|本期目录/Table of Contents|

[1]任晓巧,章家恩,向慧敏,等.酸雨对植物地上部生理生态的影响研究进展与展望[J].应用与环境生物学报,2021,27(06):1716-1724.[doi:10.19675/j.cnki.1006-687x.2020.07054]
 REN Xiaoqiao,ZHANG Jiaen,,et al.Research advances and prospects for effects of acid rain on aboveground physiology of plants and related alleviation countermeasures[J].Chinese Journal of Applied & Environmental Biology,2021,27(06):1716-1724.[doi:10.19675/j.cnki.1006-687x.2020.07054]
点击复制

酸雨对植物地上部生理生态的影响研究进展与展望()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年06期
页码:
1716-1724
栏目:
综 述
出版日期:
2021-12-25

文章信息/Info

Title:
Research advances and prospects for effects of acid rain on aboveground physiology of plants and related alleviation countermeasures
作者:
任晓巧章家恩向慧敏石兆基黑泽文李明凯
1华南农业大学资源环境学院 广州 5106422广东省生态循环农业重点实验室 广州 5106423农业农村部华南热带农业环境重点实验室 广州 5106424广东省现代生态农业与循环农业工程技术研究中心 广州 510642
Author(s):
REN Xiaoqiao1 ZHANG Jiaen1 2 3 4? XIANG Huimin1 2 3 4 SHI Zhaoji1 HEI Zewen1 & LI Mingkai1
1 College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China2 Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China3 Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs of China, Guangzhou 510642, China4 Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
关键词:
酸雨植物形态植物生理生化植物光合系统酸雨危害缓解对策
Keywords:
acid rain plant?morphology plant physiology and biochemistry photosystem acid rain-alleviating strategy
DOI:
10.19675/j.cnki.1006-687x.2020.07054
摘要:
酸雨已成为我国长江以南和云南—贵州以东地区重要的生态环境问题之一. 酸雨会给地面上植物产生“首当其冲”的影响,使其生长受阻. 为全面了解酸雨对植物地上部生长产生的影响,详细阐述酸雨对植物地上部形态结构、物质代谢、抗氧化系统和光合作用等方面影响的研究进展,并进一步分析植物受酸雨胁迫的相关生理机制. 酸雨首先会破坏植物叶绿体、线粒体等细胞结构,酸胁迫严重时会在叶上部和叶边缘产生明显的伤斑甚至导致植物萎蔫和死亡. 其次,酸雨向植物体内输入过量的H+和氮硫化合物,会破坏氮代谢平衡,将矿质元素淋洗出来,造成植株营养缺失,进而影响叶绿素的合成和分解,降低植物的光合作用和生产力,影响植株的生长. 与此同时,酸雨会导致植物体内活性氧的过量积累. 此外,总结几种缓解酸雨对植物地上部危害的技术措施,如喷施叶面肥、喷施植物生长调节剂和接种外生菌根等. 基于酸雨研究的现状与进展,未来该领域研究的重点可从以下几方面开展:(1)从形态结构学、生理生化和分子生态学等角度揭示酸雨胁迫下植物地上部与地下部的互作效应与机理;(2)加大酸雨和其他因素(如土壤重金属超标、紫外胁迫、病害胁迫等)复合胁迫的野外定位观测和田间试验综合研究;(3)从修复酸性土壤、开展生态栽培与环境友好型技术研究、调整种植结构等多方面研究植物酸害缓解措施. (图2 参81)
Abstract:
Acid rain is widely distributed around the southward area of the Yangtze River and the eastward area of the Yunnan-Guizhou Plateau. It has become one of the most serious environmental problems in China. Acid rain first affects plants on the ground and hinders plant growth. To understand the stress and harm of acid rain on plant growth, this study reviewed and analyzed the research progress of acid rain on the morphological structure, material metabolism, antioxidant system, and photosynthesis of plant shoots through a literature review and analysis, and presented the relevant physiological mechanisms of acid rain stress in plants. Firstly, acid rain can destroy the cell structure of plant chloroplasts and mitochondria. When acid stress is severe, it can also produce obvious scars and cause plant wilting. Secondly, acid rain inputs excessive H+ and nitrogen and sulfur compounds into plants, disrupting the balance of nitrogen metabolism, leaching mineral elements, and causing plant nutrition deficiency. It then affects the synthesis and decomposition of chlorophyll, reducing photosynthesis and productivity of plants and affects plant growth. Acid rain simultaneously causes the excessive accumulation of reactive oxygen species in plants. This study summarizes several technical measures to alleviate the damage caused by acid rain to above-ground plants, such as spraying foliar fertilizer, spraying plant growth regulators, and inoculating ectomycorrhiza. As a continuation of the current status and advances in acid rain research, the focus of future research may include the following aspects: 1) to further determine the interaction effect and mechanism of the above-ground and underground parts of plants under acid rain stress, 2) to establish field experimental studies regarding the compound stress from acid rain and other factors, and 3) to investigate diversification measures to mitigate acid damage to plants.

