|本期目录/Table of Contents|

[1]黄龙,包维楷,李芳兰,等.土壤结构和植被对土壤微生物群落的影响[J].应用与环境生物学报,2021,27(06):1725-1731.[doi:10.19675/j.cnki.1006-687x.2020.08001]
 HUANG Long,BAO Weikai,et al.Effects of soil structure and vegetation on microbial communities[J].Chinese Journal of Applied & Environmental Biology,2021,27(06):1725-1731.[doi:10.19675/j.cnki.1006-687x.2020.08001]
点击复制

土壤结构和植被对土壤微生物群落的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年06期
页码:
1725-1731
栏目:
综 述
出版日期:
2021-12-25

文章信息/Info

Title:
Effects of soil structure and vegetation on microbial communities
作者:
黄龙包维楷李芳兰胡慧
1中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室 成都 6100412中国科学院大学 北京 100049
Author(s):
HUANG Long1 2 BAO Weikai1 LI Fanglan1? & HU Hui1 2
1 CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
土壤微生物土壤团聚体土壤质地土壤孔隙植被
Keywords:
soil microorganism soil?aggregate soil texture soil?pore vegetation
DOI:
10.19675/j.cnki.1006-687x.2020.08001
摘要:
土壤微生物是土壤中最活跃的组成部分,直接或间接参与成土过程、有机质分解、养分循环、植物根系对土壤的资源吸收、种子萌发等生态学过程,对陆地生态系统功能具有重要作用. 在人类活动日益加剧的驱动下,土壤结构和植被类型变化及其交互作用对土壤中微生物群落结构和功能产生了多方面的效应,揭示其机理可为生态系统管理、生态恢复、农业发展提供理论依据. 本文综述土壤结构和植物生长对土壤微生物组成和功能的影响,阐述土壤、植物和微生物群落之间的相互影响与反馈作用机理. 土壤结构条件越好,土壤微生物群落多样性越高,因为它控制着土壤养分含量、水分分布和气体流动,调节微环境异质性,从而直接或间接控制着微生物组成. 植物多样性越丰富,凋落物和根系分泌物的差异越大,土壤微生物群落多样性越高. 通常自然植被群落土壤质量优于人工植被群落,因而有较高的微生物多样性和微生物量. 特殊植被功能组(如豆科)是影响微生物群落的重要因素,与微生物之间存在协同关系,相互促进. 最后从土壤结构对微生物群落功能的影响、植物在不同时空尺度下对微生物群落的影响,以及结合土壤理化性质和植物对土壤微生物群落在大尺度上进行预测这3个方面进行展望. (图1 表1 参74)
Abstract:
Soil microorganisms are the most active compositions in soil and directly or indirectly participate in soil pedogenesis, organic matter decomposition, nutrient cycling, as well as seed germination, and play an essential role in terrestrial ecosystem functions. Driven by increasing human activities, changes in soil structure and vegetation types have multiple effects on the structure and function of soil microbial communities. Therefore, explaining the processes and mechanisms of the influences of soil structure and plants on the structure and function of soil microbial communities can provide a theoretical basis for ecosystem management, ecological restoration, and agricultural development. This study reviewed the effects of soil structure and plant growth on the composition and function of soil microorganisms and presented the interaction and feedback mechanisms between soil, plants, and microbial communities. The results showed that soil structure directly or indirectly influences microbial composition by controlling soil nutrient content, water distribution, and gas flow, and regulates microenvironment heterogeneity. Plant diversity enhances the diversity of soil microbial communities by altering the quality and quantity of litter and root exudates. Generally, natural vegetation has higher microbial diversity and microbial biomass than artificial vegetation because of better soil quality under natural vegetation. Specific plant functional groups, such as legumes, are also considered to be significant factors influencing the soil microbial community. Further studies should focus on the effect of soil structure on the function of microbial communities, the impact of plants on microbial communities at different space-time scales, and the prediction of microbial communities by soil physicochemical properties and plants on a large scale.

