|本期目录/Table of Contents|

[1]郑婧婧,张智明,徐向阳,等.污水处理好氧颗粒污泥生产运行中的结构与稳定性[J].应用与环境生物学报,2021,27(06):1672-1685.[doi:10.19675/j.cnki.1006-687x.2020.07025]
 ZHENG Jingjing,ZHANG Zhiming,XU Xiangyang,et al.Structure and stability of aerobic granular sludge during operation in wastewater treatment[J].Chinese Journal of Applied & Environmental Biology,2021,27(06):1672-1685.[doi:10.19675/j.cnki.1006-687x.2020.07025]
点击复制

污水处理好氧颗粒污泥生产运行中的结构与稳定性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年06期
页码:
1672-1685
栏目:
综 述
出版日期:
2021-12-25

文章信息/Info

Title:
Structure and stability of aerobic granular sludge during operation in wastewater treatment
作者:
郑婧婧张智明徐向阳朱亮
1浙江大学环境污染防治研究所 杭州 3100582浙江省水体污染控制与环境安全技术重点实验室 杭州 3100583水污染控制浙江省工程实验室 杭州 310058
Author(s):
ZHENG Jingjing1 ZHANG Zhiming1 2 XU Xiangyang1 2 3 & ZHU Liang1 2 3?
1 College of Environmental and Resource, Zhejiang University, Hangzhou 310058, China2 Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China3 Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
关键词:
好氧颗粒污泥结构稳定影响因素调控策略
Keywords:
aerobic granular sludge (AeGS) structure stability influence factor control strategy
DOI:
10.19675/j.cnki.1006-687x.2020.07025
摘要:
在过去的20多年里,好氧颗粒污泥(AeGS)技术在污水生物处理领域得到广泛研究和实际应用. 目前,国内外已在AeGS形成机制、工艺参数优化、功能菌群解析、微生物代谢分泌强化等方面取得了研究进展,尤其在揭示颗粒化机理和加速颗粒化过程上成果显著,基于AeGS形成过程的四步理论和三大假说,已能实现AeGS在30 d甚至更短期内的快速培养. 但是,实际生产运行中颗粒易失稳的问题始终未得到解决,成为AeGS工艺工程应用长期稳定运行的主要技术瓶颈. 围绕AeGS生产运行过程中结构失稳及其影响因素进行了文献考察,从传质阻力、优势微生物结构和功能、EPS分泌与组成、颗粒内聚力等方面开展分析与讨论,总结了强化颗粒结构稳定的主控因子,包括颗粒粒径控制、功能菌群结构优化(通过慢速生长微生物富集、丝状菌及内核厌氧菌抑制)、EPS分泌特性调控、群体感应调控和颗粒内核外源强化(通过添加金属离子、成核剂,接种颗粒污泥或EPS),以期为AeGS工艺实际生产应用的长期稳定运行提供有效的调控策略. 未来有必要结合表位表征技术、先进的分子生物学工具以及新型生物化学和生物物理学方法,深入挖掘颗粒失稳诱因和机理,为维持AeGS长期结构稳定指明方向. (图3 表1 参154)
Abstract:
Over the past two decades, aerobic granular sludge (AeGS) technology has been extensively studied and widely used in biological wastewater treatment. To date, many studies have been carried out globally in relation to AeGS formation mechanisms, parameter optimization, functional microbial analysis, and secretion enhancement of extracellular polymeric substances (EPS); indeed, remarkable achievements have been made in elucidating the mechanism of granulation and in particular, the acceleration of the granulation process. AeGS is known to be rapidly cultivated within 30 days, based on the previously described four-step theory and three hypotheses of AeGS formation process. However, an effective solution to AeGS instability during long-term operation does not exist, which greatly impedes its engineering applications. As such, this review focuses on AeGS instability and its related factors. The key factors influencing the structural stability of AeGS are summarized, including mass transfer resistance, structure and functions of dominant microorganisms, EPS secretion, and composition and cohesion of granules. The corresponding strategies to provide potential solutions to AeGS instability during long-term operation include particle size control; the optimization of functional microbial community structure, through the enrichment of slow-growing microbes and the inhibition of filamentous bacteria and anaerobic bacteria in the core; the regulation of EPS characteristics and quorum sensing; and the enhancement of particle core intensity by adding metal ions and nucleating agents, and inoculating granular sludge or EPS. Future research should use in situ techniques, advanced molecular biology tools, and new biochemical and biophysical approaches working in tandem, to explore the causes and mechanisms of granular instability, ultimately providing guidance for the maintenance of AeGS structural stability in the long term.

