|本期目录/Table of Contents|

[1]李艳,李剑,刘庆辉,等.植物-内生菌联合处理环境污染物研究进展[J].应用与环境生物学报,2021,27(06):1706-1715.[doi:10.19675/j.cnki.1006-687x.2020.07027]
 LI Yan,LI Jian?,LIU Qinghui,et al.Degradation of environmental pollutants by plant-endophyte combination: research progress[J].Chinese Journal of Applied & Environmental Biology,2021,27(06):1706-1715.[doi:10.19675/j.cnki.1006-687x.2020.07027]
点击复制

植物-内生菌联合处理环境污染物研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年06期
页码:
1706-1715
栏目:
综 述
出版日期:
2021-12-25

文章信息/Info

Title:
Degradation of environmental pollutants by plant-endophyte combination: research progress
作者:
李艳李剑刘庆辉杨航王志宇张玮川刘团
南昌航空大学环境与化学工程学院,重金属污染物控制与资源化国家地方联合工程研究中心 南昌 330063
Author(s):
LI Yan LI Jian? LIU Qinghui YANG Hang WANG Zhiyu ZHANG Weichuan & LIU Tuan
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
关键词:
植物-内生菌联合技术内生菌定殖土壤污染物水体污染物大气污染物有机污染物颗粒物挥发性有机物
Keywords:
plant-endophyte combined technology endophyte colonization pollutant in soil pollutant in water pollutant in air organic pollution particulate matter volatile organic compound
DOI:
10.19675/j.cnki.1006-687x.2020.07027
摘要:
植物-内生菌联合处理技术不仅可以克服微生物和植物单独处理污染物时的缺陷,而且更加高效、无二次污染. 对内生菌的接种方式、定殖过程、作用机理、影响因素以及植物-内生菌联合技术在土壤、水体、大气中的应用和作用机理进行全面综述. 植物与内生菌二者可以相互合作,内生菌不仅可以促进植物的生长,而且在适应和耐受胁迫环境中起着重要的调节作用;内生菌通过释放抗菌化合物、产生铁载体、争夺空间和营养以及调节植物的抗逆性,对宿主植物产生生物和非生物胁迫的抗性或耐受性. 一些菌株可以通过阻断植物乙烯合成途径来缓解植物胁迫. 同时协同植物隔离、转化、降解、吸收环境中的污染物质,特别是一些难降解的物质. 但这些研究大都以土壤、水体为介质,关于大气处理的研究非常缺乏,关于内生菌的定殖过程和机理研究也较少. 此外总结了大气污染物如颗粒物(particulate matters,PMs)、挥发性有机物(volatile organic compounds,VOCs)、无机污染物的处理和修复. 虽然目前关于植物-内生菌联合处理环境中污染物的研究较多,但是二者相互作用的机理,特别是内生菌的定殖动态和植物-内生菌相互作用的持续性还不清楚,需要深入研究. (图2 表2 参106)
Abstract:
Plant-endophyte combination technology not only overcomes the defects of microorganisms or plants in treating pollutants separately but is also more efficient and does not cause secondary pollution. In this study, we comprehensively summarize the endophyte inoculation mode, colonization process, and mechanism of action, as well as the application and mechanism of action of the plant-endophyte combination technology in soil, water, and atmosphere. Bacterial endophytes can confer resistance or tolerance to the host plants from biotic and abiotic stresses by releasing antimicrobial compounds, producing siderophores, competing for space and nutrients, and modulating the plant resistance response. Some bacterial strains can relieve plant stress by blocking the pathway of ethylene synthesis in plants. Research progress shows that plants and endophytes can cooperate with each other. On the one hand, endophytes promote plant growth, and on the other hand they play an important regulatory role in adapting to and tolerating environmental stress. Moreover, endophytes can help plants to isolate, transform, degrade, and absorb pollutants in the environment, especially for some hardly decomposed substances. However, most studies have focused on soil and water media, and there is a lack of research on atmospheric treatments. Moreover, there is a further lack of research on the colonization process and mechanism of endophytes. Therefore, the different inoculation methods of endophytes, their entry into plants from different parts of the roots, and their influencing factors are reviewed in detail in this paper, alongside a review of the remediation of particulate matters (PMs), volatile organic compounds (VOCs), and inorganic pollutants. To date, although there have been many studies on the treatment of environmental pollutants by plant-endophyte technology, their mechanism of action has not been fully explained, especially endophytic colonization dynamics and the persistence of the interaction, which will be topics for further study.

