|本期目录/Table of Contents|

[1]叶一隽,李佳敏,曹红利,等.茶树CsBBX基因家族的鉴定与表达[J].应用与环境生物学报,2020,26(06):1508-1516.[doi:DOI: 10.19675/j.cnki.1006-687x.2020.07003]
 YE Yijun,LI Jiamin,CAO Hongli,et al.Identification and expression analysis of the CsBBX gene family in tea plants[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1508-1516.[doi:DOI: 10.19675/j.cnki.1006-687x.2020.07003]
点击复制

茶树CsBBX基因家族的鉴定与表达()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年06期
页码:
1508-1516
栏目:
研究论文
出版日期:
2020-12-25

文章信息/Info

Title:
Identification and expression analysis of the CsBBX gene family in tea plants
作者:
叶一隽李佳敏曹红利李远华岳川
1福建农林大学园艺学院/茶学福建省高校重点实验室 福州 350002 2武夷学院茶与食品学院 武夷山 354300
Author(s):
YE Yijun1 LI Jiamin1 CAO Hongli1 LI Yuanhua2 & YUE Chuan1?
1 College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China 2 College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
关键词:
茶树BBX基因家族锌指蛋白逆境胁迫基因表达
Keywords:
tea plant BBX gene family zinc finger protein abiotic stress gene expression
DOI:
DOI: 10.19675/j.cnki.1006-687x.2020.07003
摘要:
锌指蛋白是一类含有“手指状”结构域的蛋白质,其中B-BOX(BBX)蛋白在植物的生长发育及逆境胁迫响应中具有重要的作用. 利用生物信息学方法,从茶树基因组中鉴定出31个CsBBX基因,全面分析其生物信息学特征,同时分析它们在干旱、盐胁迫和MeJA处理中的转录组数据. 结果显示,CsBBX基因大小差异较大,开放阅读框在324-1 746 bp之间,编码氨基酸长在107-581 aa之间. CsBBX的编码蛋白序列中含有保守的BOX1(B1)、BOX2(B2)和CCT结构域,可以分为B1B2+CCT(I和II)、B1+CCT(III)、B1+B2(IV)和B1(V)等5种类型. 启动子顺式作用元件预测显示,CsBBX基因启动子中含有多种光响应元件,同时还富含多种与植物生长发育及逆境胁迫响应相关的顺式作用元件. CsBBX基因在叶片组织中具有较高的表达水平,且部分基因随着叶片成熟度的增加转录水平升高. 干旱和盐胁迫条件下,大部分CsBBX基因的表达受抑制,而部分基因被诱导表达;大部分CsBBX基因的表达受MeJA诱导. 因此推测CsBBX基因在茶树生长发育及抗逆响应中发挥了重要的功能. (图8 表1 参27)
Abstract:
Zinc finger proteins are a type of protein with finger-like domains. B-BOX (BBX) proteins play an important role in plant growth, development, and stress response. In this study, thirty-one CsBBX genes were identified from the tea plant genome using bioinformatic methods, and their characteristics and expression patterns were subsequently investigated. Our results showed that the CsBBX genes exhibited large differences in sequence size, with open reading frames between 324 and 1 746 bp, and coding amino acid lengths between 107 and 581 AA. The encoded protein sequences contained conserved BOX1 (B1), BOX2 (B2), and CCT domains. These proteins could, thus, be classified into the following five groups: B1B2+CCT (I and II), B1+CCT (III), B1+B2 (IV), and B1 (V). Promoter cis-acting element prediction showed that CsBBX genes not only contain a variety of light-responding elements, but are also enriched in various cis-elements associated with plant growth, development, and stress responses. CsBBX genes had a high expression level in leaf tissues, and the transcription levels of several genes increased with leaf maturity. Additionally, the expression of most CsBBX genes was repressed under drought conditions and in response to salt treatments, although several genes were upregulated. CsBBX genes were mainly induced by MeJA treatment. Our results indicated that CsBBX genes are involved in tea plant growth, development, and stress response.