参考文献/References:

1 Beun JJ, Hendriks A, van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ. Aerobic granulation in a sequencing batch reactor [J]. Water Res, 1999, 33: 2283-2290
2 Liu YQ, Liu Y, Tay JH. The effects of extracellular polymeric substances on the formation and stability of biogranules [J]. Appl Microbiol Biotechnol, 2004, 65 (2): 143-148
3 Liu Y, Tay JH. State of the art of biogranulation technology for wastewater treatment [J]. Biotechnol Adv, 2004, 22 (7): 533-563
4 Mishima K, Nakamura M. Self-immobilization of aerobic avtivated sludge-a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment [J]. Water Sci Technol, 1991, 23: 981-990
5 Morgenroth E, Sherden T, van Loosdrecht, Heijnen, Wilderer PA. Aerobic granular sludge in a sequencing batch reactor [J]. Water Res, 1997, 31 (12): 31931-3194
6 de Kreuk MK, van Loosdrecht MCM. Formation of aerobic granules with domestic sewage [J]. J Environ Eng, 2006, 132: 694-697
7 Liu Y, Wang ZW, Qin L, Liu YQ, Tay JH. Selection pressure-driven aerobic granulation in a sequencing batch reactor [J]. Appl Microbiol Biotechnol, 2005, 67 (1): 26-32
8 Lemaire R, Webb RI, Yuan ZG. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater [J]. ISME J, 2008, 2 (5): 528-541
9 Franca RDG, Pinheiro HM, van Loosdrecht MCM, Louren?o ND. Stability of aerobic granules during long-term bioreactor operation [J]. Biotechnol Adv, 2018, 36 (1): 228-246
10 Pronk M, Abbas B, Al-zuhairy SHK, Kraan R, Kleerebezem R, van Loosdrecht MCM. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge [J]. Appl Microbiol Biotechnol, 2015, 99 (12): 5257-5268
11 Chen YC, Lin CJ, Chen HL, Fu SY, Zhan HY. Cultivation of biogranules in a continuous flow reactor at low dissolved oxygen [J]. Water Air Soil Pollut, 2009, 9 (3-4): 213-221
12 Corsino SF, Capodici M, Torregrossa M, Viviani G. Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor [J]. Bioresour Technol, 2016, 200: 1055-1059
13 Chen CQ, Bin LY, Tang B, Huang SS, Fu F,L Chen QY, Wu LY, Wu CM. Cultivating granular sludge directly in a continuous-flow membrane bioreactor with internal circulation [J]. Chem Eng J, 2017, 309: 108-117
14 Nancharaiah YV, Kiran Kumar Reddy G. Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications [J]. Bioresour Technol, 2018, 247: 1128-1143
15 Toh SK, Tay JH, Moy BYP, Ivanov V, Tay STL. Size-effect on the physical characteristics of the aerobic granule in a SBR [J]. Appl Microbiol Biotechnol, 2003, 60 (6): 687-695
16 Long B, Yang CZ, Pu WH, Yang JK, Liu FB, Zhang L, Zhang J, Cheng K. Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor [J]. Bioresour Technol, 2015, 182: 314-322
17 Liu Y, Liu QS. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors [J]. Biotechnol Adv, 2006, 24 (1): 115-127
18 Zheng YM, Yu HQ, Liu SJ, Liu XZ. Formation and instability of aerobic granules under high organic loading conditions [J]. Chemosphere, 2006, 63 (10): 1791-1800
19 Adav SS, Lee DJ, Lai JY. Functional consortium from aerobic granules under high organic loading rates [J]. Bioresour Technol, 2009, 100 (14): 3465-3470
20 Wang XH, Zhang HM, Yang FL, Xia LP, Gao MM. Improved stability and performance of aerobic granules under stepwise increased selection pressure [J]. Enzyme Microb Technol, 2007, 41 (3): 205-211
21 Ren TT, Liu L, Sheng GP, Liu XW, Yu HQ, Zhang MC, Zhu JR. Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity [J]. Water Res, 2008, 42 (13): 3343-3352
22 Mosquera-Corral A, de Kreuk MK, Heijnen JJ, van Loosdrecht MCM. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor [J]. Water Res, 2005, 39 (12): 2676-2686
23 Adav SS, Lee DJ, Tay JH. Extracellular polymeric substances and structural stability of aerobic granule [J]. Water Res, 2008, 42 (6-7): 1644-1650
24 Luo JH, Hao TW, Wei L, Mackey HR, Lin ZQ, Chen GH. Impact of influent COD/N ratio on disintegration of aerobic granular sludge [J]. Water Res, 2014, 62: 127-135
25 Corsino SF, Capodici M, Torregrossa M, Viviani G. Fate of aerobic granular sludge in the long-term: the role of EPSs on the clogging of granular sludge porosity [J]. J Environ Manage, 2016, 183: 541-550
