|本期目录/Table of Contents|

[1]杨茂华,穆廷桢,苗得露,等.盐碱湖硫循环及嗜盐嗜碱硫功能菌研究进展[J].应用与环境生物学报,2021,27(03):786-779.[doi:10.19675/j.cnki.1006-687x.2020.06042]
 YANG Maohua,MU Tingzhen,et al.Advances in research on the sulfur cycle and haloalkaliphilic sulfur bacteria in soda lakes[J].Chinese Journal of Applied & Environmental Biology,2021,27(03):786-779.[doi:10.19675/j.cnki.1006-687x.2020.06042]
点击复制

盐碱湖硫循环及嗜盐嗜碱硫功能菌研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年03期
页码:
786-779
栏目:
综述
出版日期:
2021-06-25

文章信息/Info

Title:
Advances in research on the sulfur cycle and haloalkaliphilic sulfur bacteria in soda lakes
作者:
杨茂华穆廷桢苗得露刘金龙张翔邢建民
1中国科学院过程工程研究所,生化工程国家重点实验室 北京 100190 2中国科学院过程工程研究所,绿色过程与工程院重点实验室 北京 100190 3河北科技大学生物与工程学院 石家庄 050018 4山东省农业科学院农产品研究所 济南 250100
Author(s):
YANG Maohua1 2? MU Tingzhen1 2 MIAO Delu1 2 LIU Jinlong3 ZHANG Xiang4 & XING Jianmin1 2?
1 Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2 State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3 School of Biology and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China 4 Institute?of?Agro-Food?Science?and?Technology,?Shandong?Academy?of?Agricultural?Sciences, Jinan 250100, China
关键词:
盐碱湖硫循环嗜盐嗜碱微生物硫氧化菌硫还原菌
Keywords:
soda Lake sulfur cycle haloalkaliphilic microorganism sulfur oxidizing bacteria sulfur reducing bacteria
DOI:
10.19675/j.cnki.1006-687x.2020.06042
摘要:
硫循环是地球化学元素循环之一,微生物在其中发挥关键的驱动作用. 深入认识微生物驱动的硫循环过程,将有助于探究生物地球化学循环机制. 盐碱湖因具有完整的硫循环途径、丰富的硫功能菌种类,已成为研究硫地球化学循环的理想环境. 总结近年来有关盐碱湖硫元素循环过程及嗜盐嗜碱性硫功能菌的研究进展. 包括基于多种组学的盐碱湖微生物多样性分析以及嗜盐嗜碱性硫功能菌的应用,重点分析已经分离或完成测序的嗜盐嗜碱性硫氧化菌(11个属24个种)和硫还原菌(15个属25个种)的生理生化特点及系统发育关系,并且总结硫代谢基因的分布规律,明确盐碱湖中微生物硫代谢主要途径,其中细胞色素C硫化氢脱氢酶和Sox氧化酶系组成盐碱湖中硫氧化的最主要途径. 初步形成了盐碱湖硫循环过程概貌、较完整的嗜盐嗜碱硫功能菌谱系及硫代谢途径,这将对认识地球硫元素循环,尤其是盐碱湖硫循环具有重要意义. 建议将来加强开展有关异养硫氧化菌代谢过程、硫碳氮代谢之间关系及相互作用、影响硫循环过程的关键环境因子及调控手段等研究,进一步推进嗜盐嗜碱性硫功能菌的应用. (图7 表4 参83)
Abstract:
The elemental sulfur cycle is an important geochemical cycle in which microorganisms play a key driving role. An in-depth study of the sulfur geochemical cycle will help us to explore new mechanisms of biogeochemical cycles. A soda lake is an ideal environment for studying the sulfur geochemical cycle because of its complete and unique sulfur conversion pathways and abundant types of sulfur-dissimilating bacteria. This article summarizes the recent progress in research on the sulfur cycle and haloalkaliphilic sulfur bacteria in soda lakes. This study primarily includes omics-based analyses of the microbial diversity of soda lakes and the practical application of haloalkaliphilic sulfur bacteria, focusing on the analysis of physiological and biochemical characteristics of sulfur-oxidizing bacteria (11 genera and 24 species) and sulfur-reducing bacteria (15 genera and 25 species) that have been isolated or sequenced. In addition, the distribution of sulfur metabolism genes is summarized, and the main pathways of microbial sulfur metabolism in soda lakes are clarified. The results revealed that cytochrome C sulfide dehydrogenase and the Sox system constitute the most important pathways for sulfur oxidation in soda lakes. Overall, the global sulfur cycle in soda lakes and a complete lineage of haloalkaliphilic sulfur-dissimilating bacteria and sulfur metabolism pathways are presented. Future studies should include the metabolic process of heterotrophic sulfur-oxidizing bacteria; relationship among sulfur, carbon, and nitrogen metabolism; key environmental factors that affect the sulfur cycle process; and regulatory strategies.

