1 Gangappa SN, Botto JF. The BBX family of plant transcription factors [J]. Trends Plant Sci, 2014, 19 (7): 460-470 2 Xu D, Jiang Y, Li J, Lin F, Holm M, Deng XW. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation [J]. PNAS, 2016, 113 (27): 7655-7660 3 Xu D, Jiang Y, Li J, Holm M, Deng XW. The B-Box domain protein BBX21 promotes photomorphogenesis [J]. Plant Physiol, 2018, 176 (3): 2365-2375 4 Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. Two B-Box proteins regulate photomorphogenesis by oppositely modulating HY5 through their diverse C-terminal domains [J]. Plant Physiol, 2018, 176 (4): 2963-2976 5 Heng Y, Lin F, Jiang Y, Ding M, Yan T, Lan H, Zhou H, Zhao X, Xu D, Deng XW. B-Box containing proteins BBX30 and BBX31, acting downstream of HY5, negatively regulate photomorphogenesis in Arabidopsis [J]. Plant Physiol, 2019, 180 (1): 497-508 6 Bai S, Tao R, Yin L, Ni J, Yang Q, Yan X, Yang F, Guo X, Li H, Teng Y. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit [J]. Plant J, 2019, 100 (6): 1208-1223 7 Gangappa SN, Crocco CD, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto JF. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis [J]. Plant Cell, 2013, 25 (4): 1243-1257 8 Bai S, Tao R, Tang Y, Yin L, Ma Y, Ni J, Yan X, Yang Q, Wu Z, Zeng Y, Teng Y. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear [J]. Plant Biotechnol J, 2019, 17 (10): 1985-1997 9 Griffiths S, Dunford RP, Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis [J]. Plant Physiol, 2003, 131 (4): 1855-1867 10 Xu Y, Zhao X, Aiwaili P, Mu X, Zhao M, Zhao J, Cheng L, Ma C, Gao J, Hong B. A zinc finger protein BBX19 interacts with ABF3 to negatively affect drought tolerance in chrysanthemum [J]. Plant J, 2020, https://doi.org/10.1111/tpj.14863 11 Liu Y, Chen H, Ping Q, Zhang Z, Guan Z, Fang W, Chen S, Chen F, Jiang J, Zhang F. The heterologous expression of CmBBX22 delays leaf senescence and improves drought tolerance in Arabidopsis [J]. Plant Cell Rep, 2019, 38 (1): 15-24 12 Wei H, Wang P, Chen J, Li C, Wang Y, Yuan Y, Fang J, Leng X. Genome-wide identification and analysis of B-BOX gene family in grapevine reveal its potential functions in berry development [J]. BMC Plant Biol, 2020, 20 (1): 72 13 Shalmani A, Jing XQ, Shi Y, Muhammad I, Zhou MR, Wei XY, Chen QQ, Li WQ, Liu WT, Chen KM. Characterization of B-BOX gene family and their expression profiles under hormonal, abiotic and metal stresses in Poaceae plants [J]. BMC Genomics, 2019, 20 (1): 27 14 Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. PNAS, 2018, 115 (18): 4151-4158 15 郭永春, 王鹏杰, 陈笛, 郑玉成, 陈雪津, 叶乃兴, 茶树SRO基因家族的鉴定及表达分析[J]. 茶叶科学, 2019. 39 (4): 392-402 [Guo YC, Wang PJ, Chen D, Zheng YC, Chen XJ, Ye NX. Genome-wide identification and expression analysis of SRO gene family in Camellia sinensis [J]. J Tea Sci, 2019, 39 (4): 392-402] 16 Xia EH, Li FD, Tong W, Li PH, Wu Q, Zhao HJ, Ge RH, Li RP, Li YY, Zhang ZZ, Wei CL, Wan XC. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant [J]. Plant Biotechnol J, 2019, 10: 1938-1953 17 Huang J, Zhao X, Weng X, Wang L, Xie W. The rice B-box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis [J]. PLoS ONE, 2012, 7 (10): e48242 18 Talar U, Kie?bowicz-Matuk A, Czarnecka J, Rorat T. Genome-wide survey of B-box proteins in potato (Solanum tuberosum)-Identification, characterization and expression patterns during diurnal cycle, etiolation and de-etiolation [J]. PLoS ONE, 2017, 12 (5): e0177471 19 Chu Z, Wang X, Li Y, Yu H, Li J, Lu Y, Li H, Ouyang B. Genomic organization, phylogenetic and expression analysis of the B-BOX gene family in tomato [J]. Front Plant Sci, 2016, 7: 1552 20 杨宁, 从青, 王晓荣, 倪晓祥, 程龙军. 巨桉EgrBBX基因家族鉴定及其在非生物逆境处理下的表达分析[J]. 农业生物技术学报, 2020, 28 (4): 658-671 [Yang N, Cong Q, Wang XR, Ni XX, Cheng LJ. Identification of EgrBBX gene family and its expression analysis under abiotic stress in Eucalyptus grandis [J].J Agric Biotechnol, 2020, 28 (4): 658-671] 21 Liu X, Li R, Dai Y, Chen X, Wang X. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome [J]. Mol Genet Genomics, 2018, 293 (2): 303-315 22 Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis [J]. Planta, 2014, 240 (5): 1051-1062 23 Ou C, Zhang X, Wang F, Zhang L, Zhang Y, Fang M, Wang J, Wang J, Jiang S, Zhang Z. A 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of “Zaosu Red” pear (Pyrus pyrifolia White Pear Group): a deletion in the PpBBX24 gene is associated with the red skin of pear [J]. Hort Res, 2020, 7 (1): 39 24 Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey PC, O’Sullivan DM. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae [J]. PLoS ONE, 2012, 7 (9): e45307 25 Imtiaz M, Yang Y, Liu R, Xu Y, Khan MA, Wei Q, Gao J, Hong B. Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis [J]. Plant Mol Biol, 2015, 89 (1-2): 1-19 26 Kang X, Xu G, Lee B, Chen C, Zhang H, Kuang R, Ni M. HRB2 and BBX21 interaction modulates Arabidopsis ABI5 locus and stomatal aperture [J]. Plant Cell Environ, 2018, 41 (8): 1912-1925 27 Zhang H, Zhang Q, Zhai H, Gao S, Yang L, Wang Z, Xu Y, Huo J, Ren Z, Zhao N, Wang X, Li J, Liu Q, He S. IbBBX24 promotesthe jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato [J]. Plant Cell, 2020, 32 (4): 1102-1123
[1]黄安平,韩宝瑜,包小村.茶刺蛾危害后茶树挥发性有机化合物释放变化[J].应用与环境生物学报,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
HUANG Anping,HAN Baoyu,BAO Xiaocun.Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
[2]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):480.[doi:10.3724/SP.J.1145.2015.09019]
[3]孙平,章国营,向萍,等.茶树中莽草酸途径DHD/SDH基因的表达调控[J].应用与环境生物学报,2018,24(02):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
SUN Ping,ZHANG Guoying,XIANG Ping,et al.Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
[4]王海斌,陈晓婷,丁力,等.不同树龄茶树根际土壤细菌多样性的T-RFLP分析[J].应用与环境生物学报,2018,24(04):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
WANG Haibin,**,CHEN Xiaoting,et al.Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
[5]郭玉琼,黄道斌,常笑君,等.铁观音茶树体胚发生及其内源激素变化[J].应用与环境生物学报,2018,24(04):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
GUO Yuqiong,HUANG Daobin,CHANG Xiaojun,et al.Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
[6]郭玉琼,王仲,朱晨,等.茶树CSD1基因及其启动子克隆与低温胁迫下的表达[J].应用与环境生物学报,2018,24(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
GUO Yuqiong,WANG Zhong,ZHU Chen,et al.Cloning and expression of the copper/zinc-superoxide dismutase 1 gene and its promoter under low temperature stress in Camellia sinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
[7]岳川,曹红利,王赞,等.茶树RING-finger型E3泛素连接酶基因CsSDIR的克隆与表达[J].应用与环境生物学报,2018,24(06):1375.[doi:10.19675/j.cnki.1006-687x.2018.09010]
YUE Chuan,et al..Cloning and expression of RING-finger E3 ubiquitin ligase CsSDIR1 gene in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1375.[doi:10.19675/j.cnki.1006-687x.2018.09010]
[8]王海斌,陈晓婷,丁力,等.福建省安溪县茶园土壤酸化对茶树产量及品质的影响[J].应用与环境生物学报,2018,24(06):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
WANG Haibin,et al..Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian Province[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
[9]郑世仲,江胜滔,陈美霞,等.茶树Ankyrin基因启动子的克隆及其5′UTR内含子功能[J].应用与环境生物学报,2019,25(06):1381.[doi:10.19675/j.cnki.1006-687x.2019.05011]
ZHENG Shizhong,JIANG Shengtao,et al.Isolation of the Ankyrin gene promoter from tea plant (Camellia sinensis L.) and a subsequent analysis of the function of its 5′UTR intron[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1381.[doi:10.19675/j.cnki.1006-687x.2019.05011]
[10]项丽慧,陈林,余文权,等.茶树GH1基因家族鉴定及其在茶鲜叶萎凋过程的表达[J].应用与环境生物学报,2020,26(04):878.
XIANG Lihui,CHEN Lin,YU Wenquan & ZHANG Yinggen.Identification of the GH1 gene family in Camellia sinensis and expression analysis during the withering process of fresh tea leaves[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):878.