26 Li YC, Hao W, Lv JP, Wang YQ, Zhong C, Zhu JR. The role of N-acyl homoserine lactones in maintaining the stability of aerobic granules [J]. Bioresour Technol, 2014, 159: 305-310
27 Isanta E, Suárez-Ojeda ME, Val Del Río ?, Morales N, Pérez J, Carrera J. Long term operation of a granular sequencing batch reactor at pilot scale treating a low-strength wastewater [J]. Chem Eng J, 2012, 198-199: 163-170
28 Tay JH, Liu QS, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules [J]. Appl Microbiol Biotechnol, 2001, 57 (1-2): 227-233
29 Adav SS, Lee DJ, Lai JY. Aerobic granulation in sequencing batch reactors at different settling times [J]. Bioresour Technol, 2009, 100 (21): 5359-5361
30 Long B, Yang CZ, Pu WH, Yang JK, Liu FB, Zhang L, Zhang J, Cheng K. Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor [J]. Bioresour Technol, 2015, 182: 314-322
31 Lee DJ, Chen YY, Show KY, Whiteley CG, Tay JH. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation [J]. Biotechnol Adv, 2010, 28 (6): 919-934
32 Liu L, Li WW, Sheng GP, Liu ZF, Zeng RJ, Liu JX, Yu HQ, Lee DJ. Microscale hydrodynamic analysis of aerobic granules in the mass transfer process [J]. Environ Sci Technol, 2010, 44 (19): 7555-7560
33 Chiu ZC, Chen MY, Lee DJ, Tay STL, Tay JH, Show KY. Diffusivity of oxygen in aerobic granules [J]. Biotechnol Bioeng, 2006, 94 (3): 505-513
34 Li Y, Liu Y. Diffusion of substrate and oxygen in aerobic granule [J]. Biochem Eng J, 2005, 27 (1): 45-52
35 Tay JH, Liu QS, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors [J]. Environ Technol, 2002, 23 (8): 931-936
36 Zhang HM, Dong F, Jiang T, Wei Y, Wang T, Yang FL. Aerobic granulation with low strength wastewater at low aeration rate in A/O/A SBR reactor [J]. Enzyme Microbiol Technol, 2011, 49 (2): 215-222
37 Zhu L, Yu YW, Dai X, Xu XY, Qi HY. Optimization of selective sludge discharge mode for enhancing the stability of aerobic granular sludge process [J]. Chem Eng J, 2013, 217: 442-446
38 Iorhemen OT, Zaghloul MS, Hamza RA, Tay JH. Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRT [J]. J Environ Chem Eng, 2020, 8 (2): 103681
39 Zhou JH, Zhang ZM, Zhao H, Yu HT, Alvarez PJJ, Xu XY, Zhu L. Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress [J]. Bioresour Technol, 2016, 216: 562-570
40 Long B, Xuan XP, Yang CZ, Zhang LN, Cheng YY, Wang JQ. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control [J]. Chemosphere, 2019, 225: 460-469
41 Verawaty M, Tait S, Pijuan M, Yuan ZG, Bond PL. Breakage and growth towards a stable aerobic granule size during the treatment of wastewater [J]. Water Res, 2013, 47 (14): 5338-5349
42 潘凯. 好氧颗粒污泥的水动力学及结构稳定性研究[D]. 合肥: 合肥工业大学, 2016 [Hydrodynamics and structural stability of aerobic granular sludge [D]. Heifei: Heifei University of Technology, 2016]
43 Chen Y, Jiang W, Liang DT, Tay JH. Structure and stability of aerobic granules cultivated under different shear force in sequencing batch reactors [J]. Appl Microbiol Biotechnol, 2007, 76 (5): 1199-1208
44 Liu Y, Yang SF, Tay JH. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria [J]. J Biotechnol, 2004, 108 (2): 161-169
45 van Loosdrecht MCM, Pot MA, Heijnen JJ. Importance of bacterial storage polymers in bioprocesses [J]. Water Sci Technol, 1997, 1 (35): 41-47
46 de Kreuk MK, van Loosdrecht MCM. Selection of slow growing organisms as a means for improving aerobic granular sludge stability [J]. Water Sci Technol, 2004, 49 (11-12): 9-17
47 de Kreuk MK, Kishida N, Tsuneda S, van Loosdrecht MCM. Behavior of polymeric substrates in an aerobic granular sludge system [J]. Water Res, 2010, 44 (20): 5929-5938
48 Liao BQ, Allen DG, Droppo IG, Leppard GG, Liss SN. Surface properties of sludge and their role in bioflocculation and settleability [J]. Water Res, 2001, 35 (2): 339-350
49 Zhong C, Wang YQ, Li YC, Lv JP, Hao W, Zhu JR. The characteristic and comparison of denitrification potential in granular sequence batch reactor under different mixing conditions [J]. Chem Eng J, 2014, 240: 589-594
