1 Ang WK, Mahbob M, Dhouib R, Kappler U. Sulfur compound oxidation and carbon co-assimilation in the haloalkaliphilic sulfur oxidizers Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum [J]. Res Microbiol, 2017, 168: 255-265 2 Emil B, Marina K. A review of the defining chemical properties of Soda Lakes and pans: an assessment on a large geographic scale of Eurasian inland saline surface waters [J]. PLoS ONE, 2018, https://doi.org/10.1371/journal.pone.0202205 3 Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of Soda Lakes [J]. Curr Opin Microbiol, 2015, 25: 88-96 4 Sorokin DY, Detkova EN, Muyzer G. Sulfur-dependent respiration under extremely haloalkaline conditions in soda lake ‘acetogens’ and the description of Natroniella sulfidigena sp. nov. [J]. FEMS Microbiol Lett, 2011, 319: 88-95 5 Lipsewers YA, Vasquez-Cardenas D, Seitaj D, Schauer R, Hidalgo-Martinez S, Damsté JSS, Meysman FJR, Villanueva L, Boschker HTS. Impact of seasonal hypoxia on activity and community structure of chemolithoautotrophic bacteria in a coastal sediment [J]. Appl Environ Microbiol, 2017, 83 (10): e03517-16 6 Zorz JK, Sharp C, Kleiner M, Gordon P, Pon RT, Dong XL. Strous M. A shared core microbiome in soda lakes separated by large distances [J]. Nat Com, 2019, 10: 4230 7 Vavourakis CD, Andrei AS, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments [J]. Microbiome, 2018, 6: 168 8 Lanze?n A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, ?vreas L. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of ethiopian Soda Lakes [J]. PLoS ONE, 2013, 8 (8): e72577 9 Kambura AK, Mwirichia RK, Kasili RW, Karanja EN, Makonde HM, Iddi Boga H. Bacteria and archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya [J]. BMC Microbiol, 2016, 16: 136 10 Tonera JD, Catling DC. A carbonate-rich lake solution to the phosphate problem of the origin of life [J]. PNAS, 2019, 117 (2): 201916109 11 Sorokin DY, Tourova TP, Lysenko AM, Mityushina LL, Kuenen JG. Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur oxidizing bacteria capable of growth on thiocyanate, from soda lakes [J]. Int J Syst Evol Microbiol, 2002, 52: 657-664 12 Berben T, Sorokin DY, Ivanova N, Pati A, Kyrpides N, Goodwin LA, Woyke T. Muyzer G. Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh 1T, an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake [J]. Stand Genomic Sci, 2015, 10: 105 13 Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG. Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate [J]. Microbiology, 2004, 150: 2435-2442 14 Berben T, Sorokin DY, Ivanova N, Pati A, Kyrpides N, Goodwin L, Woyke T, Muyzer G. Partial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1T, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification [J]. Stand Genomic Sci, 2015, 10: 84 15 Mu TZ, Zhou JM, Yang MH, Xing JM. Complete genome sequence of Thialkalivibrio versutus D301 isolated from Soda Lake in northern China, a typical strain with great ability to oxidize sulfide [J]. J Biotechnol, 2016, 227: 21-22 16 Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxiodizing bacteria from soda lakes [J]. Int J Syst Evol Microbiol, 2001, 51: 565-580 17 Sorokin DY, Muntyan MS, Panteleeva AN, Muyzer G. Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats [J]. Int J Syst Evol Microbiol, 2012, 62: 1884-1889 18 Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Pati A, d’Haeseleer P, Woyke T, Kyrpides NC. Complete genome sequence of “Thioalkalivibrio sulfidophilus” HL-EbGr7 [J]. Stand Genomic Sci, 2011, 4: 23-35 19 Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG. Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake [J]. Extremophiles, 2004, 8: 325-334 20 Sorokin DY, Kuenen JG, Jetten MSM. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD [J]. Arch Microbiol, 2001, 175: 94-101 21 Sorokin DY, Foti M, Pinkart H, Muyzer G. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content [J]. Appl Environ Microbiol, 2007, 73: 451-455 22 Kappler U, Davenport K, Beatson S, Lapidus A, Pan C, Han C, Montero-Calasanz MC, Land M, Hauser L, Rohde M, G?ker M, Ivanova N, Woyke T, Klenk HP, Kyrpides NC. Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing γ-proteobacterium Thioalkalimicro-bium cyclicum type strain ALM 1 (DSM 14477T) [J]. Stand Genomic Sci, 2016, 11: 38 23 Sorokin DY, Gorlenko V, Tourova TP, Tsapin A, Nealson KH. Kuenen GJ. Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkali-philic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California) [J]. Int J Syst Evol Microbiol, 2002, 52: 913-920 24 Kuenen JG, Veldkamp H. Thiornicrospira pelophila, gen. n., sp. n., a new obligately chemolithotrophic colourless sulfur bacterium [J]. Antonie van Leeuwenhoek, 1972, 38: 241-256 25 Bryantseva I, Gorlenko VM, Kompantseva EI, FI Johannes, Suling J, Mityushina L. Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake [J]. Int J Syst Bacteriol, 1999, 49, 697-703 26 Challacombe JF, Majid S, Deole R, Brettin T, Bruce D, Delano S, Detter JC, Gleasner C, Han CS, Misra M, Reitenga K, Mikhailova N, Woyke T, Pitluck S, Nolan M, Land M, Saunders E, Tapia R, Lapidus A, Ivanova N, Hoff W. Complete genome sequence of Halorhodospira halophila SL1 [J]. Stand Genomic Sci, 2013, 8: 206-214 27 Singh KS, Kirksey J, Hoff WD, Deole R. Draft genome sequence of the extremely halophilic phototrophic purple sulfur bacterium Halorhodospira Halochloris [J]. J Genomics, 2014, 2: 118-120 28 Gorlenko VM, Bryantseva IA, Panteleeva EE, Tourova TP, Kolganova TV, Makhneva ZK, Moskalenko AA. Ectothiorho-dosinus mongolicum gen. nov., sp. nov., a new purple bacterium from a soda lake in Mongolia [J]. Microbiology, 2004, 73: 66-73 29 Bryantsevaa IA, Tourovaa TP, Kovalevab OL, Kostrikinaa NA, Gorlenkoa VM. Ectothiorhodospira magna sp. nov., a new large alkaliphilic purple sulfur bacterium [J]. Microbiology, 2010, 79: 780-790 30 Sorokin DY, Tourova PT Kuznetsov BB, Bryantseva IA, Gorlenko VM. Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a Soda Lake [J]. Microbiology, 2000, 69: 75-82 31 Boldareva EN, Bryantseva IA, Tsapin A, Nelson K, Sorokin DY, Tourova TP, Boichenko VA, Stadnichuk IN, Gorlenko VM. The new alkaliphilic bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline soda Mono Lake (California, United States) [J]. Microbiology, 2007, 76: 82-92 32 Milford AD, Achenbach LA, Jung DO, Madigan MT. Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes [J]. Arch Microbiol, 2000, 174: 18-27 33 Boldareva EN, Akimov VN, Boychenko VA, Stadnichuk IN, Moskalenko AA, Makhneva ZK, Gorlenko VM. Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, eastern Siberia) [J]. Microbiology, 2008, 77: 206-218 34 Kompantseva EI, Komova AV, Kostrikina NA. Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline soda lakes of Central Asia [J]. Int J Syst Evol Microbiol, 2010, 60: 1210-1214 35 Sorokin DY, Foti M, Pinkart HC, Muyzer G. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content [J]. Appl Environ Microbiol, 2007, 73: 451-455 36 Sorokin DY, Kuenen JG. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes [J]. FEMS Microbiol Rev, 2005, 29: 685-702 37 Edwardson CF, Hollibaugh JT. Composition and activity of microbial communities along the redox gradient of an alkaline, hypersaline, lake [J]. Front Microbiol, 2018, doi: 10.3389/fmicb.2018.00014 38 Sorokin DY, Banciu H, Loosdrecht M, Kuenen JG. Growth physiology and competitive interaction of obligately chemolitho-autotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes [J]. Extremophiles, 2003, 7: 195-203 39 Kompantseva E, Komova AV, Novikov AA, Kostrikina NA. Rhodovulum tesquicola sp. nov., a haloalkaliphilic purple non-sulfur bacterium from brackish steppe soda lakes [J]. Int J Syst Evol Microbiol, 2012, 62: 2962-2966 40 Berben T, Overmars L, Sorokin DY, Muyzer G. Diversity and distribution of sulfur oxidation-related genes in Thioalkalivibrio, a genus of chemolithoautotrophic and haloalkaliphilic sulfur-oxidizing bacteria [J]. Front Microbiol, 2019, doi: 10.3389/fmicb.2019.00160 41 Kopejtka K, Tomasch J, Bunk B, Spr?er C, Wagner D?bler I, Koblí?ek M. The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes [J]. Extremophiles, 2018, 22: 839-849 42 Ahn AC, Cavalca L, Colombo M, Schuurmans JM, Sorokin DY, Muyzer G. Transcriptomic analysis of two Thioalkalivibrio species under