参考文献/References:

1 Calvert JG, Lazrus A, Kok GL, Heikes BG, Walega JG, Lind J, Cantrell CA, Christopher A. Chemical mechanisms of acid generation in the troposphere [J]. Nature, 1985, 317 (6032): 27-35
2 于长毅. 酸雨的形成、危害及防治[J]. 环境保护与循环经济, 2017 (9): 42-44 [Yu CY. The formation, harm and prevention of acid rain [J]. Environ Prot Circ Econ, 2017 (9): 42-44]
3 Qu Y, An JL, He YJ, Zheng J. An overview of emissions of SO2 and NOx and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia [J]. J Environ Sci, 2016 (44): 13-25
4 Liu ZQ, Yang JY, Zhang JE, Xiang HM, Wei H. A bibliometric analysis of research on acid rain [J]. Sustainability, 2019, 11 (11): 3077
5 Li ZJ, Song LL, Ma JZ, Li YG. The characteristics changes of pH and EC of atmospheric precipitation and analysis on the source of acid rain in the source area of the Yangtze River from 2010 to 2015 [J]. Atmos?Environ, 2017, 156: 61-69
6 Badridze G, Kacharava N, Chkhubianishvili E, Rapava L, Kikvidze M, Chanishvili S, Shakarishvili N, Mazanishvili L, Chigladze L. Effect of UV radiation and artificial acid rain on productivity of wheat [J]. Russ J Ecol, 2016, 47 (2): 158-166
7 Wen K, Liang C, Wang L, Hu G, Zhou Q. Combined effects of lanthanumion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings [J]. Chemosphere, 2011, 84 (5): 601-608
8 Liu JC, Zhao YJ, Song HY, Chen JY, Long Y. Antagonism or synergism? Combined effects of enhanced UV-B radiation and acid rain on photosynthesis in seedlings of two C4 plants [J]. Acta Ecol Sin, 2020, 40 (1): 72-80
9 朱昊. 酸雨对农田镉污染土壤稳定化修复效果的影响[D]. 南京: 南京信息工程大学, 2018 [Zhu H. The effect of acid rain on the stabilization and remediation of cadmium-contaminated soil in farmland [D]. Nanjing: Nanjing University of Information Science and Technology, 2018]
10 Lee JJ, Weber DE. The effect of simulated acid rain on seedling emergence and growth of eleven woody species [J]. For Sci, 1979, 25 (3): 393-398
11 Zhang CY, Yi XQ, Gao XZ, Wang MH, Shao CY, Lv ZD, Chen JJ, Liu ZH, Shen CW. Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions [J]. Ecotoxicol Environ Saf, 2020. 192: 110315
12 Liang J, Ye Y, Peng Y, Quan MH. Effects of simulated acid rain on physiological characteristics and active ingredient content of asparagus cochinchinensis (Lour.). Merr [J]. Pak J Bot, 2018, 50 (6): 2395-2399
13 冯宗炜, 张家武, 陈楚莹, 赵吉录, 邓仕坚, 曾士余, 王开平, 高洪. 模拟酸雨对树木叶片的伤害和树木抗性的研究[J]. 环境科学, 1988, 5: 30-33 [Feng ZW, Zhang JW, Chen CY, Zhao JL, Deng SJ, Zeng SY, Wang KP, Gao H. Study on tree leaf damage and tree resistance by simulated acid rain [J]. Environ Sci, 1988, 5: 30-33]
14 Verónica M, Rodríguez S, Rosas U, Germán C, Estela SZ. Does acid rain alter the leaf anatomy and photosynthetic pigments in urban trees? [J]. Plants, 2020, 9 (7): 862
15 Andrade GC, Letícia NC, Silva LCD. Micromorphological alterations induced by simulated acid rain on the leaf surface of Joannesia princeps Vell. (Euphorbiaceae) [J]. Ecol Indic, 2020, 116: 106526