50 Wan JF, Sperandio M. Possible role of denitrification on aerobic granular sludge formation in sequencing batch reactor [J]. Chemosphere, 2009, 75 (2): 220-227
51 Aqeel H, Basuvaraj M, Hall M, Neufeld JD, Liss SN. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage [J]. Appl Microbiol Biotechnol, 2016, 100 (1): 447-460
52 Figueroa M, Val Del Río A, Campos JL, Méndez R, Mosquera-Corral A. Filamentous bacteria existence in aerobic granular reactors [J]. Bioproc Biosyst Eng, 2015, 38 (5): 841-851
53 Martins AMP, Pagilla K, Heijnen JJ, van Loosdrecht MCM. Filamentous bulking sludge—a critical review [J]. Water Res, 2004, 38 (4): 793-817
54 Adav SS, Lee DJ, Lai JY. Potential cause of aerobic granular sludge breakdown at high organic loading rates [J]. Appl Microbiol Biotechnol, 2010, 85 (5): 1601-1610
55 Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review [J]. Biotechnol Adv, 2010, 28 (6): 882-894
56 Adav SS, Lee DJ. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure [J]. J Hazard Mater, 2008, 154 (1-3): 1120-1126
57 Seviour T, Derlon N, Dueholm MS, Flemming H, Girbal-Neuhauser E, Horn H, Kjelleberg S, van Loosdrecht MCM, Lotti T, Malpei MF, Nerenberg R, Neu TR, Paul E, Yu H, Lin Y. Extracellular polymeric substances of biofilms: suffering from an identity crisis [J]. Water Res, 2019, 151: 1-7
58 Zhu L, Lü ML, Dai X, Yu YW, Qi HY, Xu XY. Role and significance of extracellular polymeric substances on the property of aerobic granule [J]. Bioresour Technol, 2012, 107: 46-54
59 Chen H, Li A, Cui CW, Ma F, Cui D, Zhao HP, Wang QL, Ni BJ, Yang JX. AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading [J]. Environ Int, 2019, 130: 104946
60 Lin YM, de Kreuk MK, van Loosdrecht MCM, Adin A. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant [J]. Water Res, 2010, 44 (11): 3355-3364
61 Seviour T, Lambert LK, Pijuan M, Yuan ZG. Structural determination of a key exopolysaccharide in mixed culture aerobic sludge granules using NMR spectroscopy [J]. Environ Sci Technol, 2010, 44 (23): 8964-8970
62 Zhang LL, Feng XX, Zhu NW, Chen JM. Role of extracellular protein in the formation and stability of aerobic granules [J]. Enzyme Microbiol Technol, 2007, 41 (5): 551-557
63 McSwain BS, Irvine RL, Hausner M, Wilderer PA. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge [J]. Appl Microbiol Biotechnol, 2005, 71 (2): 1051-1057
64 Chen H, Zhou SG, Li TH. Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge [J]. Environ Technol, 2010, 31 (14): 1601-1612
65 Wu D, Zhang ZM, Yu ZD, Zhu L. Optimization of F/M ratio for stability of aerobic granular process via quantitative sludge discharge [J]. Bioresour Technol, 2018, 252: 150-156
66 Zhang ZM, Qiu JX, Xiang RH, Yu HT, Xu XY, Zhu L. Organic loading rate (OLR) regulation for enhancement of aerobic sludge granulation: role of key microorganism and their function [J]. Sci Total Environ, 2019, 653: 630-637
67 Zhang ZM, Yu ZD, Zhu L, Yu HT, Dai X, Xu XY, Alvarez PJJ. Gradient reduced aeration in an enhanced aerobic granular sludge process optimizes the dominant microbial community and its function [J]. Environ Sci-Water Res Technol, 2018, 4 (5): 680-688
68 McSwain BS, Irvine RL, Wilderer PA. The influence of settling time on the formation of aerobic granules [J]. Water Sci Technol, 2004, 50 (10): 195-202
69 Lv Y, Wan CL, Lee DJ, Liu X, Tay JH. Microbial communities of aerobic granules: granulation mechanisms [J]. Bioresour Technol, 2014, 169: 344-351
70 Tan CH, Koh KS, Xie C, Tay M, Zhou Y, Williams R, Ng WJ, Rice SA, Kjelleberg S. The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules [J]. ISME J, 2014, 8 (6): 1186-1197
71 Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR. Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways [J]. Chem Rev, 2011, 111 (1): 28-67
72 Feng HJ, Ding YC, Wang MZ, Zhou GL, Zheng X, He HZ, Zhang XQ, Shen DS, Shentu JL. Where are signal molecules likely to be located in anaerobic granular sludge? [J]. Water Res, 2014, 50: 1-9
73 Gao J, Duan Y, Liu Y, Zhuang XL, Liu YC, Bai ZH, Ma WL, Zhuang GQ. Long- and short-chain AHLs affect AOA and AOB microbial community composition and ammonia oxidation rate in activated sludge [J]. J Environ Sci, 2019, 78: 53-62