参考文献/References:

1 Zhao SY, Su YH, Liang HX. Efficiency and mechanism of formaldehyde removal from air by two wild plants; Plantago asiatica L. and Taraxacum mongolicum Hand.-Mazz [J]. J Environ Health Sci Eng, 2019, 17: 141-150
2 万勇. 内生菌在重金属植物修复中的作用机理及应用研究[D]. 长沙: 湖南大学, 2012 [Wan Y. Research on the mechanism and application of endophytes in heavy metal phytoremediation [D]. Changsha: Hunan University, 2012]
3 文晓凤, 尹令实, 张金帆, 袁瀚宇. 植物-微生物联合修复重金属污染底泥/土壤的研究进展[J]. 安徽农学通报, 2016, 22 (6): 1007-7731 [Wen XF, Yi LS, Zhang JF, Yuan HY. The research progress on plant-microorganism combined remediation of heavy metals-contaminated soil and sediments [J]. Anhui Agric Sci Bull, 2016, 22 (6): 1007-7731]
4 Evers N, Gielen M, Jaspers S, Sánchez-López A, White JC, Vangronsveld J, Weyens N. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media [J]. Microl Biotechnol, 2015, 8 (4): 707-715
5 肖萧. 基于镉超累积植物内生菌的重金属污染修复研究[D]. 长沙: 湖南大学, 2011 [Xiao X. Application of heavy metal hyperaccumulator endophytes in heavy metal decontamination [J]. Changsha: Hunan University, 2011]
6 Sharma VK, Li XY, Wu GL, Bai WX, Parmar S, White JF, Li HY. Endophytic community of Pb-Zn hyperaccumulator Arabis Alpina and its role in host plants metal tolerance [J]. Plant Soil, 2019, 437: 397-411
7 田喜强, 赵宏吉, 唐志国, 董艳萍, 黄守磊. 土壤污染及修复方法的研究进展[J]. 现代农业科技, 2019, 4: 154-159 [Tian XQ, Zhao HJ, Tang ZG, Dong YP, Huang SL. Research progress on soil pollution and remediation methods [J]. Mod Agric Sci Technol, 2019, 4: 154-159]
8 Kos B, Lestan D. Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers [J]. Environ Sci Technol, 2003, 37 (3): 624-629
9 Wang DD, Liu HX, Hu F, Wang X. Role of earthworm-straw interactions on phytoremediation of Cu contaminated soil by ryegrass. Acta Ecol Sin, 2007, 27 (4): 1292-1298
10 熊琼仙, 李正龙, 熊敏. 浅谈土壤中Pb2+的污染及修复研究现状[J]. 广州化工, 2019, 17 (47): 135-137 [Xiong QX, Li ZL, Xiong M. Study on the pollution and remediation of Pb2+ in soil [J]. Guangzhou Chem Ind, 2019, 17 (47): 135-137]
11 Li GD, Zhang ZW, Jing P, Zhao NN, Lin L, Yuan YF, Yu M. Leaching remediation of heavy metal contaminated fluvio-aquatic soil with tea-saponin [J]. Trans Chin Soc Agric, 2009, 25 (10): 231-235
12 Qayyum S, Khan I, Meng K, Zhao YG, Peng CS. A review on remediation technologies for heavy metals contaminated soil [J]. Cent Asian J Environ Sci Technol Innov, 2020, 1 (1): 21-29
13 王兴利, 王晨野, 吴晓晨. 重金属污染土壤修复技术研究进展[J]. 化学与生物工程, 2019, 36 (2): 1-11 [Wang XL, Wang CY, Wu XC. Research progress on remediation technology of heavy metal contaminated soil [J]. Chem Biol Eng, 2019, 36 (2): 1-11]
14 Huang QC, Huang MS, Chen L, Chi JP, Song L. Development and prospect of bioremediation for persistent organic pollutants in sediments [J]. Environ Ecol Three Gorges, 2012, 34 (2): 36-40
15 Bosecker K. Microbial leaching in environmental clean-up programmes [J]. Hydrometallurgy, 2011, 59 (2/3): 245-248
16 Connora DO, Zheng XD, Houa DY, Shen ZT, Li GH, Miao GF, Connell SO, Guo M. Phytoremediation: climate change resilience and sustainability assessment at a coastal brownfield redevelopment [J]. Environ Int, 2019, 130: 1-9
17 Dalcorso G, Fasani E, Manara A, Visioli G, Furini A. Heavy metal pollutions: state of the art andinnovation in phytoremediation [J]. Int J Mol Sci, 2019, 20 (14): 1-17
