, Kouhei M, Hideki A, Takeharu T. Alcoholytic cleavage of polyhydroxyalkanoate chains by class IV synthases induced by endogenous and exogenous ethanol [J]. Appl Environ Microbiol, 2014, 80 (4): 1421-1429
25 Sugiyama A, Kobayashi T, Shiraki M, Saito T. Roles of poly(3-hydroxybutyrate) depolymerase and 3HB-opligomer hydrolase in bacterial PHB metabolism [J]. Curr Microbiol, 2004, 48 (6): 424-427
26 Mezzina MP, Pettinari MJ. Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins [J]. Appl Environ Microbiol, 2016, 82 (17): 5060-5067
27 Madkour MH, Mayer F, Steinbuchel A. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules [J]. J Bacteriol, 1995, 177 (9): 2513-2523
28 Daniel S, René H, Dieter J, Marianne H, Dirk S. The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense [J]. J Bacteriol, 2005, 187 (7): 2416-2425
29 Prieto A, Escapa IF, Martinez V, Dinjaski N, Herencias C, Tarazona N, Revelles O. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida [J]. Environ Microbiol, 2016, 18 (2): 341-357
30 Klinke S, Ren Q, Witholt B, Kessler B. Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli [J]. Appl Environ Microbiol, 1999, 65 (2): 540-548
31 Valentin HE, Dennis D. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose [J]. J Biotechnol, 1997, 58 (1): 33-38
32 Li ZJ, Shi ZY, Jian J, Guo YY, Chen GQ. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli [J]. Metab Eng, 2010, 12 (4): 352-359
33 常乐, 詹元龙, 刘长莉. 生物合成聚3-羟基丙酸酯的研究进展[J]. 生物工程学报, 2018, 34 (4): 501-509 [Chang L, Zhan YL, Liu CL. A systematic review of biosynthesis of poly (3-hydroxypropionate) [J]. Chinese J Biotechnol, 2018, 34 (4): 501-509]
34 Andreessen B, Lang AB, Robenek H, Steinbuchel A. Conversion of glycerol to poly (3-hydroxypropionate) in recombinant Escherichia coli [J]. Appl Environ Microb, 2010, 76 (2): 622-626
35 Wang Q, Liu CS, Xian M, Zhang YG, Zhao G. Biosynthetic pathway for poly (3-hydroxypropionate) in recombinant Escherichia coli [J]. J Microbiol, 2012, 50 (4): 693-637
36 Wang Q, Yang P, Xian M, Feng L, Wang JM, Zhao G. Metabolic engineering of Escherichia coli for poly (3-hydroxypropionate) production from glycerol and glucose [J]. Biotechnol Lett, 2014, 36 (11): 2257-2262
37 Blunt W, Dartiailh C, Sparling R, Gapes D, Levin DB, Cicek N. Microaerophilic environments improve the productivity of medium chain length polyhydroxyalkanoate biosynthesis from fatty acids in Pseudomonas putida LS46 [J]. Process Biochem, 2017, 59 (pt.a): 18-25
38 Gahlawat G, Srivastava AK. Enhancing the production of polyhydroxyalkanoate biopolymer by Azohydromonas australica using a simple empty and fill bioreactor cultivation strategy [J]. Chem Biochem Eng, 2017, 31 (4): 479-485
39 Bhatia SK, Gurav R, Choi TR, Jung HR, Yang SY, Moon YM, Song HS, Jeon JM, Choi KY, Yang YH. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119 [J]. Bioresour Technol, 2019, 271: 306-315
40 Hartmann R, Hany R, Pletscher E, Ritter A, Zinn M. Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by Pseudomonas putida GPo1: batch versus chemostat production [J]. Biotechnol Bioeng, 2006, 93 (4): 737-746
41 Bhalerao A, Banerjee R, Nogueira R. Continuous cultivation strategy for yeast industrial wastewater -based polyhydroxyalkanoate production [J]. J Biosci Bioeng, 2020, 129 (5): 595-602
42 Li T, Ye J, Shen R, Zong Y, Zhao X, Lou C, Chen GQ. Semirational approach for ultrahigh poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening [J]. ACS Synth Biol, 2016, 5 (11): 1308-1317
43 Zhao FJ, Liu XS, Kong AN, Zhao YX, Fan X, Ma T, Gao WX, Wang SF, Yang C. Screening of endogenous strong promoters for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01 [J]. Sci Rep, 2019, 9 (1):1789
44 Jung HR, Yang SY, Moon YM, Choi TR, Song HS, Bhatia SK, Gurav R, Kim EJ, Kim BG, Yang YH. Construction of efficient platform Escherichia coli strains for polyhydroxyalkanoate production by engineering branched pathway [J]. Polymers, 2019, 11 (3): 509
45 Qin Q, Ling C, Zhao YQ, Yang T, Yin J, Guo YY, Chen GQ. CRISPR/Cas9 editing genome of extremophile Halomonas spp[J]. Metab Eng, 2018, 47:219-229
46 Elhadi D, Lü L, Jiang XR, Wu H, Chen GQ. CRISPRi engineering E. coli for morphology diversification [J]. Metab Eng, 2016, 38: 358-369
47 Jiang XR, Yao ZH, Chen GQ. Controlling cell volume for efficient PHB production by Halomonas [J]. Metab Eng, 2017, 44: 30-37
48 Jiang XR, Chen GQ. Morphology engineering of bacteria for bio-production [J]. Biotechnol Adv, 2015, 34 (4): 435-440
49 Wu H, Chen JC, Chen GQ. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli [J]. Appl Microbiol Biotechnol, 2016, 100 (23): 9907-9916
50 Ghosh S, Gnaim R, Greiserman S, Fadeev L, Gozin M, Golberg A. Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei [J]. Bioresour Technol, 2019, 271: 166-173