74 Lin HJ, Zhang MJ, Wang FY, Meng FG, Liao BQ, Hong HC, Chen JR, Gao WJ. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies [J]. J membr Sci, 2014, 460: 110-125
75 Sun S, Liu X, Ma B, Wan C, Lee DJ. The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy [J]. Bioresour Technol, 2016, 201: 58-64
76 Jiang B, Liu Y. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication [J]. Appl Microbiol Biotechnol, 2013, 97 (11): 5105-5112
77 Zhang ZM, Cao RJ, Jin LN, Zhu WT, Ji YT, Xu XY, Zhu L. The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge [J]. Sci Total Environ, 2019, 673: 83-91
78 Ding YC, Feng HJ, Huang WK, Shen DS, Wang MZ. A sustainable method for effective regulation of anaerobic granular sludge: artificially increasing the concentration of signal molecules by cultivating a secreting strain [J]. Bioresour Technol, 2015, 196: 273-278
79 Gao M, Liu YJ, Liu Z, Li HT, Zhang AN. Strengthening of aerobic sludge granulation by the endogenous acylated homoserine lactones-secreting strain Aeromonas sp. A-L3 [J]. Biochem Eng J, 2019, 151: 107329
80 Li YS, Pan XR, Cao JS, Song XN, Fang F, Tong ZH, Li WW, Yu HQ. Augmentation of acyl homoserine lactones-producing and -quenching bacterium into activated sludge for its granulation [J]. Water Res, 2017, 125: 309-317
81 Zhang B, Li W, Guo Y, Zhang ZQ, Shi WX, Cui FY, Lens PNL, Tay JH. A sustainable strategy for effective regulation of aerobic granulation: augmentation of the signaling molecule content by cultivating AHL-producing strains [J]. Water Res, 2020, 169: 115193
82 Zhang ZM, Yu ZD, Wang ZH, Ma K, Xu XY, Alvarezc PJJ, Zhu L. Understanding of aerobic sludge granulation enhanced by sludge retention time in the aspect of quorum sensing [J]. Bioresour Technol, 2019, 272: 226-234
83 Huang JH, Yi KX, Zeng GM, Shi YH, Gu YL, Shi LX, Yu HB. The role of quorum sensing in granular sludge: impact and future application: a review [J]. Chemosphere, 2019, 236: 124310
84 Czajkowski R, Jafra S. Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules [J]. Acta Biochim Pol, 2009, 56 (1): 1-16
85 Burton EO, Read HW, Pellitteri MC, Hickey WJ. Identification of Acyl-homoserine lactone signal molecules produced by Nitrosomonas europaea strain schmidt [J]. Appl Environ Microbiol, 2005, 71: 4906-4909
86 Hao W, Li YC, Lü JP, Chen LS, Zhu JR. The biological effect of metal ions on the granulation of aerobic granular activated sludge [J]. J Environ Sci, 2016, 44: 252-259
87 Jiang HL, Tay JH, Liu Y, Tay ST. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors [J]. Biotechnol Lett, 2003, 25 (2): 95-99
88 Li XM, Liu QQ, Yang Q, Guo L, Zeng GM, Hu JM, Zheng W. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation [J]. Bioresour Technol, 2009, 100 (1): 64-67
89 Seviour T, Yuan ZG, van Loosdrecht MCM, Lin YM. Aerobic sludge granulation: a tale of two polysaccharides? [J]. Water Res, 2012, 46 (15): 4803-4813
90 Zhang ZM, Ji YT, Cao RJ, Yu ZD, Xu XY, Zhu L. A novel mode of air recycling favored stable operation of the aerobic granular sludge process via calcium accumulation [J]. Chem Eng J, 2019, 371: 600-608
91 Juang YC, Adav SS, Lee DJ, Tay JH. Stable aerobic granules for continuous-flow reactors: precipitating calcium and iron salts in granular interiors [J]. Bioresour Technol, 2010, 101 (21): 8051-8057
92 Lee DJ, Chen YY. Magnesium carbonate precipitate strengthened aerobic granules [J]. Bioresour Technol, 2015, 183: 136-140
93 Ren TT, Liu L, Sheng GP, Liu XW, Yu HQ, Zhang MC, Zhu JR. Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity [J]. Water Res, 2008, 42 (13): 3343-3352
94 Lettinga G, Velsen VAFM, Hobma SW, Zeeuw DWJ, Klapwijk A. Use of the Upflow Sludge Blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment [J]. Biotechnol Bioeng, 1980, 22 (4): 699-734
95 Wang GW, WangD, Xu X C, Yang FL. Partial nitrifying granule stimulated by struvite carrier in treating pharmaceutical wastewater [J]. Appl Microbiol Biotechnol, 2013, 97 (19): 8757-8765