16 黄峻霖. 模拟酸雨对两种园林植物叶性状的影响[D]. 广州: 华南农业大学, 2016 [Huang JL. Effects of simulated acid rain on leaf traits of two garden plants [D]. Guangzhou: South China Agricultural University, 2016]
17 Carmit Z, Zhao ZZ, Gao YG, Ye X. Multifunctional roles of plant cuticle during plant-pathogen interactions [J]. Front Plant Sci, 2018, 9: 1088
18 魏湘萍. 模拟酸雨对几种园林地被植物生理生化特性的影响[D]. 长沙: 湖南农业大学, 2009 [Wei XP. The effect of simulated acid rain on the physiological and biochemical characteristics of several garden ground cover plants [D]. Changsha: Hunan Agricultural University, 2009]
19 朱英华, 屠乃美, 肖汉乾, 张国. 酸性pH条件对烤烟生理指标及叶片组织结构的影响[J]. 中国烟草科学, 2011, 32 (4): 46-50 [Zhu YH, Tu NM, Xiao HQ, Zhang G. Effects of acidic pH conditions on the physiological indexes and leaf tissue structure of flue-cured tobacco [J]. Chin Tob Sci, 2011, 32 (4): 46-50]
20 马原. 模拟酸雨对天目山柳杉的影响[D]. 上海: 华东师范大学, 2007 [Ma Y. The influence of simulated acid rain on cryptomeria fortunei in Tianmu Mountain [D]. Shanghai: East China Normal University, 2007]
21 Ju S, Wang L, Chen J. Effects of silicon on the growth, photosynthesis and chloroplast ultrastructure of Oryza sativa L. seedlings under acid rain stress [J]. Silicon, 2019 (12) 3: 655-664
22 Hu HQ, Wang LH, Zhou Q, Huang XH. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice [J]. Environ Sci Pollut Res, 2016 (23): 8902-8916
23 付晓萍, 田大伦. 酸雨对植物的影响研究进展[J]. 西北林学院学报, 2006, 21 (4): 23-27 [Fu XP, Tian DL. Research progress on the effects of acid rain on plants [J]. J NW For Univ, 2006, 21 (4): 23-27]
24 吕均良, 李三玉, 黄寿波, 朱诚, 傅柳松. 模拟酸雨对葡萄叶片和花粉的影响[J]. 应用与环境生物学报, 1999, 5 (5): 459-463 [Lü JL, Li SY, Huang SB, Zhu C, Fu LS. Effects of simulated acid rain on grape leaves and pollen [J]. Chin J Appl Environ Biol, 1999, 5 (5): 459-463]
25 Yadu B, Chandrakar V, Meena RK, Keshavkant S. Glycinebetaine reduces oxidative injury and enhances fluoride stress tolerance via improving antioxidant enzymes, proline and genomic template stability in Cajanus cajan L. [J]. S Afr J Bot, 2017, 111: 68-75
26 Qiao F, Zhang XM, Liu X, Chen J, Hu WJ, Liu TW, Liu JY, Zhu CQ, Ghoto K, Zhu XY, Zheng HL. Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain [J]. Plant Physiol Biochem, 2018, 127: 238
27 Wang DY, Jiang HM, Wei SQ. Effect of acid rain on nitrogen budget in vegetable field ecosystems [J]. Acta Pedol Sin, 2009, 6 (46): 1076-1082
28 孙其松, 黄洁, 吴晓静, 江海东, 周琴. 不同酸度酸雨对小麦花后氮硫代谢和籽粒蛋白组分的影响[J]. 生态学报, 2016, 36 (1): 190-199 [Sun QS, Huang J, Wu XJ, Jiang HD, Zhou Q. Effects of acid rain with different acidity on nitrogen and sulfur metabolism and grain protein components after anthesis in wheat [J]. Acta Ecol Sin, 2016, 36 (1): 190-199]
29 Debnath B, Irshad M, Mitra S, Li M, Rizwan HM, Liu S, Pan TF, Qiu DL. Acid rain deposition modulates photosynthesis, enzymatic and non-enzymatic antioxidant activities in tomato [J]. Int J Environ Res, 2018, 12: 203-214