参考文献/References:

1 吕贻忠. 土壤学[M]. 北京: 中国农业出版社,2006. [Wu YZ. Soil Science [M]. Beijing: China Agriculture Press, 2006]
2 Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schoning I, Schrumpf M, Daniel R. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests [J]. Sci Rep, 2016, 6: 33696
3 Nottingham AT, Fierer N, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Leff JW, Salinas N, Silman M, Kruuk LEG, Meir P. Microbes follow humboldt: temperature drives plant and soil microbial diversity patterns from the amazon to the andes [J]. Ecology, 2019, 99 (11): 2455-2466
4 Bonfante P, Anca IA. Plants, mycorrhizal fungi, and bacteria: A network of interactions [J]. Annu Rev Microbiol, 2009, 63: 363-383
5 Eisenhauer N. Plant diversity effects on soil microorganisms: Spatial and temporal heterogeneity of plant inputs increase soil biodiversity [J]. Pedobiologia, 2016, 59 (4): 175-177
6 Lozano YM, Armas C, Hortal S, Casanoves F, Pugnaire FI. Disentangling above- and below-ground facilitation drivers in arid environments: the role of soil microorganisms, soil properties and microhabitat [J]. New Phytol, 2017, 216 (4): 1236-1246
7 Kramer C, Gleixner G. Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation [J]. Soil?Biol Biochem, 2008, 40: 425-433
8 Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: concept & review [J]. Soil Biol Biochem, 2015, 83: 184-199
9 Lucas M, Schlüter S, Vogel H-J, Vetterlein D. Soil structure formation along an agricultural chronosequence [J]. Geoderma, 2019, 350: 61-72
10 Or D, Smets BF, Wraith JM, Dechesne A, Friedman SP. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review [J]. Adv Water Resour, 2007, 30 (6-7): 1505-1527
11 Chau JF, Bagtzoglou AC, Willig MR. The effect of soil texture on richness and diversity of bacterial communities [J]. Environ Forensics, 2011, 12 (4): 333-341
12 Smith AP, Marin-Spiotta E, de Graaff MA, Balser TC. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change [J]. Soil Biol Biochem, 2014, 77: 292-303
13 Janusauskaite D, Ozeraitiene D, Fullen MA. Distribution of populations of micro-organisms in different aggregate size classes in soil as affected by long-term liming management [J]. Acta Agric Scand Sect B - Plant Soil Sci, 2009, 59 (6): 544-551
14 Yang C, Liu N, Zhang Y. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration [J]. Geoderma, 2019, 337: 444-452
15 Zhang C, Liu G, Xue S, Song Z. Rhizosphere soil microbial activity under different vegetation types on the loess plateau, China [J]. Geoderma, 2011, 161 (3-4): 115-125
16 Yang Y, Cheng H, Dou Y, An S. Plant and soil traits driving soil fungal community due to tree plantation on the loess plateau [J]. Sci Total Environ, 2020, 708: 134560
17 Warembourg FR, Roumet C, Lafont F. Differences in rhizosphere carbon-partitioning among plant species of different families [J]. Plant Soil, 2003, 256 (2): 347-357
18 Jain A, Joydeep C, Sampa D. Underlying mechanism of plant-microbe crosstalk in shaping microbial ecology of the rhizosphere [J]. Acta Physiol Plant, 2020, 42 (1): 1-13
19 Bezemer TM, Lawson CS, Hedlund K, Edwards AR, Brook AJ, Igual JM, Mortimer SR, Van Der Putten WH. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands [J]. J Ecol, 2006, 94 (5): 893-904
20 Lau JA, Lennon JT. Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits [J]. New Phytol, 2011, 192 (1): 215-224
21 Sun Y, Luo C, Jiang L, Song M, Zhang D, Li J, Li Y, Ostle NJ, Zhang G. Land-use changes alter soil bacterial composition and diversity in tropical forest soil in China [J]. Sci Total Environ, 2020, 712: 1-10
22 Albaladejo J, Ortiz R, Garcia-Franco N, Navarro AR, Almagro M, Pintado JG, Martínez-Mena M. Land use and climate change impacts on soil organic carbon stocks in semi-arid spain [J]. J Soils Sed, 2012, 13 (2): 265-277
23 Muhumuza M, Byarugaba D. Impact of land use on the ecology of uncultivated plant species in the rwenzori mountain range, mid western uganda [J]. Afr J Ecol, 2009, 47 (4): 614-621
24 Niedrist G, Tasser E, Lüth C, Dalla Via J, Tappeiner U. Plant diversity declines with recent land use changes in european alps [J]. Plant Ecol, 2008, 202 (2): 195-210