参考文献/References:

1 Ang WK, Mahbob M, Dhouib R, Kappler U. Sulfur compound oxidation and carbon co-assimilation in the haloalkaliphilic sulfur oxidizers Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum [J]. Res Microbiol, 2017, 168: 255-265
2 Emil B, Marina K. A review of the defining chemical properties of Soda Lakes and pans: an assessment on a large geographic scale of Eurasian inland saline surface waters [J]. PLoS ONE, 2018, https://doi.org/10.1371/journal.pone.0202205
3 Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of Soda Lakes [J]. Curr Opin Microbiol, 2015, 25: 88-96
4 Sorokin DY, Detkova EN, Muyzer G. Sulfur-dependent respiration under extremely haloalkaline conditions in soda lake ‘acetogens’ and the description of Natroniella sulfidigena sp. nov. [J]. FEMS Microbiol Lett, 2011, 319: 88-95
5 Lipsewers YA, Vasquez-Cardenas D, Seitaj D, Schauer R, Hidalgo-Martinez S, Damsté JSS, Meysman FJR, Villanueva L, Boschker HTS. Impact of seasonal hypoxia on activity and community structure of chemolithoautotrophic bacteria in a coastal sediment [J]. Appl Environ Microbiol, 2017, 83 (10): e03517-16
6 Zorz JK, Sharp C, Kleiner M, Gordon P, Pon RT, Dong XL. Strous M. A shared core microbiome in soda lakes separated by large distances [J]. Nat Com, 2019, 10: 4230
7 Vavourakis CD, Andrei AS, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments [J]. Microbiome, 2018, 6: 168
8 Lanze?n A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, ?vreas L. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of ethiopian Soda Lakes [J]. PLoS ONE, 2013, 8 (8): e72577
9 Kambura AK, Mwirichia RK, Kasili RW, Karanja EN, Makonde HM, Iddi Boga H. Bacteria and archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya [J]. BMC Microbiol, 2016, 16: 136
10 Tonera JD, Catling DC. A carbonate-rich lake solution to the phosphate problem of the origin of life [J]. PNAS, 2019, 117 (2): 201916109
11 Sorokin DY, Tourova TP, Lysenko AM, Mityushina LL, Kuenen JG. Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur oxidizing bacteria capable of growth on thiocyanate, from soda lakes [J]. Int J Syst Evol Microbiol, 2002, 52: 657-664
12 Berben T, Sorokin DY, Ivanova N, Pati A, Kyrpides N, Goodwin LA, Woyke T. Muyzer G. Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh 1T, an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake [J]. Stand Genomic Sci, 2015, 10: 105
13 Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG. Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate [J]. Microbiology, 2004, 150: 2435-2442
14 Berben T, Sorokin DY, Ivanova N, Pati A, Kyrpides N, Goodwin L, Woyke T, Muyzer G. Partial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1T, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification [J]. Stand Genomic Sci, 2015, 10: 84
15 Mu TZ, Zhou JM, Yang MH, Xing JM. Complete genome sequence of Thialkalivibrio versutus D301 isolated from Soda Lake in northern China, a typical strain with great ability to oxidize sulfide [J]. J Biotechnol, 2016, 227: 21-22
16 Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxiodizing bacteria from soda lakes [J]. Int J Syst Evol Microbiol, 2001, 51: 565-580
17 Sorokin DY, Muntyan MS, Panteleeva AN, Muyzer G. Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats [J]. Int J Syst Evol Microbiol, 2012, 62: 1884-1889