18 Ma?ecka A, Konkolewsk AA, Han? A, Bara?kiewicz D, Ciszewska L, Ratajczak E, Staszak AM, Kmita M, Jarmuszkiewicz W. Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): metal accumulationand antioxidant enzyme activity [J]. J Mol Sci, 2019, 20 (18): 1-17
19 Fu WQ, Xu M, Sun K, Chen XL, Dai CC, Jia Y. Remediation mechanism of endophytic fungus?Phomopsis liquidambaris?on phenanthrene in?vivo [J]. Chemosphere, 2020, 243: 1-34
20 Todeschini?V, Todeschini N, AitLahmidi N, Mazzucco E, Marsano F, Gosetti F, Robotti E. Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome [J]. Front Plant Sci, 2018, 9: 1-22
21 韩惠珊. 植物-微生物联合修复重金属污染土壤研究[J]. 资源节源与环保, 2019 (8): 12 [Han HS. Study on plant-microbial remediation of heavy metal polluted soil [J]. Res Econ Environ Prot, 2019 (8): 12]
22 Ullah A, Heng S, Munis MFH, Fahad S, Yang XY. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review [J]. Environ Exp Bot, 2015, 117: 28-40
23 Anyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation [J]. J?Phytoremediation, 2018, 20: 352-361
24 Anyasi RO, Atagana HI, Sutherland R. Comparative study of the colonization of Chromolaena and tobacco plants by Bacteria safensis CS4 using different methods of inoculation [J]. Sci , 2019, 22: 309-317
25 Bagchi B, Debdulal B. Screening of endophytic fungi and their diversity in a lianas of different localities from west Medinipur during summer [J]. Int J Innovative Sci Eng Technol, 2014, 1: 164-172
26 Lu L, Chai QW, He SY. Effects and mechanisms of phytoalexins on the removal of polycyclic aromatic hydrocarbons (PAHs) by an endophytic bacterium isolated from ryegrass [J]. Environ Pollut, 2019, 253: 872-881
27 Hardoim PR, Overbeek LS, Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth [J]. Trends Microb, 2008, 16: 463-471
28 Meneses CHSG, Rouws LFM, Simoes-Araujo JL, Vidal MS, Baldani JI. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus [J].?Mol Plant Microb Int, 2011, 24: 1448-1458
29 Meneses C, Gon?alves T, Alquéres S, Rouws L, Serrato R, Vidal?M, Baldani?JI. Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization [J]. Plant Soil, 2017, 416: 133-147
30 Balsanelli E, Serrato RV, Baura VA, Baura D, Sassaki G, Yates MG, Rigo LU. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization [J]. Environ Microb, 2010, 12: 2233-2244
31 Sessitsch A, Hardoim P, D?ring J, Weilharter A, Krause A, Woyke T, Mitter B, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, Brar D. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis [J]. Mol Plant-Microb Int, 2012, 25: 28-36
32 Naveed M, Mitter B, Yousaf S, Pastar B, Afzal M, Sessitsch?A. The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics [J]. Biol Fert Soils, 2014, 50: 249-262
33 Reinhold-Hurek B, Maes T, Gemmer S, Montagu MV, Hurek T. An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72 [J]. Mol Plant-Microb Int, 2006, 19: 181-188
34 Iniguez AL, Dong Y, Triplett EW. Nitrogen fixation in wheat provided by Klebsiella pneumoniae [J]. Mol Plant-Microb Int, 2004, 17: 1078-1085
35 Yaron S, R?mling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence [J]. Microb Biotechnol, 2014, 7 (6): 496-516