arsenite stress revealed a potential candidate gene for an alternative arsenite oxidation pathway [J]. Front Microbiol, 2019, doi: 10.3389/fmicb.2019.01514 43 Berben T, Balkema C, Sorokin DY, Muyzer G. Analysis of the genes involved in thiocyanate oxidation during growth in continuous culture of the haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio thiocyanoxidans ARh 2T using transcriptomics [J]. mSystem, 2017, 2 (6): e00102-17 44 Rojas P, Rodríguez N, Fuente V, Sánchez-Mata D, Amils R, Sanz JL. Microbial diversity associated with the anaerobic sediments of a soda lake (Mono Lake, California, USA) [J]. Can J Microbiol, 2018, 64: 385-392 45 Sorokin DY, Messina E, Cono V, Ferrer M, Ciordia S, Mena M, Toshchakov SV, Golyshin P, Yakimov MM. Sulfur respiration in a group of facultatively anaerobic Natronoarchaea ubiquitous in hypersaline soda lakes [J]. Front Microbiol, 2018, doi: 10.3389/fmicb.2018.02359 46 Sorokin DY, Detkova EN, Muyzer G. Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. [J]. Extremophiles, 2010, 14: 71-77 47 Sorokin DY, Tourova TP, Muyzer G. Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp. nov., and Sulfurospirillum alkalitolerans sp. nov. [J]. Extremophiles, 2013, 17: 535-543 48 Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, Richnow HH, Finster K. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes [J]. Extremophiles, 2013, 17: 1003-1012 49 Sorokin DY, Tourova TP, Kolganova TV, Detkova EN, Galinski EA, Muyzer G. Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. [J]. Extremophiles, 2011, 15: 391-401 50 Sorokin DY, Tourova TP, Abbas B, Suhacheva MV, Muyzer G. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia [J]. Extremophiles, 2012, 16: 411-417 51 Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA. Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium [J]. Int J Syst Bacteriol, 1997, 47: 144-149 52 Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G. Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov.-a novel lineage of Deltaproteobacteria from hypersaline soda lakes [J]. Microbiology, 2008, 154: 1444-1453 53 Sorokin DY, Chernyh NA. Desulfonatronospira sulfatiphila sp. nov., and Desulfitispora elongata sp. nov., two novel haloalkaliphilic sulfidogenic bacteria from soda lakes [J]. Int J Syst Evol Microbiol, 2017, 67: 396-401 54 Blum JS, Kulp TR, Han S, Lanoil B, Saltikov CW, Stolz JF, Miller LG, Oremland RS. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California [J]. Extremophiles, 2012, 16: 727-742 55 Zhilina TN, Zavarzina DG, Kuever J, Lysenko AM, Zavarzin GA. Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate [J]. Int J Syst Evol Microbiol, 2005, 55: 1001-1006 56 Pikuta EV, Richard BH, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P. Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth [J]. Int J Syst Evol Microbiol, 2003, 53: 1327-1332 57 Trubitsyn D, Geurink C, Pikuta E, Lefèvre CT, McShan WM, Gillaspy AF, Bazylinskia DA. Draft genome sequence of the obligately alkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans Strain MLF1 [J]. Genome A, 2014, 2 (4): e00741-14 58 Ryzhmanova Y, Nepomnyashchaya Y, Abashina T, Ariskina E, Troshina O, Vainshtein M, Shcherbakova V. New sulfate-reducing bacteria isolated from Buryatian alkalinebrackish lakes: description of Desulfonatronum buryatense sp. nov. [J]. Extremophiles, 2013, 17: 851-859 59 Zakharyuk AG, Kozyreva LP, Khijniak TV, Namsaraev BB, Shcherbakova VA. Desulfonatronum zhilinae sp. nov., a novel haloalkaliphilic sulfate-reducing bacterium from soda lakes Alginskoe, Trans Baikal Region, Russia [J]. Extremophiles, 2015, 19: 673-680 60 Sorokin DY, Chernyh NA, Poroshina MN. Desulfonatronobacter acetoxydans sp. nov.: a first acetate-oxidizing, extremely salt tolerant alkaliphilic SRB from a hypersaline soda lakes [J]. Extremophiles, 2015, 19: 899-907 61 Sorokin DY, Tourova TP, Panteleeva AN, Muyzer G. Desulfona-tronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes [J]. Int J Syst Evol Microbiol, 2012, 62: 2107-2113 62 Sorokin DY, Tourova TP, Mu?mann M, Muyzer G. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from Soda Lakes [J]. Extremophiles, 2008, 12: 431-439 63 Melton ED, Sorokin DY, Overmars L, Lapidus AL, Pillay M, Ivanova N, del Rio TG, Kyrpides NC, Woyke T, Muyzer G. Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile [J]. Stand Genomic Sci, 2017, 12: 57 64 Melton ED, Sorokin DY, Overmars L, Chertkov O, Clum A, Pillay M, Ivanova N, Shapiro N, Kyrpides NC, Woyke T, Lapidus AL, Muyzer G. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2T, a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes [J]. Stand Genomic Sci, 2016, 11: 67 65 Sorokin DY, Muyzer G. Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes [J]. Extremophiles, 2010, 14: 349-355 66 Sorokin DY, Muyzer G. Haloalkaliphilic spore-forming sulfidogens from soda lakes sediments and description of Desulfitispora alkaliphila gen. nov., sp. nov.. [J] Extremophiles, 2010, 14: 313-320 67 Abin CA, Hollibaugh JT. Draft genome sequence of the type strain Desulfuribacillus alkaliarsenatis AHT28, an obligately anaerobic, sulfidogenic bacterium isolated from Russian soda lakes sediments [J]. Genome A, 2016, 4 (6): e01244-16 68 Sorokin DY, Tourova TP, Sukhachev MV, Muyzer G. Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order bacillales from soda lakes [J]. Extremophiles, 2012, 16: 597-605 69 Sorokin DY, Chernyh NA. ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes [J]. Extremophiles, 2016, 20: 895-901 70 Kevbrin VV, Zhilina TN, Rainey FA, Zavarzin GA. Tindallia magadii gen. nov., sp. nov.: an alkaliphilic anaerobic ammonifier from Soda Lakes deposits [J]. Curr Microbiol, 1998, 37: 94-100 71 Oremland RS, Saltikov CW, Stolz JF, Hollibaugh JT. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes [J]. FEMS Microbiol Lett, 2017, 364: fnx146 72 Sorokin DY, van den Bosch PLF, Abbas B, Janssen AJH. Muyzer G. Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors [J]. Appl Microbiol Biotechnol, 2008, 80: 965-975 73 Kiragosyan K, van Veelen P, Gupta S, Tomaszewska Porada A, Roman P, Timmers PHA. Development of quantitative PCR for the detection of Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus and Thioalkalibacter halophilus in gas biodesulfurization processes [J]. AMB Express, 2019, 9: 99 74 Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JBM, Roman P, Janssen AJH. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H2S removal from sour gas streams [J]. J Hazard Mater, 2020, 386: 121916 75 Kiragosyan K, Klok JBM, Keesman KJ, Roman P, Janssen AJH. Development and validation of a physiologically based kinetic model for starting up and operation of the biological gas desulfurization process under haloalkaline conditions [J]. Water Res X, 2019, 4: 100035 76 Sousa JAB, Bijmans MFM, Stams AJM, Plugge CM. Thiosulfate conversion to sulfide by a haloalkaliphilic microbial community in a bioreactor fed with H2 gas [J]. Environ Sci Technol, 2017, 51: 914-923 77 Zhou JM, Zhou XM, Li YG, Xing JM. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing [J]. J Hazard Mater, 2015, 295: 176-184 78 Zhou JM, Song ZY, Yan DJ, Liu YL, Yang MH, Cao HB, Xing JM. Performance of a haloalkaliphilic bioreactor and bacterial community shifts under different COD/SO42- ratios and hydraulic retention times [J]. J Hazard Mater, 2014, 274: 53-62 79 Mu TZ, Xing JM, Yang MH. Sulfate reduction by a haloalkaliphilic bench-scale sulfate-reducing bioreactor and its bacterial communities at different depths [J]. Biochem Eng J, 2019, 147: 100-109 80 Sousa JAB, Sorokin DY, Bijmans MFM, Plugge CM, Stams AJM. Ecology and application of haloalkaliphilic anaerobic microbial communities [J]. Appl Microbiol Biotechnol, 2015, 99: 9331-9336 81 Heijne A, Rink R, Liu D, Klok JB M, Buisman CJN. Bacteria as an electron shuttle for sulfide oxidation [J]. Environ Sci Technol Lett, 2018, 5: 495-499 82 Ni GF, Harnawan P, Seidel L, Heijne AT, Sleutels T, Buisman CJN, Dopson M. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell [J]. J Hazard Mater, 2019, 363: 197-204 83 Berben Tom, Overmars L, Sorokin DY, Muyzer G. Comparative genome analysis of three thiocyanate oxidizing Thioalkalivibrio species isolated from soda lakes [J]. Front Microbiol, 2017, doi: 10.3389/fmicb.2017.00254