18 Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Pati A, d’Haeseleer P, Woyke T, Kyrpides NC. Complete genome sequence of “Thioalkalivibrio sulfidophilus” HL-EbGr7 [J]. Stand Genomic Sci, 2011, 4: 23-35
19 Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG. Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake [J]. Extremophiles, 2004, 8: 325-334
20 Sorokin DY, Kuenen JG, Jetten MSM. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD [J]. Arch Microbiol, 2001, 175: 94-101
21 Sorokin DY, Foti M, Pinkart H, Muyzer G. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content [J]. Appl Environ Microbiol, 2007, 73: 451-455
22 Kappler U, Davenport K, Beatson S, Lapidus A, Pan C, Han C, Montero-Calasanz MC, Land M, Hauser L, Rohde M, G?ker M, Ivanova N, Woyke T, Klenk HP, Kyrpides NC. Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing γ-proteobacterium Thioalkalimicro-bium cyclicum type strain ALM 1 (DSM 14477T) [J]. Stand Genomic Sci, 2016, 11: 38
23 Sorokin DY, Gorlenko V, Tourova TP, Tsapin A, Nealson KH. Kuenen GJ. Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkali-philic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California) [J]. Int J Syst Evol Microbiol, 2002, 52: 913-920
24 Kuenen JG, Veldkamp H. Thiornicrospira pelophila, gen. n., sp. n., a new obligately chemolithotrophic colourless sulfur bacterium [J]. Antonie van Leeuwenhoek, 1972, 38: 241-256
25 Bryantseva I, Gorlenko VM, Kompantseva EI, FI Johannes, Suling J, Mityushina L. Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake [J]. Int J Syst Bacteriol, 1999, 49, 697-703
26 Challacombe JF, Majid S, Deole R, Brettin T, Bruce D, Delano S, Detter JC, Gleasner C, Han CS, Misra M, Reitenga K, Mikhailova N, Woyke T, Pitluck S, Nolan M, Land M, Saunders E, Tapia R, Lapidus A, Ivanova N, Hoff W. Complete genome sequence of Halorhodospira halophila SL1 [J]. Stand Genomic Sci, 2013, 8: 206-214
27 Singh KS, Kirksey J, Hoff WD, Deole R. Draft genome sequence of the extremely halophilic phototrophic purple sulfur bacterium Halorhodospira Halochloris [J]. J Genomics, 2014, 2: 118-120
28 Gorlenko VM, Bryantseva IA, Panteleeva EE, Tourova TP, Kolganova TV, Makhneva ZK, Moskalenko AA. Ectothiorho-dosinus mongolicum gen. nov., sp. nov., a new purple bacterium from a soda lake in Mongolia [J]. Microbiology, 2004, 73: 66-73
29 Bryantsevaa IA, Tourovaa TP, Kovalevab OL, Kostrikinaa NA, Gorlenkoa VM. Ectothiorhodospira magna sp. nov., a new large alkaliphilic purple sulfur bacterium [J]. Microbiology, 2010, 79: 780-790
30 Sorokin DY, Tourova PT Kuznetsov BB, Bryantseva IA, Gorlenko VM. Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a Soda Lake [J]. Microbiology, 2000, 69: 75-82
31 Boldareva EN, Bryantseva IA, Tsapin A, Nelson K, Sorokin DY, Tourova TP, Boichenko VA, Stadnichuk IN, Gorlenko VM. The new alkaliphilic bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline soda Mono Lake (California, United States) [J]. Microbiology, 2007, 76: 82-92
32 Milford AD, Achenbach LA, Jung DO, Madigan MT. Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes [J]. Arch Microbiol, 2000, 174: 18-27
33 Boldareva EN, Akimov VN, Boychenko VA, Stadnichuk IN, Moskalenko AA, Makhneva ZK, Gorlenko VM. Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, eastern Siberia) [J]. Microbiology, 2008, 77: 206-218