36 Glassner H, Zchori-Fein E, Yaron S, Sessitsch A, Sauer U, Compant S. Bacterial niches inside seeds of Cucumis melo L. [J]. Plant Soil, 2017, 402: 101-113
37 Compant S, Reiter B, Nowak J, Sessitsch A, Clément C, Barka EA. Endophytic colonization of Vitis vinifera L. by plant growth- promoting bacterium Burkholderia sp. Strain PsJN [J]. Appl Environ Microb, 2005, 71: 1685-1693
38 Frank A, Saldierna Guzmán J, Shay J. Transmission of bacterial endophytes [J]. Microorganisms, 2017, 5 (4): 70
39 Thomas P, Reddy KM. Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall-plasma membrane peri-space in the shoot-tip tissue of banana [J]. AoB Plants, 2013, 5: 1-12
40 Xu JY, Han YH, Chen YS, Zhu LJ, Ma LQ. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata [J]. Chemosphere, 2016, 144: 1233-1240
41 Zhu LJ, Guan DX, Luo J, Rathinasabapathi B, Ma LQ. Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multififida [J]. Chemosphere, 2014, 113: 9-16
42 瞿攀, 伏毅, 刘绵学, 王艳, 黄敏. 植物-微生物联合修复镍污染土壤研究进展[J]. 土壤, 2019, 51 (1): 11-18 [Qu P, Fu Y, Liu XM, Wang Y, Huang M. Advances in the research of plant-microorganism joint remediation of nickel-contaminated soil [J]. Soil, 2019, 51 (1): 11-18]
43 Bashan Y, Puente ME, De-Bashan LE, Hernandez JP. Environmental uses of plant growth-promoting bacteria [J]. Plant-Microb Int, 2008, 661 (2): 69-93
44 Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha Y, Freitas H.The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil [J]. Environ Manag, 2015, 156: 62-69
45 韩荣, 李夏, 任安芝, 高玉葆. 干旱胁迫下内生真菌感染对羽茅的生理生态影响[J]. 生态学报, 2011, 31 (8): 2115-2123 [Han R, Li X, Ren AZ, Gao YB. Physiological ecological effect of endophyte infection on Achnatherum sibiricum under drought stress [J]. Acta Ecol Sin, 2011, 31 (8): 2115-2123]
46 Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y. Core microbiomes for sustainable agroecosystems [J]. Nat Plant, 2018, 4 (9): 733-733
47 Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA. Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea [J]. J Hazard Mater, 2015, 283: 490-499
48 Xie XG, Huang CY, Fu WQ, Dai CM. Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid [J]. Fungal Biol, 2016, 120 (3): 402-413
49 Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee IJ. Phytohorrnones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanurn lycopersicum: an examples of Penicillium janthinellum Lk5 and comparison with exogenous GA3 [J]. J Hazard Mater, 2015, 295: 70-78
50 Wang L, Lin H, Dong YB, He YH, Liu CJ. Isolation of vanadium-resistance endophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation [J]. J Hazard Mater, 2018, 341: 1-9
51 Mrinalini JS, Padmavathy S. Biosurfactant, polythene, plastic, and diesel biodegradation activity of endophytic Nocardiopsis sp.mrinalini9 isolated from Hibiscus rosasinensis leaves [J]. Biores Biopro, 2015, 2 (2): 1-7
52 Zhu XZ, Jin L, Sun K, Li S, Ling WT, Li XL. Potential of endophytic bacterium Paenibacillus sp. PHE-3 isolated from Plantago asiatica L. for reduction of PAH contamination in plant tissues [J]. Environ Res Public Health, 2016, 13 (7): 633
53 White JC, Vangronsveld J, Weyens N, Eevers N, Hawthorne JR. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: a cultivation dependent vs a cultivation independent approach [J]. Environ Pollut, 2016, 209: 147-154