30 姜勇, 李天鹏, 冯雪, 王汝振, 张玉革. 外源硫输入对草地土壤-植物系统养分有效性的影响[J]. 生态学杂志, 2019, 38 (4): 1192-1201 [Jiang Y, Li TP, Feng X, Wang RZ, Zhang YG. Effects of external sulfur input on the availability of nutrients in grassland soil-plant system [J]. Chin J Ecol, 2019, 38 (4): 1192-1201]
31 田苏奎, 李领寰, 伊力塔, 陈梦龄, 余树全. 模拟酸雨对杜英幼苗生长及养分元素含量的影响[J]. 华东森林经理, 2016, 30 (3): 38-42 [Tian SK, Li LH, Yi LT, Chen ML, Yu SQ. Effects of simulated acid rain on the growth and nutrient element contents of Elaeocarpus glabripetalus Merr. seedlings [J]. E Chin For J, 2016, 30 (3): 38-42]
32 Nair PKR. The nature and properties of soils, 13th edition. by N. C. Brady and R. R. Weil [J]. Agroforest Syst, 2002, 54 (3): 249-249
33 田大伦, 黄智勇, 闫文德, 项文化. 模拟酸雨对3种盆栽灌木幼苗叶矿质元素含量的影响[J]. 中南林业科技大学学报, 2007, 27 (1): 1-8 [Tian DL, Huang ZY, Yan WD, Xiang WH. Effects of simulated acid rain on the content of mineral elements in leaves of three potted shrubs [J]. J Centr S Univ of For Tech, 2007, 27 (1): 1-8]
34 陈圣贤, 董莲春, 伊力塔, 俞飞, 陈景锋. 秃瓣杜英幼苗对模拟酸雨的荧光响应及养分元素分配特征[J]. 浙江农林大学学报, 2019, 36 (3): 26-33 [Chen SX, Dong LC, Yi LT, Yu F, Chen JF. Fluorescence response and nutrient element distribution characteristics of Elaeocarpus glabripetalus Merr. seedlings to simulated acid rain [J]. J Zhejiang Agric For Univ, 2019, 36 (3): 26-33]
35 Hu XF, Wu AQ, Wang FC, Chen FS. The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg, Al, Ca, N, and P in tea plants of a subtropical plantation [J]. Environ Monit Assess, 2019, 191 (2): 91-99
36 Zhang F, Hu HQ, Wang LH, Zhou Q, Huang XH. Effects of rare earth and acid rain pollution on plant chloroplast ATP synthase and element contents at different growth stages [J]. Chemosphere, 2018, 194: 441-449
37 Shu X, Zhang KR, Zhang QF, Wang WB. Ecophysiological responses of Jatropha curcas L. seedlings to simulated acid rain under different soil types [J]. Ecotoxicol Environ Saf, 2019, 185: 109705
38 廖源林, 蔡仕珍, 叶充, 刘美宋, 徐晓明, 陶锐. 模拟酸雨对苦楝生理生态特性的影响[J]. 生态学杂志, 2015, 34 (10): 2764-2770 [Liao YL, Cai SZ, Ye C, Liu MS, Xu XM, Tao R. Effects of simulated acid rain on the physiological and ecological characteristics of Neem [J]. Chin J Ecol, 2015, 34 (10): 2764-2770]
39 任潇茜, 梁婵娟. 模拟酸雨对水稻叶片抗氧化系统影响的时间效应[J]. 安全与环境学报, 2017, 17 (4): 1609-1613 [Ren XQ, Liang CJ. Time effect of simulated acid rain on rice leaf antioxidant system [J]. J Safe Environ, 2017, 17 (4): 1609-1613]
40 Ren XQ, Zhu JZ, Liu HY, Xu X, Liang CJ. Response of antioxidative system in rice (Oryza sativa) leaves to simulated acid rain stress [J]. Ecotox Environ Safe, 2018, 148: 851-856
41 Wang LH, Wang W, Zhou Q, Huang XH. Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice[J]. Chemosphere, 2014, 112: 355-361
42 Yuri S, Yoshihiko H. Good and bad protons: genetic aspects of acidity stress responses in plants [J]. J Exp Bot, 2016 (1): 15-30
43 柴淑丽, 陈亚菲, 樊晓旭, 杜泽萱, 王丽. 地钱(Marchantia polymorpha)雌雄配子体对酸雨胁迫的耐受性差异[J]. 应用与环境生物学报, 2019, 25 (1): 100-107[Chai SL, Chen YF, Fan XX, Du ZX, Wang L. The tolerance difference between male and female gametophytes of Marchantia polymorpha to acid rain stress [J]. Chin J Appl Environ Biol, 2019, 25 (1): 100-107]