34 Kompantseva EI, Komova AV, Kostrikina NA. Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline soda lakes of Central Asia [J]. Int J Syst Evol Microbiol, 2010, 60: 1210-1214
35 Sorokin DY, Foti M, Pinkart HC, Muyzer G. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content [J]. Appl Environ Microbiol, 2007, 73: 451-455
36 Sorokin DY, Kuenen JG. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes [J]. FEMS Microbiol Rev, 2005, 29: 685-702
37 Edwardson CF, Hollibaugh JT. Composition and activity of microbial communities along the redox gradient of an alkaline, hypersaline, lake [J]. Front Microbiol, 2018, doi: 10.3389/fmicb.2018.00014
38 Sorokin DY, Banciu H, Loosdrecht M, Kuenen JG. Growth physiology and competitive interaction of obligately chemolitho-autotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes [J]. Extremophiles, 2003, 7: 195-203
39 Kompantseva E, Komova AV, Novikov AA, Kostrikina NA. Rhodovulum tesquicola sp. nov., a haloalkaliphilic purple non-sulfur bacterium from brackish steppe soda lakes [J]. Int J Syst Evol Microbiol, 2012, 62: 2962-2966
40 Berben T, Overmars L, Sorokin DY, Muyzer G. Diversity and distribution of sulfur oxidation-related genes in Thioalkalivibrio, a genus of chemolithoautotrophic and haloalkaliphilic sulfur-oxidizing bacteria [J]. Front Microbiol, 2019, doi: 10.3389/fmicb.2019.00160
41 Kopejtka K, Tomasch J, Bunk B, Spr?er C, Wagner D?bler I, Koblí?ek M. The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes [J]. Extremophiles, 2018, 22: 839-849
42 Ahn AC, Cavalca L, Colombo M, Schuurmans JM, Sorokin DY, Muyzer G. Transcriptomic analysis of two Thioalkalivibrio species under arsenite stress revealed a potential candidate gene for an alternative arsenite oxidation pathway [J]. Front Microbiol, 2019, doi: 10.3389/fmicb.2019.01514
43 Berben T, Balkema C, Sorokin DY, Muyzer G. Analysis of the genes involved in thiocyanate oxidation during growth in continuous culture of the haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio thiocyanoxidans ARh 2T using transcriptomics [J]. mSystem, 2017, 2 (6): e00102-17
44 Rojas P, Rodríguez N, Fuente V, Sánchez-Mata D, Amils R, Sanz JL. Microbial diversity associated with the anaerobic sediments of a soda lake (Mono Lake, California, USA) [J]. Can J Microbiol, 2018, 64: 385-392
45 Sorokin DY, Messina E, Cono V, Ferrer M, Ciordia S, Mena M, Toshchakov SV, Golyshin P, Yakimov MM. Sulfur respiration in a group of facultatively anaerobic Natronoarchaea ubiquitous in hypersaline soda lakes [J]. Front Microbiol, 2018, doi: 10.3389/fmicb.2018.02359
46 Sorokin DY, Detkova EN, Muyzer G. Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. [J]. Extremophiles, 2010, 14: 71-77
47 Sorokin DY, Tourova TP, Muyzer G. Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp. nov., and Sulfurospirillum alkalitolerans sp. nov. [J]. Extremophiles, 2013, 17: 535-543
48 Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, Richnow HH, Finster K. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes [J]. Extremophiles, 2013, 17: 1003-1012
49 Sorokin DY, Tourova TP, Kolganova TV, Detkova EN, Galinski EA, Muyzer G. Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. [J]. Extremophiles, 2011, 15: 391-401
50 Sorokin DY, Tourova TP, Abbas B, Suhacheva MV, Muyzer G. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia [J]. Extremophiles, 2012, 16: 411-417