54 Bilal S, Khan AL, Shahzad R, Asaf S, Kang SM, Lee IJ. Endophytic Paecilomyces formosus LHL10 augments Glycine max L. adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress [J]. Front Plant Sci, 2017, 8: 870
55 Wang Y, Tian H, Huang F, Long WM, Zhang QP, Wang J, Zhu Y, Wu XG, Chen GZ, Zhao LP, Bakken LR. Time-resolved analysis of a denitrifying bacterial community revealed a core microbiome responsible for the anaerobic degradation of quinoline [J]. Sci Rep, 2017, 7: 14778
56 Husain AA, Dine AM, Narjes D. The abundant occurance of hydrocarbon-utilizing bacteria in the phyllospheres of cultivated and wild plants in Kuwait [J]. Int Biodeter Biodegr, 2012, 73: 73-79
57 Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Mering CV, Vorholt JA. Metaproteogenomic analysis of microbial communities in the phyllosphere andrhizosphere of rice [J]. IMSE J, 2012, 6: 1378-1390
58 Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan S. The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants [J]. J Environ Manage, 2012, 93 (1): 113-120
59 Ali N, Alawadhi H, Dashti N Khanafer M, Elnemr I, Sorkhoh NA, Radwan SS. Bioremediation of atmospheric hydrocarbons via bacteria naturally associated with leaves of higher plants [J]. Int J Phytoremediat, 2015, 17 (12): 1160-1170
60 Nadalig T, Haque MFU, Roselli S, Schaller H, Bringel F, Vuilleumier F. Detection and isolation of chloromethane-degrading bacteria from Arabidopsis thaliana phyllosphere and characterization of chloromethane utilization genes [J]. FEMS Microbiol Ecol, 2011, 77: 438-448
61 Galan E, Romerobaena AG, Aparicio P, Gonzalez I. A methodological approach for the uation of soil pollution by potentially toxic trace elements [J]. J Geochem Explor, 2019, 203: 96-107
62 吴泽. 风险评价在我国新环境政策形势下土壤污染防治中的现状与前景[J]. 环境工程, 2019, 37: 377-379 [Wu Z. Circumastance and peospect of utilization of risk assessment in soil remediation under the new policy direction china [J]. Environ Eng, 2019, 37: 377-379]
63 李亚娇, 温猛, 李家科, 马越,梁行行. 土壤污染修复技术研究进展[J]. 环境监测管理与技术, 2018, 30 (5): 8-14 [Li YJ, Wen J, Li JK, Ma Y, Liang HH. Research progress of remediation technologies for contaminated soil [J]. Admin Technol Environ Monit, 2018, 30 (5) : 8-14]
64 Gaiero JR, Mccall CA, Thompson K, Day NJ, Best A, Dunfield KE. Inside the root microbiome: bacterial root endophytes and plant growth promotion [J]. Botany, 2013, 100 (9): 1738-1750
65 Pollard AJ, Reeves RD, Baker AM. Facultative hyperaccumulation of heavy metals and metalloids [J]. Plant Sci, 2014, 217-218: 8-17
66 Drozdova I, Alekseevapopova N, Dorofeyev V, Bech J, Belyaeva A, Roca A. A comparative study of the accumulation of trace elements in Brassicaceae plant species with phytoremediation potential [J]. App Geochem, 2019, 108: 1-7
67 Chen TB, Wei CY, Huang CZ, Huang QF, Lu QG, Fan ZL. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation [J]. Chin Sci Bull, 2002, 47 (11): 902-905
68 Yang XE, Ye HB, Long XX, He B, He ZL, Stoffella PJ, Calvert DV. Uptake and accumulation of cadmium and zinc by Sedum alfredii Hance at different Cd/Zn supply levels [J]. Plant Nutr, 2005, 27 (11): 1963-1977