44 Du E, Dong D, Zeng XT, Sun ZZ, Jiang XF, Vries W. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China [J]. Sci Total Environ, 2017, 605: 764-769
45 Liu MH, Yi LT, Yu SQ, Yu F, Yin XM. Chlorophyll fluorescence characteristics and the growth response of Elaeocarpus glabripetalus to simulated acid rain [J]. Photosynthetica, 2015, 53 (1): 23-28
46 王小东, 汪俊宇, 周欢欢, 傅卢成, 王彬, 张汝民, 高岩. 模拟酸雨高温胁迫对桂花品种’杭州黄’抗氧化酶活性和非结构性碳代谢的影响[J]. 浙江农林大学学报, 2019, 36 (1): 57-64 [Wang XD, Wang JY, Zhou HH, Fu LC, Wang B, Zhang RM, Gao Y. Effects of simulated acid rain and high temperature stress on antioxidant enzyme activities and non-structural carbon metabolism of Osmanthus fragrans ‘Hangzhou Huang’ [J]. J Zhejiang Agric For Univ, 2019, 36 (1): 57-64]
47 陈景锋, 李超, 王敏强, 吴甄, 俞飞. 不同模拟酸雨处理对秃瓣杜英幼苗生长的影响[J]. 福建农林大学学报 (自然科学版), 2018, 47 (5): 561-567 [Chen JF, Li C, Wang MQ, Wu Z, Yu F. Effects of different simulated acid rain treatments on the growth of Elaeocarpus glabripetalus Merr. seedlings [J]. J Fujian Agric For Univ (Natl Sci Edi), 2018, 47 (5): 561-567]
48 高吉喜, 曹洪法. 酸雨对植物新陈代谢的影响[J]. 环境科学研究, 1996 (4): 351-369 [Gao JX, Cao HF. The effect of acid rain on plant metabolism [J]. Environ Sci Res, 1996 (4): 351-369]
49 郑有飞, 李璐, 梁骏, 李红双, 麦博儒. 模拟酸雨及其SO42-离子对油菜生长及品质的影响[J]. 中国油料作物学报, 2008 (2): 53-58 [Zheng YF, Li L, Liang J, Li HS, Mai BR. Effects of simulated acid rain and its SO42- on the growth and quality of oilseed?rape [J]. Chin J Oil Crops, 2008 (2): 53-58]
50 Liu TW, Fu B, Li N, Chen J, Wang WH, He JX, Pei ZM, Zheng HL. Comparative proteomic analysis of proteins in response to simulated acid rain in Arabidopsis [J]. J Proteome Res, 2011, 10 (5): 2579-2589
51 鲁美娟, 江洪, 李巍, 余树全, 曾波, 蒋馥蔚, 李佳, 金清. 模拟酸雨对刨花楠幼苗生长和光合生理的影响[J]. 生态学报, 2009, 29 (11): 5986-5994 [Lu MJ, Jiang H, Li W, Yu SQ, Zeng B, Jiang FW, Li J, Jin Q. Effects of simulated acid rain on the growth and photosynthetic physiology of Machilus pauhoi [J]. Acta Ecol Sin, 2009, 29 (11): 5986-5994]
52 王雯, 李曼, 王丽红, 周青. 酸雨对全生育时期水稻叶绿素荧光的影响[J]. 生态环境学报, 2014 (1): 84-89 [Wang W, Li M, Wang LH, Zhou Q. Effects of acid rain on chlorophyll fluorescence of rice during the whole growth period [J]. Acta Eco-Environ Sci, 2014 (1): 84-89]
53 Ma YD, Wang B, Zhang RM, Gao Y, Zuo ZJ. Initial simulated acid rain impacts reactive oxygen species metabolism and photosynthetic abilities in Cinnamonum camphora undergoing high temperature [J]. Ind Crop Prod, 2019, 135: 352-361
54 张文明, 巢建国, 谷巍, 陆奇杰. 酸雨胁迫下茅苍术的光合及生理响应[J]. 南方农业学报, 2017 (7): 41-46 [Zhang WM, Chao JG, Gu W, Lu QJ. Photosynthetic and physiological response of Atractylodes lancea (Thunb.) DC. under acid rain stress [J]. J S Agric Sci, 2017 (7): 41-46]
55 Yu JQ, Ye SF, Huang LF. Effects of simulated acid precipitation on photosynthesis, chlorophyll fluorescence, and antioxidative enzymes in Cucumis sativus L. [J]. Photosynthetica, 2002, 40 (3): 331-335