参考文献/References:

1 Gangappa SN, Botto JF. The BBX family of plant transcription factors [J]. Trends Plant Sci, 2014, 19 (7): 460-470
2 Xu D, Jiang Y, Li J, Lin F, Holm M, Deng XW. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation [J]. PNAS, 2016, 113 (27): 7655-7660
3 Xu D, Jiang Y, Li J, Holm M, Deng XW. The B-Box domain protein BBX21 promotes photomorphogenesis [J]. Plant Physiol, 2018, 176 (3): 2365-2375
4 Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. Two B-Box proteins regulate photomorphogenesis by oppositely modulating HY5 through their diverse C-terminal domains [J]. Plant Physiol, 2018, 176 (4): 2963-2976
5 Heng Y, Lin F, Jiang Y, Ding M, Yan T, Lan H, Zhou H, Zhao X, Xu D, Deng XW. B-Box containing proteins BBX30 and BBX31, acting downstream of HY5, negatively regulate photomorphogenesis in Arabidopsis [J]. Plant Physiol, 2019, 180 (1): 497-508
6 Bai S, Tao R, Yin L, Ni J, Yang Q, Yan X, Yang F, Guo X, Li H, Teng Y. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit [J]. Plant J, 2019, 100 (6): 1208-1223
7 Gangappa SN, Crocco CD, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto JF. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis [J]. Plant Cell, 2013, 25 (4): 1243-1257
8 Bai S, Tao R, Tang Y, Yin L, Ma Y, Ni J, Yan X, Yang Q, Wu Z, Zeng Y, Teng Y. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear [J]. Plant Biotechnol J, 2019, 17 (10): 1985-1997
9 Griffiths S, Dunford RP, Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis [J]. Plant Physiol, 2003, 131 (4): 1855-1867
10 Xu Y, Zhao X, Aiwaili P, Mu X, Zhao M, Zhao J, Cheng L, Ma C, Gao J, Hong B. A zinc finger protein BBX19 interacts with ABF3 to negatively affect drought tolerance in chrysanthemum [J]. Plant J, 2020, https://doi.org/10.1111/tpj.14863
11 Liu Y, Chen H, Ping Q, Zhang Z, Guan Z, Fang W, Chen S, Chen F, Jiang J, Zhang F. The heterologous expression of CmBBX22 delays leaf senescence and improves drought tolerance in Arabidopsis [J]. Plant Cell Rep, 2019, 38 (1): 15-24
12 Wei H, Wang P, Chen J, Li C, Wang Y, Yuan Y, Fang J, Leng X. Genome-wide identification and analysis of B-BOX gene family in grapevine reveal its potential functions in berry development [J]. BMC Plant Biol, 2020, 20 (1): 72
13 Shalmani A, Jing XQ, Shi Y, Muhammad I, Zhou MR, Wei XY, Chen QQ, Li WQ, Liu WT, Chen KM. Characterization of B-BOX gene family and their expression profiles under hormonal, abiotic and metal stresses in Poaceae plants [J]. BMC Genomics, 2019, 20 (1): 27
14 Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. PNAS, 2018, 115 (18): 4151-4158
15 郭永春, 王鹏杰, 陈笛, 郑玉成, 陈雪津, 叶乃兴, 茶树SRO基因家族的鉴定及表达分析[J]. 茶叶科学, 2019. 39 (4): 392-402 [Guo YC, Wang PJ, Chen D, Zheng YC, Chen XJ, Ye NX. Genome-wide identification and expression analysis of SRO gene family in Camellia sinensis [J]. J Tea Sci, 2019, 39 (4): 392-402]
16 Xia EH, Li FD, Tong W, Li PH, Wu Q, Zhao HJ, Ge RH, Li RP, Li YY, Zhang ZZ, Wei CL, Wan XC. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant [J]. Plant Biotechnol J, 2019, 10: 1938-1953
17 Huang J, Zhao X, Weng X, Wang L, Xie W. The rice B-box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis [J]. PLoS ONE, 2012, 7 (10): e48242
18 Talar U, Kie?bowicz-Matuk A, Czarnecka J, Rorat T. Genome-wide survey of B-box proteins in potato (Solanum tuberosum)-Identification, characterization and expression patterns during diurnal cycle, etiolation and de-etiolation [J]. PLoS ONE, 2017, 12 (5): e0177471
19 Chu Z, Wang X, Li Y, Yu H, Li J, Lu Y, Li H, Ouyang B. Genomic organization, phylogenetic and expression analysis of the B-BOX gene family in tomato [J]. Front Plant Sci, 2016, 7: 1552
20 杨宁, 从青, 王晓荣, 倪晓祥, 程龙军. 巨桉EgrBBX基因家族鉴定及其在非生物逆境处理下的表达分析[J]. 农业生物技术学报, 2020, 28 (4): 658-671 [Yang N, Cong Q, Wang XR, Ni XX, Cheng LJ. Identification of EgrBBX gene family and its expression analysis under abiotic stress in Eucalyptus grandis [J].J Agric Biotechnol, 2020, 28 (4): 658-671]
21 Liu X, Li R, Dai Y, Chen X, Wang X. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome [J]. Mol Genet Genomics, 2018, 293 (2): 303-315
22 Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis [J]. Planta, 2014, 240 (5): 1051-1062
23 Ou C, Zhang X, Wang F, Zhang L, Zhang Y, Fang M, Wang J, Wang J, Jiang S, Zhang Z. A 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of “Zaosu Red” pear (Pyrus pyrifolia White Pear Group): a deletion in the PpBBX24 gene is associated with the red skin of pear [J]. Hort Res, 2020, 7 (1): 39
24 Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey PC, O’Sullivan DM. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae [J]. PLoS ONE, 2012, 7 (9): e45307
25 Imtiaz M, Yang Y, Liu R, Xu Y, Khan MA, Wei Q, Gao J, Hong B. Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis [J]. Plant Mol Biol, 2015, 89 (1-2): 1-19
26 Kang X, Xu G, Lee B, Chen C, Zhang H, Kuang R, Ni M. HRB2 and BBX21 interaction modulates Arabidopsis ABI5 locus and stomatal aperture [J]. Plant Cell Environ, 2018, 41 (8): 1912-1925
27 Zhang H, Zhang Q, Zhai H, Gao S, Yang L, Wang Z, Xu Y, Huo J, Ren Z, Zhao N, Wang X, Li J, Liu Q, He S. IbBBX24 promotesthe jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato [J]. Plant Cell, 2020, 32 (4): 1102-1123