25 Fu B, Chen L, Ma K, Zhou H, Wang J. The relationships between land use and soil conditions in the hilly area of the loess plateau inn orthern shaanxi, china [J]. Catena, 2000, 39: 69-78
26 Pagliai M, Vignozzi N. The soil pore system as an indicator of soil quality [J]. Adv Geo-ecol, 2002, 35: 69-80
27 Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment [J]. Acta Physiol Plant, 2001, 67 (9): 4215-4224
28 Yin R, Deng H, Wang Hl, Zhang B. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China [J]. Catena, 2014, 115: 96-103
29 Bach EM, Baer SG, Meyer CK, Six J. Soil texture affects soil microbial and structural recovery during grassland restoration [J]. Soil Biol Biochem, 2010, 42 (12): 2182-2191
30 Bronick CJ, Lal R. Soil structure and management: a review [J]. Geoderma, 2005, 124: 3-22
31 Upton RN, Bach EM, Hofmockel KS. Spatio-temporal microbial community dynamics within soil aggregates [J]. Soil Biol Biochem, 2019, 132: 58-68
32 Hernández-Hernández RM, López-Hernández D. Microbial biomass, mineral nitrogen and carbon content in savanna soil aggregates under conventional and no-tillage [J]. Soil Biol Biochem, 2002, 34 (11): 1563-1570
33 Trivedi P, Delgado-Baquerizo M, Jeffries TC, Trivedi C, Anderson IC, Lai K, McNee M, Flower K, Pal Singh B, Minkey D, Singh BK. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content [J]. Environ Microbiol, 2017, 19 (8): 3070-3086
34 Jiang Y, Qian H, Wang X, Chen L, Liu M, Li H, Sun B. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates [J]. Soil Biol Biochem, 2018, 119: 22-31
35 Zhao FZ, Fan XD, Ren CJ, Zhang L, Han XH, Yang GH, Wang J, Doughty R. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation [J]. Catena, 2018, 171: 622-631
36 Zheng W, Zhao Z, Gong Q, Zhai B, Li Z. Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil [J]. Soil Biol Biochem, 2018, 125: 54-63
37 Liao H, Zhang Y, Zuo Q, Du B, Chen W, Wei D, Huang Q. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern china [J]. Sci Total Environ, 2018, 635: 784-792
38 Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. Soil bacterial and fungal communities across a ph gradient in an arable soil [J]. ISME J, 2010, 4 (10): 1340-1351
39 Hemkemeyer M, Dohrmann AB, Christensen BT, Tebbe CC. Bacterial preferences for specific soil particle size fractions revealed by community analyses [J]. Front Microbiol, 2018, 9: 149
40 Silver WL, Neff J, McGroddy M, Veldkamp E, Keller M, Cosme R. Effects of soil texture on belowground carbon and nutrient storage in a lowland amazonian forest ecosystem [J]. Ecosystems, 2000, 3: 193-209
41 Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types [J]. Soil Biol Biochem 2008, 40 (9): 2407-2415
42 Seaton FM, George PBL, Lebron I, Jones DL, Creer S, Robinson DA. Soil textural heterogeneity impacts bacterial but not fungal diversity [J]. Soil Biol Biochem, 2020, 144: 1-10
43 Mellado-Vázquez PG, Lange M, Gleixner G. Soil microbial communities and their carbon assimilation are affected by soil properties and season but not by plants differing in their photosynthetic pathways (c3 vs. C4) [J]. Biogeochemistry, 2018, 142 (2): 175-187
44 Kravchenko AN, Guber AK. Soil pores and their contributions to soil carbon processes [J]. Geoderma, 2017, 287: 31-39
45 Carson JK, Gonzalez-Quinones V, Murphy DV, Hinz C, Shaw JA, Gleeson DB. Low pore connectivity increases bacterial diversity in soil [J]. Appl Environ Microbiol, 2010, 76 (12): 3936-3942
46 Feeney DS, Crawford JW, Daniell T, Hallett PD, Nunan N, Ritz K, Rivers M, Young IM. Three-dimensional microorganization of the soil–root–microbe system [J]. Microb Ecol, 2006, 52 (1): 151-158
47 Ruamps LS, Nunan N, Chenu C. Microbial biogeography at the soil pore scale [J]. Soil Biol Biochem, 2011, 43 (2): 280-286
48 Ding LJ, Cui HL, Nie SA, Long XE, Duan GL, Zhu YG. Microbiomes inhabiting rice roots and rhizosphere [J]. FEMS Microbiol Ecol, 2019, 95 (5): 1-13
49 Steinauer K, Jensen B, Strecker T, de Luca E, Scheu S, Eisenhauer N. Convergence of soil microbial properties after plant colonization of an experimental plant diversity gradient [J]. BMC Ecol, 2016, 16: 19