51 Stanley A, Kummar HNP, Mutturi S, Vijayendra SVN. Fed-batch strategies for production of PHA using a native isolate of Halomonas venusta KT832796 strain [J]. Appl Biochem Biotechnol, 2018, 184 (3): 935-952
52 Alsafadi D, Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive milwastewater by Haloferax mediterranei [J]. N Biotechnol, 2017, 34 (2017): 47-53
53 Yu LP, Yan X, Zhang X, Chen XB, Wu Q, Jiang XR, Chen GQ. Biosynthesis of functional polyhydroxyalkanoates by enginnered Halomonas bluephagenesis [J]. Metab Eng, 2020, 59: 119-130
54 Tan D, Xue YS, Aibaidula G, Chen GQ. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01 [J]. Bioresour Technol, 2011, 102 (17): 8130-8136
55 Yue HT, Ling C, Yang T, Chen XB, Chen YL, Deng HT, Wu Q, Chen JC, Chen GQ. A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates [J]. Biotechnol Biofuels, 2014, 7 (1): 1-12
56 Danis O, Ogan A, Tatlican P, Attar A, Cakmakci E, Mertoglu B, Birbir M. Preparation of poly(3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery [J]. Extremophiles, 2015, 19 (2): 515-524
57 Salgaonkar BB, Braganca J. Utilization of sugarcane bagasse by Halogeometricum borinquense strain E3 for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [J]. Bioengineering, 2017, 4 (4): 50
58 Rodríguez A, Koller M, Dias MMS, Calafell M, Braunegg G, Marquéscalvo MS. High production of poly(3-hydroxybutyrate) from a wild Bacillus megaterium bolivian strain [J]. J Appl Microbiol, 2013, 114 (5): 1378-1387
59 Cea M, Cabrera F, Abanto M, Felissia FE, Area MC, Ciudad G. Strategy for biological co-production of levulinic acid and polyhydroxyalkanoates by using mixed microbial cultures fed with synthetic hemicellulose hydrolysate [J]. Bioresour Technol, 2020, 309: 123323
60 Valentino F, Moretto G, Lorini L, Bolzonella D, Majone M. Pilot scale polyhydroxyalkanoate (PHA) production from combined treatment of organic fraction of municipal solid waste and sewage sludge [J]. Ind Eng Chem Res, 2019, 58 (27): 23-28
61 Tamang P, Banerjee R, Koster S, Nogueira R. Comparative study of polyhydroxyalkanoates production from acidified and anaerobically treated brewery wastewater using enriched mixed microbial culture [J]. J Environ Sci (China), 2019, 78: 137-146
62 Burniol A, Varrone C, Daugaard AE, Le SB, Skiadas IV, Gavala HN. Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: study on the conversion of 1,3-propanediol to PHA in mixed microbial consortia [J]. Water Res, 2018, 128: 255-266
63 Guilherme HDO, Mirian YKN, Marcelo Z, Jose ADR. Effects of the organic loading rate on polyhydroxyalkanoate production from sugarcane stillage by mixed microbial cultures [J]. Appl Biochem Biotechnol, 2019, 189 (4): 1039-1055
64 Coats ER, Watson BS, Brinkman CK. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: effect of aeration on process rates/yields and the associated microbial ecology [J]. Water Res, 2016, 106: 26-40
65 Mohamad AH, Chua ASM, Yoon LW, Nittami T, Yeoh HK. Enrichment of PHA-accumulators for sustainable PHA production from crude glycerol [J]. Process Saf Environ, 2019, 122: 200-208
66 Li D, Yin F, Ma XJ. Towards biodegradable polyhydroxyalkanoate production from wood waste: using volatile fatty acids as conversion medium [J]. Bioresour Technol, 2019, 299: 122629
67 Chen ZQ, Guo ZR, Wen QX, Huang L, Bakke R, Du M. A new method for polyhydroxyalkanoate (PHA) accumulating bacteria selection under physical selective pressure [J]. Int J Biol Macromol, 2015, 72: 1329-1334
68 Wen QX, Ji Y, Hao YR, Huang L, Chen ZQ, Sposob M. Effect of sodium chloride on polyhydroxyalkanoate production from food waste fermentation leachate under different organic loading rate [J]. Bioresour Technol, 2018, 267: 133-140
69 Huang L, Chen ZQ, Wen QX, Lee DJ. Enhanced polyhydroxyalkanoate production by mixed microbial culture with extended cultivation strategy [J]. Bioresour Technol, 2017, 241: 802-811
70 Wang XF, Oehmen A, Freitas EB, Carvalho G, Reis MAM. The link of feast-phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production [J]. Water Res, 2017, 112: 269-278
71 Huang L, Chen ZQ, Wen QX, Zhao LZ, Lee DJ, Yang L, Wang Y. Insights into feast-famine polyhydroxyalkanoate (PHA)-producer selection: microbial community succession, relationships with system function and underlying driving forces [J]. Water Res, 2018, 131: 167-176

相似文献/References:

[1]杨姗姗,张红蕊,伏圣秘,等.一株产聚羟基脂肪酸酯根瘤菌Rhizobium sp. H2-5的筛选与鉴定[J].应用与环境生物学报,2013,19(02):375.[doi:10.3724/SP.J.1145.2013.00375]
 YANG Shanshan,ZHANG Hongrui,FU Shengmi,et al.Screening and Identification of a Polyhydroxyalkanoate Producing Strain Rhizobium sp. H2-5[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):375.[doi:10.3724/SP.J.1145.2013.00375]

更新日期/Last Update: 2021-12-25