69 RAfzal M, Khan QM, Sessitsch A.Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants [J]. Chemosphere, 2014, 117: 232-242
70 He W, Megharaj M, Wu CY, Subashchandrabose SR, Dai CC. Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants [J]. Crit Rev Biotechnol, 2020, 40 (1)31-45
71 Babu AG, Kim JD, Oh BT. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1 [J]. J Hazard Mater, 2013, 250-251: 477-483
72 Ma Y, Prasad M, Rajkumar M, Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils [J]. Biotechnol Adv, 2011, 29 (2): 248-258
73 Malik A. Metal bioremediation through growing cells [J]. Environ Int, 2004, 30 (2): 261-278
74 董睿智. 砷超累积植物内生菌对重金属砷、铅抗性及吸附性能的研究[D]. 南昌: 南昌航空大学, 2012 [Dong RZ. Study on the resistance and adsorption properties of arsenic hyperaccumulation plant endophytes to heavy metals arsenic and lead [D]. Nanchang: Nanchang Hangkong University, 2012]
75 Leyval C, Turnau K, Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects [J]. Mycorrhiza, 1997, 7: 139-153
76 Brown NL, Stoyanov JV, Kidd SP, Hobman JL. The MerR family of transcriptional regulators [J]. FEMS Microbio Rev, 2003, 27 (2/3): 145-163
77 Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects [J]. Ecotoxicol Environ Safe, 2018, 147: 175-191
78 Amini I, Tahmourespour A, Abdollahi A. Biodegradation of polycyclic aromatic hydrocarbons by Pseudomonas species [J]. Pollution, 2017, 3 (1): 9-19
79 Andreolli M, Lampis S, Poli M, Gullner G, Biro B, Vallini G. Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons [J]. Chemosphere, 2013, 92 (6): 688-694
80 Germaine KJ, Keogh E, Ryan D, Dowing DN. Bacterial endophytemediated naphthalene phytoprotection and phytoremediation [J]. FEMS Microbiol Lett, 2009, 296 (2): 226-234
81 Trapp S, Zambrano C, Kusk KO, Karlson U. Phytotoxicity test using transpiration of willows [J]. Arch Environ Con Tox, 2000, 39: 154-160
82 Weyens N, Lelie DVD, Taghavi S, Vangronsveld J. Phytoremediation: plant-endophyte partnerships take the challenge [J]. Curr Opin Biotechnol, 2009, 20 (2): 248-254
83 Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Lelie DVD, Campbell CD, Moore ERB. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterization of isolates with potential to enhance phytoremediation [J]. Syst Appl Microbiol, 2006, 29 (7): 539-556
84 Master ER, Mohn WW. Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant Pseudomonas strain Cam-1 and mesophilic Burkholderia strain LB400 [J]. Appl Environ Microbiol, 2001, 67 (6): 2669-2676
85 Chen WM, Tang YQ, Mori K, Wu XL. Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters [J]. Aquat Biol, 2012, 15 (2): 99-110
86 Doty SL. Enhancing phytoremediation through the use of transgenics and endophytes [J]. New Phytol, 2008, 179: 318-333
87 Weyens N, Schellingen K, Beckers B, Janssen J, Ceulemans R, Lelie DVD, Taghavi S, Carleer R, Vangronsveld J. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination [J]. J Soil Sediment, 2013, 13 (1): 176-188
88 Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, Lelie DVD, Carleer R, Vangronsveld J. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings [J]. Environ Pollut, 2010, 158 (9): 2915-2919