50 Chen YM, Wang MK, Zhuang SY, Chiang PN. Chemical and physical properties of rhizosphere and bulk soils of three tea plants cultivated in ultisols [J]. Geoderma, 2006, 136 (1): 378-387
51 Steinauer K, Tilman D, Wragg P, Cesarz S, Cowles JM, Pritsch K, Reich PB, Weisser WW, Eisenhauer N. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. [J]. Ecology, 2015, 96 (1): 99-112
52 Miethling R, Wieland G, Backhaus H, Tebbe CC. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with sinorhizobium meliloti l33 [J]. Microb Ecol, 2000, 40 (1): 43-56
53 Zak DR, Holmes WE, White AC, Peacock AD, Tilman D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? [J]. Ecology, 2003, 84 (8): 2042-2050
54 Stephan A, Meyer AH, Schmid B. Plant diversity culturable soil bacteria in experimental grassland communities [J]. J Ecol, 2000, 88: 988-998
55 Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration [J]. Nat Commun, 2019, 10 (1): 1332
56 Kowalchuk GA, Buma DS, Boer Wd, Klinkhamer PGL, Veen JAv. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms [J]. Antonie van Leeuwenhoek, 2002, 81 (1-4): 509-520
57 Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass [J]. Sci Rep, 2017, 7 (1): 1-8
58 Zhang C, Wang J, Liu G, Song Z, Fang L. Impact of soil leachate on microbial biomass and diversity affected by plant diversity [J]. Plant Soil, 2019, 439 (1-2): 505-523
59 Prommer J, Walker TWN, Wanek W, Braun J, Zezula D, Hu Y, Hofhansl F, Richter A. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity [J]. Glob Chang Biol, 2020, 26 (2): 669-681
60 Thoms C, Gleixner G. Seasonal differences in tree species’ influence on soil microbial communities [J]. Soil Biol Biochem, 2013, 66: 239-248
61 Grayston SJ, Wang S, Campbell CD, Edwards AC. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biol Biochem, 1998, 30 (3): 369-378
62 Han XM, Wang RQ, Liu J, Wang MC, Zhou J, Guo WH. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in north china [J]. J Appl Ecol, 2007, 19 (10): 1228-1234
63 张燕燕, 曲来叶, 陈利顶. 黄土丘陵沟壑区不同植被类型土壤微生物特性[J]. 应用生态学报, 2010, 21 (1): 165-173 [Zhang YY, Qu LY, Chen LD Wei W. Soil microbial properties under different vegetation types in Loess hilly region [J]. J Appl Ecol, 2010, 21 (1): 165-173]
64 Zhao C, Long J, Liao H, Zheng C, Li J, Liu L, Zhang M. Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, Southwest China [J]. Sci Rep, 2019, 9 (1): 2160
65 Xiao L, Liu GB, Xue S. Effects of vegetational type and soil depth on soil microbial communities on the loess plateau of China [J]. Arch Agron Soil Sci, 2016, 62 (12): 1665-1677
66 Wu SH, Huang BH, Huang CL, Li G, Liao PC. The aboveground vegetation type and underground soil property mediate the divergence of soil microbiomes and the biological interactions [J]. Microb Ecol, 2018, 75 (2): 434-446
67 Liu S, Zhang W, Wang K, Pan F, Yang S, Shu S. Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China [J]. Sci Total Environ, 2015, 521-522: 52-58
68 Zhao H, Li X, Zhang Z, Yang J, Zhao Y, Yang Z, Hu Q. Effects of natural vegetative restoration on soil fungal and bacterial communities in bare patches of the southern Taihang Mountains [J]. Ecol Evol, 2019, 9 (18): 10432-10441
69 Petraglia A, Cacciatori C, Chelli S, Fenu G, Calderisi G, Gargano D, Abeli T, Orsenigo S, Carbognani M. Litter decomposition: Effects of temperature driven by soil moisture and vegetation type [J]. Plant Soil, 2018, 435 (1-2): 187-200
70 Yan Y, Dai Q, Hu G, Jiao Q, Mei L, Fu W. Effects of vegetation type on the microbial characteristics of the fissure soil-plant systems in karst rocky desertification regions of SW China [J]. Sci Total Environ, 2020, 712: 1-11
71 Perotto S, Bonfante P. Bacterial associations with mycorrhizal fungi: Close and distant friends in the rhizosphere [J]. Trends Microbiol, 1998, 5 (12): 496-501
72 Hirsch AM, Lum MR, Downie JA. What makes the rhizobia-legume symbiosis so special? [J]. Plant Physiol, 2001, 127 (4): 1484-1492
73 van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity [J]. Nature, 1998, 396: 69-72
74 Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology [J]. Science, 2020, 367: eaba1223