56 何亚飞, 张珊珊, 孙鑫, 王涛, 代丽, 谢寅峰. 高频度模拟酸雨胁迫条件下菲白竹的光合响应[J]. 南京林业大学学报(自然科学版), 2016, 40 (4): 49-55 [He YF, Zhang SS, Sun X, Wang T, Dai L, Xie YF. The photosynthetic response of Sasa fortunei under high-frequency simulated acid rain stress [J]. J Nanjing For Univ (Natl Sci Ed), 2016, 40 (4): 49 -55]
57 Shen W, Ren H, Jenerette GD, Hui D, Hai R. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence [J]. Atmos Environ, 2013, 64 (1): 242-250
58 Slamet B, Agustiarni Y, Hidayati, Basyuniet M. The role of urban forest to reduce rain acid in urban industrial areas [J]. IOP Confer Ser Earth Environ, 2018, 126 (1): 012140
59 Johnson DW, Turner J, Kelly JM. The effects of acid rain on forest nutrient status [J]. Water Resour Res, 1982, 18 (3): 449-461
60 刘可慧, 彭少麟, 莫江明, 黄忠良, 方运霆. 酸沉降对森林植物影响过程和机理[J]. 生态环境, 2005, 12 (6): 953-960 [Liu KH, Peng SL, Mo JM, Huang ZL, Fang YT. The process and mechanism of acid deposition on forest plants [J]. Ecol Environ, 2005, 12 (6): 953-960]
61 陈家松. 模拟酸雨胁迫对夏腊梅幼苗生理、生长特性及土壤微生物多样性影响[D]. 上海: 上海师范大学, 2016 [Chen JS. Effects of simulated acid rain stress on physiology, growth characteristics and soil microbial diversity of?Calycanthus chinensis seedlings [D]. Shanghai: Shanghai Normal University, 2016]
62 Liu MH, Korpelainen H, Dong LC, Yi LT. Physiological responses of Elaeocarpus glabripetalus seedlings exposed to simulated acid rain and cadmium [J]. Ecotox Environ Safe, 2019, 175: 118-127
63 吴同. 模拟酸雨对西南桦幼苗生长及生理的影响[D]. 长沙: 中南林业科技大学, 2017 [Wu T. The effects of simulated acid rain on the growth and physiology of Betula platyphylla seedlings [D]. Changsha: Central South University of Forestry and Technology, 2017]
64 Likens GE. Acid rain: causes, consequences, and recovery in terrestrial, aquatic, and human systems [J]. Encycl Anthr, 2018, 5: 23-31
65 Selina T, Grabner M, Berger TW. Reconstructing soil recovery from acid rain in beech (Fagus sylvatica) stands of the vienna woods as indicated by removal of stemflow and dendrochemistry [J]. Water Air Soil Poll, 2019, 230 (2): 1-24
66 Lager I, Andreasson O, Dunbar TL, Andreasson?E, Escobar MA, Rasmusson AG. Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses [J]. Plant Cell Environ, 2010, 33 (9): 1513-1528
67 Li HR, Xiang HM, Zhong JW, Ren XQ, Wei H, Zhang JE, Xu QY, Zhao BL. Acid rain increases impact of rice blast on crop health via inhibition of resistance enzymes [J]. Plants, 2020, 9 (7): 881
68 Li Y, Liang C. Exogenous application of Ca2+ mitigates simulated acid rain stress on soybean productivity and quality by maintaining nutrient absorption [J]. Environ Sci Poll Res, 2019, 26: 4975-4986
69 Lawrence GB, Burns DA, Riva-Murray K. A new look at liming as an approach to accelerate recovery from acidic deposition effects [J]. Sci Total Environ, 2016, 562: 35-46
70 Ding F, Wang R, Wang T. Enhancement of germination, seedling growth, and oxidative metabolism of barley under simulated acid rain stress by exogenous trehalose [J]. Crop Sci, 2018, 58 (2): 783-791