51 Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA. Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium [J]. Int J Syst Bacteriol, 1997, 47: 144-149
52 Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G. Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov.-a novel lineage of Deltaproteobacteria from hypersaline soda lakes [J]. Microbiology, 2008, 154: 1444-1453
53 Sorokin DY, Chernyh NA. Desulfonatronospira sulfatiphila sp. nov., and Desulfitispora elongata sp. nov., two novel haloalkaliphilic sulfidogenic bacteria from soda lakes [J]. Int J Syst Evol Microbiol, 2017, 67: 396-401
54 Blum JS, Kulp TR, Han S, Lanoil B, Saltikov CW, Stolz JF, Miller LG, Oremland RS. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California [J]. Extremophiles, 2012, 16: 727-742
55 Zhilina TN, Zavarzina DG, Kuever J, Lysenko AM, Zavarzin GA. Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate [J]. Int J Syst Evol Microbiol, 2005, 55: 1001-1006
56 Pikuta EV, Richard BH, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P. Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth [J]. Int J Syst Evol Microbiol, 2003, 53: 1327-1332
57 Trubitsyn D, Geurink C, Pikuta E, Lefèvre CT, McShan WM, Gillaspy AF, Bazylinskia DA. Draft genome sequence of the obligately alkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans Strain MLF1 [J]. Genome A, 2014, 2 (4): e00741-14
58 Ryzhmanova Y, Nepomnyashchaya Y, Abashina T, Ariskina E, Troshina O, Vainshtein M, Shcherbakova V. New sulfate-reducing bacteria isolated from Buryatian alkalinebrackish lakes: description of Desulfonatronum buryatense sp. nov. [J]. Extremophiles, 2013, 17: 851-859
59 Zakharyuk AG, Kozyreva LP, Khijniak TV, Namsaraev BB, Shcherbakova VA. Desulfonatronum zhilinae sp. nov., a novel haloalkaliphilic sulfate-reducing bacterium from soda lakes Alginskoe, Trans Baikal Region, Russia [J]. Extremophiles, 2015, 19: 673-680
60 Sorokin DY, Chernyh NA, Poroshina MN. Desulfonatronobacter acetoxydans sp. nov.: a first acetate-oxidizing, extremely salt tolerant alkaliphilic SRB from a hypersaline soda lakes [J]. Extremophiles, 2015, 19: 899-907
61 Sorokin DY, Tourova TP, Panteleeva AN, Muyzer G. Desulfona-tronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes [J]. Int J Syst Evol Microbiol, 2012, 62: 2107-2113
62 Sorokin DY, Tourova TP, Mu?mann M, Muyzer G. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from Soda Lakes [J]. Extremophiles, 2008, 12: 431-439
63 Melton ED, Sorokin DY, Overmars L, Lapidus AL, Pillay M, Ivanova N, del Rio TG, Kyrpides NC, Woyke T, Muyzer G. Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile [J]. Stand Genomic Sci, 2017, 12: 57
64 Melton ED, Sorokin DY, Overmars L, Chertkov O, Clum A, Pillay M, Ivanova N, Shapiro N, Kyrpides NC, Woyke T, Lapidus AL, Muyzer G. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2T, a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes [J]. Stand Genomic Sci, 2016, 11: 67
65 Sorokin DY, Muyzer G. Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes [J]. Extremophiles, 2010, 14: 349-355
66 Sorokin DY, Muyzer G. Haloalkaliphilic spore-forming sulfidogens from soda lakes sediments and description of Desulfitispora alkaliphila gen. nov., sp. nov.. [J] Extremophiles, 2010, 14: 313-320