89 Ashraf S, Afzal M, Rehman K, Naveed M, Zahir ZA. Plant-endophyte synergism in constructed wetlands enhances the remediation of tannery effluent [J]. Water Sci Antechnol, 2018, 77 (5): 1262-1270
90 李华松. 城市大气污染现状及对策[J]. 环境与发展, 2017, 29 (10): 61 [Li HS. Current situation and countermeasures of urban air pollution [J]. Environ Dev, 2017, 29 (10) : 61]
91 赵海霞, 桑阳. 大气污染防治面临的挑战及对策[J]. 中国资源综合利用, 2019, 37 (10): 119-121 [Zhao HX, Sang Y. The challenges and countermeasures of air pollution prevention and control [J]. China Res Compreh Util, 2019, 37 (10) : 119-121]
92 Zhou X, Cao Z, Ma Y, Wang L, Wu R, Wang W. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: potential implications for the revised particulate standard [J]. Chemosphere, 2016, 144: 518-526
93 Teper E. Dust-particle migration around flotation tailings ponds: pine needles as passive samplers [J]. Environ Monit Assess, 2009, 1 (154): 383-391
94 Cavanagh J, Clemons J. Do urban forests enhance air quality [J]. Aust J Environ Manag, 2006, 13: 120-130
95 Wu DC, Sun MZ, Xin Y, Zang CL. Antioxidant properties of Lactobacillus and its protecting effect to oxidative stress Caco-2 cells [J]. J Anim Plant Sci, 2014, 24 (6): 1766-1771
96 Wararat S, Paitip T. Efficacy of ornamental plants for benzene removal from contaminated air and water: effect of plant associated bacteria [J]. Int Biodeter Biodegr, 2016, 113: 262-268
97 Arnon S, Chairat T. Chlorophytum comosum-bacteria interactions for airborne benzene remediation: effect of native endophytic Enterobacter sp. EN2 inoculation and blue-red LED light [J]. Plant Physiol Biochem, 2018, 130: 181-191
98 Khaksar G, Treesubsuntorn C, Thiravetyan P. Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: potentials and challenges for airborne formaldehyde removal [J]. Plant Physiol Biochem, 2016, 107: 326-336
99 Vollenweider P, Gunthardt-Goerg MS. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage [J]. Environ Pollut, 2005, 137 (3): 455-465
100 Papen H, Gebler A, Zumbusch E, Rennenberg H. Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input [J]. Curr Microbiol, 2002, 44 (1): 56-60
101 Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW. The role of plant-microbe interactions and their exploitation for phytoremediation of air pollutants [J]. Int J Mol Sci, 2015, 16: 25576-25604.
102 Sedjo R, Sohngen B. Carbon sequestration in forests and soils [J]. Annu Rev Resour Econ, 2012, 4: 127- 144.
103 Zhu LL, Li T, Wang CJ, Zhang XR, Xu LJ, Xu RB, Zhao ZW. The effects of dark septate endophyte (DSE) inoculation on tomato seedlings under Zn and Cd stress [J]. Environ Sci Pollut Res, 2018, 25 (35): 35232-35241
104 Pageni BB, Lupwayi NZ, Akter Z, Larney FJ, Kawchuk LM, Gan Y. Plant growth-promoting and phytopathogen-antagonistic properties of bacterial endophytes from potato (Solanum tuberosum L.) cropping systems [J]. Can J Plant Sci, 2014, 94 (5): 835-844
105 Spagnoletti FN, Tobar NE, Di Pardo AF, Chiocchio VM, Lavado RS. Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates [J]. Appl Soil Ecol, 2017, 111: 25-32
106 Vergara C, Araujo KEC, Alves L S, de Souza SR, Santos LA, Santa-Catarina C, Zilli J?. Contribution of dark septate fungi to the nutrient uptake and growth of rice plants [J]. Braz J Microbiol, 2018, 49 (1): 67-78

更新日期/Last Update: 2021-12-25