96 Ren XM, Guo L, Chen Y, She ZL, Gao MC, Zhao YG, Shao MY. Effect of magnet powder (Fe3O4) on Aerobic Granular Sludge (AGS) formation and microbial community structure characteristics [J]. ACS Sustain Chem Eng, 2018, 6 (8): 9707-9715
97 Liu Z, Liu YJ, Zhang AN, Zhang C, Wang XC. Study on the process of aerobic granule sludge rapid formation by using the poly aluminum chloride (PAC) [J]. Chem Eng J, 2014, 250: 319-325
98 Zhang DJ, Li W, Hou C, Shen JY, Jiang XB, Sun XY, Li JS, Han WQ, Wang LJ, Liu XD. Aerobic granulation accelerated by biochar for the treatment of refractory wastewater [J]. Chem Eng J, 2017, 314: 88-97
99 Zhou JH, Zhao H, Hu M, Yu HT, Xu XY, Vidonish J, Alvarez PJJ, Zhu L. Granular activated carbon as nucleating agent for aerobic sludge granulation: effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behavior [J]. Bioresour Technol, 2015, 198: 358-363
100 Song ZW, Pan YJ, Zhang K, Ren NQ, Wang AJ. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge [J]. J Environ Sci-Chin, 2010, 22 (9): 1312-1318
101 Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, van Loosdrecht MCM, Ahmad A, Nawahwi MZ. Development of granular sludge for textile wastewater treatment [J]. Water Res, 2010, 44 (15): 4341-4350
102 Pijuan M, Werner U, Yuan ZG. Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules [J]. Water Res, 2011, 45 (16): 5075-5083
103 Long B, Yang CZ, Pu WH, Yang JK, Jiang GS, Dan JF, Li CY, Liu FB. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor [J]. Bioresour Technol, 2014, 166: 57-63
104 Wang XH, Zhang HM, Yang FL, Wang YF, Gao MM. Long-term storage and subsequent reactivation of aerobic granules [J]. Bioresour Technol, 2008, 99: 8304-8309
105 Liu J, Li J, Xu D, Sellamuthu B. Improving aerobic sludge granulation in sequential batch reactor by natural drying: effluent sludge recovery and feeding back into reactor [J]. Chemosphere, 2020, 242: 125159
106 Xu HC, He PJ, Wang GZ, Shao LM. Effects of activated sludge flocs and pellets seeds on aerobic granule properties [J]. J Environ Sci, 2011, 23 (4): 537-544
107 Winkler MH, Meunier C, Henriet O, Mahillon J, Suárez-Ojeda ME, Del Moro G, De Sanctis M, Di Iaconi C, Weissbrodt DG. An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater [J]. Chem Eng J, 2018, 336: 489-502
108 湛含辉, 钟乐. 二次流场促进颗粒污泥成型的研究[J]. 环境工程, 2009, 27: 205-208 [Zhan HH, Zhong L. Research of secondary flow promoting sludge granulartion in SSBR [J]. Environ Eng, 2009, 27: 205-208]
109 Juang Y, Adav SS, Lee DJ, Tay JH. Stable aerobic granules for continuous-flow reactors: precipitating calcium and iron salts in granular interiors [J]. Bioresour Technol, 2010, 101 (21): 8051-8057
110 闻香兰, 但昭和. 好氧颗粒污泥的连续化研究进展[J]. 化工进展, 2015, 11: 4059-4064 [Wen XL, Dan ZH. Advances in continuity of aerobic granular sludge [J]. Chem Ind Eng Prog, 2015, 11: 4059-4064]
111 黄全江, 王三反, 吴楠, 贺辉, 于文统, 丛林. 连续流态下好氧颗粒污泥技术的研究进展[J]. 化学与生物工程, 2016, 33 (9): 12-14+22 [Huang QJ, Wang SF, Wu N, He H, Yu WT, Cong L. Research progress on aerobic granular sludge technology under continuous-flow condition [J]. Chem Bioeng, 2016, 33 (9): 12-14+ 22]
112 Juang YC, Adav SS, Lee DJ, Tay JH. Stable aerobic granules for continuous-flow reactors: precipitating calcium and iron salts in granular interiors [J]. Bioresour Technol, 2010, 101 (21): 8051-8057
113 Li S, Li D, Wang YQ, Zeng HP, Yuan YX, Zhang J. Startup and stable operation of advanced continuous flow reactor and the changes of microbial communities in aerobic granular sludge [J]. Chemosphere, 2020, 243: 125434
114 Zou JT, Tao YQ, Li J, Wu SY, Ni YJ. Cultivating aerobic granular sludge in a developed continuous-flow reactor with two-zone sedimentation tank treating real and low-strength wastewater [J]. Bioresour Technol, 2018, 247: 776-783
115 Li J, Cai A, Ding LB, Sellamuthu B, Perreault J. Aerobic sludge granulation in a Reverse Flow Baffled Reactor (RFBR) operated in continuous-flow mode for wastewater treatment [J]. Sep Purif Technol, 2015, 149: 437-444
116 Dangcong P, Bernet N, Delgenes JP, Moletta R. Aerobic granular sludge—a case report [J]. Water Res, 1999: 33 (3): 890-893