71 朱迎迎, 金琎, 朱勇良. 两种叶面肥对酸雨胁迫下水稻分蘖期生理指标影响[J]. 分子植物育种, 2018, 16 (14): 323-330 [Zhu YY, Jin J, Zhu YL. Effects of two leaf fertilizers on the physiological indexes of rice at the tillering stage under acid rain stress [J]. Mol Plant Breed, 2018, 16 (14): 323-330]
72 Debnath B, Li M, Liu S, Pan TF, Qiu DL. Melatonin-mediate acid rain stress tolerance mechanism through alteration of transcriptional factors and secondary metabolites gene expression in tomato [J]. Ecotox Environ Safe, 2020, 200: 110-720
73 Xalxo R, Sahu K. Acid rain-induced oxidative stress regulated metabolic interventions and their amelioration mechanisms in plants [J]. Biologia, 2017, 72 (12): 1387-1393
74 Biswojit D, Mubasher H, Muhammad I, Sangeeta M, Li M, Liu S, Qiu DL. Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential [J]. Molecules, 2018, 23 (2): 388
75 刘建福, 王明元, 王奇志, 唐源江, 杨晨, 钟书淳, 朱爱军. 外源水杨酸对酸雨胁迫后龙眼幼苗生理特性恢复的影响[J]. 生态学杂志, 2013, 12 (7): 130-136 [Liu JF, Wang MY, Wang QZ, Tang YJ, Yang C, Zhong SC, Zhu AJ. Effects of exogenous salicylic acid on the recovery of physiological characteristics of longan seedlings after acid rain stress [J]. Chin J Ecol, 2013, 12 (7): 130-136]
76 Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines [J]. Plant Sci, 2000, 151 (1): 59-66
77 张国正, 邢兴华, 王幸, 何小红, 江海东, 喻德跃. 不同时期喷施APK-9对大豆受酸雨胁迫的缓解效应[J]. 大豆科学, 2017, 36 (2): 280-286 [Zhang GZ, Xing XH, Wang X, He XH, Jiang HD, Yu DY. Alleviative effects of spraying plant growth regulator APK-9 on acid rain stressed soybean plants at different growth stages [J]. Soyb Sci, 2017, 36 (2): 280-286
78 Xalxo R, Keshavkant S. Melatonin, glutathione and thiourea attenuates lead and acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L. [J]. Chemosphere, 2019, 221: 1-10
79 Philippe V, Baldauf SL, Corinne L, Straczek?J, Young JP. Extensive fungal diversity in plant roots [J]. Science, 2002, 295 (5562): 2051
80 张慰, 陈展, 邓仕槐, 尚鹤. 外生菌根缓解植物酸雨胁迫的机理研究进展[J]. 生态学杂志, 2012, 31 (1): 200-206 [Zhang W, Chen Z, Deng SH, Shang H. Research progress on the mechanism of ectomycorrhizal alleviating plant acid rain stress [J]. Chin J Ecol, 2012, 31 (1): 200-206]
81 陈展, 尚鹤. 接种外生菌根菌对模拟酸雨胁迫下马尾松营养元素的影响[J]. 林业科学, 2014, 50 (1): 156-163 [Chen Z, Shang H. Effects of ectomycorrhizal fungi on seedlings of Pinus massoniana under simulated acid rain [J]. Acta Ecol Sin, 2014, 50 (1): 156-163]

相似文献/References:

[1]刘大永,朱利泉,梁颖.酸雨、降尘对莴苣和小白菜3种抗氧化酶活性的影响[J].应用与环境生物学报,1997,3(01):26.
 Liu Dayong,Zhu Liquan,Liang Ying.EFFECT OF ACID RAIN AND DEPOSITED COAL DUST ON THE ACTIVITIES OF THREE ANTIOXIDIANT ENZYMES IN LETTUCE AND CHINESE CABBAGE[J].Chinese Journal of Applied & Environmental Biology,1997,3(06):26.
[2]陈树元,徐和宝,史建文,等.110种树木对模拟酸雨和SO2单一和复合暴露的反应[J].应用与环境生物学报,1997,3(03):199.
 Chen Shuyuan,Xu Hebao,Shi Jianwen,et al.RESPONSE OF 110 SPECIES TREES TO SIMULANT ACID RAIN AND SULFURIC DIOXIDE EXPOSURE ALONE AND IN COMBINATION[J].Chinese Journal of Applied & Environmental Biology,1997,3(06):199.

更新日期/Last Update: 2021-12-25