相似文献/References:

[1]饶志明,赵有玺,李辉,等.太湖流域土壤微生物基因组总DNA分离纯化及其质粒文库的初步构建[J].应用与环境生物学报,2004,10(06):774.
 RAO Zhiming,et al..Extraction and purification of soil microbial genomic DNA from taihu area and primary construction of plasmid libraries[J].Chinese Journal of Applied & Environmental Biology,2004,10(06):774.
[2]段学军** 黄春晓.重金属镉对水田土壤微生物基因多样性的影响[J].应用与环境生物学报,2008,14(04):510.
[3]芦晓飞,赵志祥,谢丙炎,等.西藏米拉山高寒草甸土壤微生物DNA提取及宏基因组Fosmid文库构建[J].应用与环境生物学报,2009,15(06):824.[doi:10.3724/SP.J.1145.2009.00824]
 LU Xiaofei,ZHAO Zhixiang,XIE Bingyan,et al.DNA Extraction and Construction of a Metagenomic Fosmid Library of Alpine Meadow Soil from the Mila Mountains in Tibet, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):824.[doi:10.3724/SP.J.1145.2009.00824]
[4]王风,高尚宾,白丽静,等.冻融过程不同粒径土壤N2O排放特征[J].应用与环境生物学报,2010,16(01):126.[doi:10.3724/SP.J.1145.2010.00126]
 WANG Feng,GAO Shangbin,BAI Lijing,et al.Effects of soil particle sizes irrigated with nitrogen on the N2O flux in the freezing and thawing process[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):126.[doi:10.3724/SP.J.1145.2010.00126]
[5]周琳,束长龙,黄文坤,等.转双价抗真菌病害基因大豆对根际土壤微生物群落结构的影响[J].应用与环境生物学报,2010,16(04):509.[doi:10.3724/SP.J.1145.2010.00509]
 ZHOU Lin,SHU Changlong,HUANG Wenkun,et al.Community Structure of Microbes in Rhizosphere Soil of Transgenic Soybean Carrying Two Fungus-resistant Genes[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):509.[doi:10.3724/SP.J.1145.2010.00509]
[6]靳正忠,雷加强,李生宇,等.流动沙漠腹地灌木根际土壤微生物比较分析[J].应用与环境生物学报,2010,16(06):759.[doi:10.3724/SP.J.1145.2010.00759]
 JIN Zhengzhong,LEI Jiaqiang,LI Shengyu,et al.Variation in Rhizosphere Microbes of Three Shelter Shrubs in Drift Desert Hinterland in Xinjiang, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):759.[doi:10.3724/SP.J.1145.2010.00759]
[7]郑慧,祁士华,王志勇,等.高位池养虾对土壤微生物脂肪酸和土壤酶活及其表征的土壤质量的影响[J].应用与环境生物学报,2011,17(01):69.[doi:10.3724/SP.J.1145.2011.00069]
 ZHENH Hui,QI Shihua,WANG Zhiyong,et al.Effects of Shrimp Aquaculture on the Quality of Upland Pond Soil Indicated by Microbial FAME and Enzyme Activity[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):69.[doi:10.3724/SP.J.1145.2011.00069]
[8]陈法霖,张凯,郑华,等.PCR-DGGE技术解析针叶和阔叶凋落物混合分解对土壤微生物群落结构的影响[J].应用与环境生物学报,2011,17(02):145.[doi:10.3724/SP.J.1145.2011.00145]
 CHEN Falin,ZHANG Kai,ZHENG Hua,et al.Analyzing the Effect of Mixed Decomposition of Conifer and Broadleaf Litters on Soil Microbial Communities by Using PCR-DGGE[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):145.[doi:10.3724/SP.J.1145.2011.00145]
[9]王蓓,孙庚,罗鹏,等.模拟升温和放牧对高寒草甸土壤微生物群落的影响[J].应用与环境生物学报,2011,17(02):151.[doi:10.3724/SP.J.1145.2011.00151]
 WANG Bei,SUN Geng,LUO Peng,et al.Microbial Communities of Alpine Meadow Soil in the Eastern Qinghai-Tibetan Plateau Subjected to Experimental Warming and Grazing[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):151.[doi:10.3724/SP.J.1145.2011.00151]
[10]郝鲜俊,洪坚平,乔志伟.沼液对甘蓝连作土壤生物学性质的影响[J].应用与环境生物学报,2011,17(03):384.[doi:10.3724/SP.J.1145.2011.00384]
 HAO Xianjun,HONG Jianping,QIAO Zhiwei.Effect of Biogas Slurry on Biological Properties of Cabbage Continuous Cropping Soil[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):384.[doi:10.3724/SP.J.1145.2011.00384]

更新日期/Last Update: 2021-12-25