117 Liu YQ, Tay JH. Variable aeration in sequencing batch reactor with aerobic granular sludge [J]. J Biotechnol, 2006, 124 (2): 338-346
118 Wan CL, Yang X, Lee DJ, Zhang QL, Li JN, Liu X. Formation of filamentous aerobic granules: role of pH and mechanism [J]. Appl Microbiol Biotechnol, 2014, 98 (19): 8389-8397
119 Yang SF, Li XY, Yu HQ. Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions [J]. Proc Biochem, 2008, 43 (1): 8-14
120 Jiang Y, Yang K, Shang Y, Zhang HN, Wei L, Wang HY. Response and recovery of aerobic granular sludge to pH shock for simultaneous removal of aniline and nitrogen [J]. Chemosphere, 2019, 221: 366-374
121 Oehmen A, Teresa Vives M, Lu HB, Yuan ZG, Keller J. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms [J]. Water Res, 2005, 39 (15): 3727-3737
122 Adav SS, Lee DJ, Show KY, Tay JH. Aerobic granular sludge: Recent advances [J]. Biotechnol Adv, 2008, 26 (5): 411-423
123 Henze M. Wastewater treatment: biological and chemical processes [J]. Prog Colloid Polym Sci, 2002, 49 (6): 747–752
124 Lopez-Vazquez CM, Hooijmans CM, Brdjanovic D, Gijzen HJ, van Loosdrecht MCM. Temperature effects on glycogen accumulating organisms [J]. Water Res, 2009, 43 (11): 2852-2864
125 de Kreuk MK, Pronk M, van Loosdrecht MCM. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures [J]. Water Res, 2005, 39 (18): 4476-4484
126 Moy BY, Tay JH, Toh SK, Liu Y, Tay ST. High organic loading influences the physical characteristics of aerobic sludge granules [J]. Lett Appl Microbiol, 2002, 34 (6): 407-412
127 Lopez-Palau S, Dosta J, Mata-Alvarez J. Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater [J]. Water Sci Technol, 2009, 60 (4): 1049-1054
128 Chen Y, Jiang W, Liang DT, Tay JH. Aerobic granulation under the combined hydraulic and loading selection pressures [J]. Bioresour Technol, 2008, 99 (16): 7444-7449
129 Jiang HL, Tay JH, Tay STL. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading [J]. Appl Microbiol Biotechnol, 2004, 63 (5): 602-608
130 Dai YJ, Jiang YX, Su HJ. Influence of an aniline supplement on the stability of aerobic granular?sludge [J]. J Environ Manage, 2015, 162: 115-122
131 Sun XF, Wang SG, Liu XW, Gong WX, Bao N, Gao BY, Zhang HY. Biosorption of Malachite Green from aqueous solutions onto aerobic granules: kinetic and equilibrium studies [J]. Bioresour Technol, 2008, 99 (9): 3475-3483
132 Ramos C, Suárez-Ojeda ME, Carrera J. Long-term performance and stability of a continuous granular airlift reactor treating a high-strength wastewater containing a mixture of aromatic compounds [J]. J Hazard Mater, 2016, 303: 154-161
133 Zhu L, Xu XY, Luo WG, Cao DF, Yang YN. Formation and microbial community analysis of chloroanilines-degrading aerobic granules in the sequencing airlift bioreactor [J]. J Appl Microbiol, 2008, 104 (1): 152-160
134 Carucci A, Milia S, De Gioannis G, Piredda M. Acetate-fed aerobic granular sludge for the degradation of 4-chlorophenol [J]. J Hazard Mater, 2009, 166 (1): 483-490
135 Yi S, Zhuang WQ, Wu B, Tay ST, Tay JH. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor [J]. Environ Sci Technol, 2006, 40 (7): 2396-2401
136 Zhuang W, Tay J, Yi S, Tay ST. Microbial adaptation to biodegradation of tert-butyl alcohol in a sequencing batch reactor [J]. J Biotechnol, 2005, 118 (1): 45-53
137 Maszenan AM, Liu Y, Ng WJ. Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules [J]. Biotechnol Adv, 2011, 29 (1): 111-123
138 王硕, 于水利, 徐巧, 付强, 李激. 好氧颗粒污泥特性、应用及形成机理研究进展[J]. 应用与环境生物学报, 2014, 20 (4): 732-742 [Wang S, Yu SL, Xu Q, Fu Q, Li J. Characteristics, application and formation mechanisms of aerobic granular sludge: recent advances [J]. Chin J Appl Environ Biol, 2014, 20 (4): 732-742]
139 Yao L, Ye ZF, Tong MP, Lai P, Ni JR. Removal of Cr3+ from aqueous solution by biosorption with aerobic granules [J]. J Hazard Mater, 2009, 165 (1-3): 250-255
140 Liu Y, Xu H, Yang SF, Tay JH. A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules [J]. J Biotechnol, 2003, 102 (3): 233-239
141 Wang XH, Gai LH, Sun XF, Xie HJ, Gao MM, Wang SG Effects of long-term addition of Cu (II) and Ni (II) on the biochemical properties of aerobic granules in sequencing batch reactors [J]. Appl Microbiol Biotechnol, 2010, 86 (6): 1967-1975