67 Abin CA, Hollibaugh JT. Draft genome sequence of the type strain Desulfuribacillus alkaliarsenatis AHT28, an obligately anaerobic, sulfidogenic bacterium isolated from Russian soda lakes sediments [J]. Genome A, 2016, 4 (6): e01244-16
68 Sorokin DY, Tourova TP, Sukhachev MV, Muyzer G. Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order bacillales from soda lakes [J]. Extremophiles, 2012, 16: 597-605
69 Sorokin DY, Chernyh NA. ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes [J]. Extremophiles, 2016, 20: 895-901
70 Kevbrin VV, Zhilina TN, Rainey FA, Zavarzin GA. Tindallia magadii gen. nov., sp. nov.: an alkaliphilic anaerobic ammonifier from Soda Lakes deposits [J]. Curr Microbiol, 1998, 37: 94-100
71 Oremland RS, Saltikov CW, Stolz JF, Hollibaugh JT. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes [J]. FEMS Microbiol Lett, 2017, 364: fnx146
72 Sorokin DY, van den Bosch PLF, Abbas B, Janssen AJH. Muyzer G. Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors [J]. Appl Microbiol Biotechnol, 2008, 80: 965-975
73 Kiragosyan K, van Veelen P, Gupta S, Tomaszewska Porada A, Roman P, Timmers PHA. Development of quantitative PCR for the detection of Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus and Thioalkalibacter halophilus in gas biodesulfurization processes [J]. AMB Express, 2019, 9: 99
74 Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JBM, Roman P, Janssen AJH. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H2S removal from sour gas streams [J]. J Hazard Mater, 2020, 386: 121916
75 Kiragosyan K, Klok JBM, Keesman KJ, Roman P, Janssen AJH. Development and validation of a physiologically based kinetic model for starting up and operation of the biological gas desulfurization process under haloalkaline conditions [J]. Water Res X, 2019, 4: 100035
76 Sousa JAB, Bijmans MFM, Stams AJM, Plugge CM. Thiosulfate conversion to sulfide by a haloalkaliphilic microbial community in a bioreactor fed with H2 gas [J]. Environ Sci Technol, 2017, 51: 914-923
77 Zhou JM, Zhou XM, Li YG, Xing JM. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing [J]. J Hazard Mater, 2015, 295: 176-184
78 Zhou JM, Song ZY, Yan DJ, Liu YL, Yang MH, Cao HB, Xing JM. Performance of a haloalkaliphilic bioreactor and bacterial community shifts under different COD/SO42- ratios and hydraulic retention times [J]. J Hazard Mater, 2014, 274: 53-62
79 Mu TZ, Xing JM, Yang MH. Sulfate reduction by a haloalkaliphilic bench-scale sulfate-reducing bioreactor and its bacterial communities at different depths [J]. Biochem Eng J, 2019, 147: 100-109
80 Sousa JAB, Sorokin DY, Bijmans MFM, Plugge CM, Stams AJM. Ecology and application of haloalkaliphilic anaerobic microbial communities [J]. Appl Microbiol Biotechnol, 2015, 99: 9331-9336
81 Heijne A, Rink R, Liu D, Klok JB M, Buisman CJN. Bacteria as an electron shuttle for sulfide oxidation [J]. Environ Sci Technol Lett, 2018, 5: 495-499
82 Ni GF, Harnawan P, Seidel L, Heijne AT, Sleutels T, Buisman CJN, Dopson M. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell [J]. J Hazard Mater, 2019, 363: 197-204
83 Berben Tom, Overmars L, Sorokin DY, Muyzer G. Comparative genome analysis of three thiocyanate oxidizing Thioalkalivibrio species isolated from soda lakes [J]. Front Microbiol, 2017, doi: 10.3389/fmicb.2017.00254

更新日期/Last Update: 2021-06-25