相似文献/References:

[1]黄安平,韩宝瑜,包小村.茶刺蛾危害后茶树挥发性有机化合物释放变化[J].应用与环境生物学报,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
 HUANG Anping,HAN Baoyu,BAO Xiaocun.Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
[2]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
 WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):480.[doi:10.3724/SP.J.1145.2015.09019]
[3]孙平,章国营,向萍,等.茶树中莽草酸途径DHD/SDH基因的表达调控[J].应用与环境生物学报,2018,24(02):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
 SUN Ping,ZHANG Guoying,XIANG Ping,et al.Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
[4]王海斌,陈晓婷,丁力,等.不同树龄茶树根际土壤细菌多样性的T-RFLP分析[J].应用与环境生物学报,2018,24(04):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
 WANG Haibin,**,CHEN Xiaoting,et al.Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
[5]郭玉琼,黄道斌,常笑君,等.铁观音茶树体胚发生及其内源激素变化[J].应用与环境生物学报,2018,24(04):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
 GUO Yuqiong,HUANG Daobin,CHANG Xiaojun,et al.Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
[6]郭玉琼,王仲,朱晨,等.茶树CSD1基因及其启动子克隆与低温胁迫下的表达[J].应用与环境生物学报,2018,24(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
 GUO Yuqiong,WANG Zhong,ZHU Chen,et al.Cloning and expression of the copper/zinc-superoxide dismutase 1 gene and its promoter under low temperature stress in Camellia sinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
[7]岳川,曹红利,王赞,等.茶树RING-finger型E3泛素连接酶基因CsSDIR的克隆与表达[J].应用与环境生物学报,2018,24(06):1375.[doi:10.19675/j.cnki.1006-687x.2018.09010]
 YUE Chuan,et al..Cloning and expression of RING-finger E3 ubiquitin ligase CsSDIR1 gene in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1375.[doi:10.19675/j.cnki.1006-687x.2018.09010]
[8]王海斌,陈晓婷,丁力,等.福建省安溪县茶园土壤酸化对茶树产量及品质的影响[J].应用与环境生物学报,2018,24(06):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
 WANG Haibin,et al..Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian Province[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
[9]郑世仲,江胜滔,陈美霞,等.茶树Ankyrin基因启动子的克隆及其5′UTR内含子功能[J].应用与环境生物学报,2019,25(06):1381.[doi:10.19675/j.cnki.1006-687x.2019.05011]
 ZHENG Shizhong,JIANG Shengtao,et al.Isolation of the Ankyrin gene promoter from tea plant (Camellia sinensis L.) and a subsequent analysis of the function of its 5′UTR intron[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):1381.[doi:10.19675/j.cnki.1006-687x.2019.05011]
[10]项丽慧,陈林,余文权,等.茶树GH1基因家族鉴定及其在茶鲜叶萎凋过程的表达[J].应用与环境生物学报,2020,26(04):878.
 XIANG Lihui,CHEN Lin,YU Wenquan & ZHANG Yinggen.Identification of the GH1 gene family in Camellia sinensis and expression analysis during the withering process of fresh tea leaves[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):878.

更新日期/Last Update: 2020-12-25