142 Zhang ZM, Yu ZD, Dong JJ, Wang ZH, Ma K, Xu XY, Alvarezc P JJ, Zhu L. Stability of aerobic granular sludge under condition of low influent C/N ratio: correlation of sludge property and functional microorganism [J]. Bioresour Technol, 2018, 270: 391-399
143 Ni BJ, Xie WM, Liu SG, Yu HQ, Wang YZ, Wang G, Dai XL. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater [J]. Water Res, 2009, 43 (3): 751-761
144 袁强军, 张宏星, 陈芳媛. 不同低碳氮比废水中好氧颗粒污泥的长期运行稳定性[J]. 环境科学, 2020, 41 (10): 4661-4668 [Yuan QJ, Zhang HX, Chen FY. Long-term stability of aerobic granular sludge under low carbon to nitrogen ratio [J]. Environ Sci, 2020, 41 (10): 4661-4668]
145 Luo J, Hao T, Wei L, Mackey HR, Lin Z, Chen G. Impact of influent COD/N ratio on disintegration of aerobic granular sludge [J]. Water Res, 2014, 62: 127-135
146 Liu YQ, Moy BY, Tay JH. COD removal and nitrification of low-strength domestic wastewater in aerobic granular sludge sequencing batch reactors [J]. Enzyme Microbiol Technol, 2007, 42 (1): 23-28
147 Kang AJ, Yuan QY. Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads [J]. Bioresour Technol, 2017, 234: 336-342
148 Quijano G, Arcila J S, Buitrón G. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment [J]. Biotechnol Adv, 2017, 35 (6): 772-781
149 De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W. The basics of bio-flocs technology: the added value for aquaculture [J]. Aquaculture, 2008, 277 (3-4): 125-137
150 Arcila JS, Buitrón G. Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment [J]. Algal Res, 2017, 27: 190-197
151 Tang CC, Zuo W, Tian Y, Sun N, Wang ZW, Zhang J. Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors [J]. Bioresour Technol, 2016, 222: 156-164
152 Ahmad JSM, Cai W, Zhao ZW, Zhang ZY, Shimizu K, Lei ZF, Lee DJ. Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater [J]. Bioresour Technol, 2017, 244: 225-233
153 de Graaff DR, van Loosdrecht MCM, Pronk M. Stable granulation of seawater-adapted aerobic granular sludge with filamentous Thiothrix bacteria [J]. Water Res, 2020, 175: 115683
154 Li ZH, Zhang T, Li N, Wang XC. Granulation of filamentous microorganisms in a sequencing batch reactor with saline wastewater [J]. J Environ Sci, 2010, 22 (1): 62-67

相似文献/References:

[1]李军,** 周延年 何梅 王亚宜 韦苏.城市污水处理厂好氧颗粒污泥的特性*[J].应用与环境生物学报,2008,14(05):640.
[2]陈国科,黄钧,毕京芳,等.好氧颗粒污泥耐受高碳氮负荷过程中的群体感应[J].应用与环境生物学报,2014,20(01):73.[doi:10.3724/SP.J.1145.2014.00073]
 CHEN Guoke,HUANG Jun,BI Jingfang,et al.Quorum sensing of aerobic granular sludge tolerating high carbon and nitrogen loads[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):73.[doi:10.3724/SP.J.1145.2014.00073]
[3]王硕,于水利,徐巧,等.好氧颗粒污泥特性、应用及形成机理研究进展[J].应用与环境生物学报,2014,20(04):732.[doi:10.3724/SP.J.1145.2014.01009]
 WANG Shuo,YU Shuili,XU Qiao,et al.Characteristics, application and formation mechanisms of aerobic granular sludge: recent advances[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):732.[doi:10.3724/SP.J.1145.2014.01009]
[4]关梦龙,黄钧,毕京芳,等.好氧颗粒污泥代谢高浓度有机废水的数学模拟[J].应用与环境生物学报,2014,20(06):1063.[doi:10.3724/SP.J.1145.2014.04005]
 GUAN Menglong,HUANG Jun,BI Jingfang,et al.Mathematical simulation of aerobic granular sludge metabolizing high-concentration organic wastewater[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):1063.[doi:10.3724/SP.J.1145.2014.04005]
[5]董晶晶,吴迪,马柯,等.好氧颗粒污泥工艺强化脱氮研究进展[J].应用与环境生物学报,2018,24(01):177.[doi:10.19675/j.cnki.1006-687x.2017.02008]
 DONG Jingjing,WU Di,MA Ke,et al.Review on enhanced denitrification of aerobic granular sludge technology[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):177.[doi:10.19675/j.cnki.1006-687x.2017.02008]
[6]冯殿宝,王维红,王燕杉,等.以黏土为载体的好氧颗粒污泥培养及其对番茄废水的处理[J].应用与环境生物学报,2019,25(01):199.[doi:10.19675/j.cnki.1006-687x.2018.03033]
 FENG Dianbao,WANG Weihong**,WANG Yanshan & SU Kuizu.Clay-cultured aerobic granular sludge and its use in the treatment of tomato-paste processing wastewater[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):199.[doi:10.19675/j.cnki.1006-687x.2018.03033]

更新日期/Last Update: 2021-12-25