|本期目录/Table of Contents|

[1]梅超,刘玉卫,孙蕾,等.马铃薯AS2基因家族的鉴定与逆境胁迫表达[J].应用与环境生物学报,2020,26(06):1498-1507.[doi:DOI: 10.19675/j.cnki.1006-687x.2020.06036]
 MEI Chao,LIU Yuwei,SUN Lei,et al.Identification and expression analysis of the AS2 gene family under abiotic stress in Solanum tuberosum L.[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1498-1507.[doi:DOI: 10.19675/j.cnki.1006-687x.2020.06036]
点击复制

马铃薯AS2基因家族的鉴定与逆境胁迫表达()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年06期
页码:
1498-1507
栏目:
研究论文
出版日期:
2020-12-25

文章信息/Info

Title:
Identification and expression analysis of the AS2 gene family under abiotic stress in Solanum tuberosum L.
作者:
梅超刘玉卫孙蕾王慧杰董雪李欣冯瑞云
1山西农业大学农学院/作物遗传与分子改良山西省重点实验室 太原 030031 2河北农业大学生命科学学院/真菌毒素与植物分子病理学实验室 保定 071001 3山西农业大学农业基因资源研究中心/农业部黄土高原作物基因资源与种质创制重点实验室 太原 030031
Author(s):
MEI Chao1 LIU Yuwei2 SUN Lei1 WANG Huijie1 DONG Xue3LI Xin1 & FENG Ruiyun1?
1 College of Agriculture, Shanxi Agricultural University / Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi province, Taiyuan 030031, China 2 College of Life Sciences, Agricultural University of Hebei / Mycotoxin and Molecular Plant Pathology Laboratory, Baoding 071001, China 3 Center for Agricultural Genetic Resources Research, Shanxi Agricultural University / China Key Laboratory of Loess Plateau Crop Gene Resources and Germplasm Creation of Ministry of Agriculture, Taiyuan 030031, China
关键词:
马铃薯AS2基因家族系统发育非生物胁迫表达分析
Keywords:
Solanum tuberosum L. AS2 gene family system development abiotic stress expression profile
DOI:
DOI: 10.19675/j.cnki.1006-687x.2020.06036
摘要:
高盐、干旱、高温、低温等非生物胁迫是造成马铃薯减产的重要因素,鉴定和探究马铃薯逆境胁迫应答相关基因对马铃薯生产具有重要意义. ASYMMETRIC LEAVES2(AS2)基因家族是一类广泛存在于植物中的转录因子家族,在植物生长发育和抵御逆境胁迫过程中发挥重要作用. 通过生物信息学系统分析,鉴定得到43个马铃薯AS2基因家族成员. 结果显示,根据保守结构域的差异将AS2基因家族分为ClassⅠ、ClassⅡ两类,其中ClassⅠ分为Ⅰa、Ⅰb、Ⅰc、Ⅰd、Ⅰe共5个亚类,ClassⅡ分为Ⅱa、Ⅱb两个亚类. 马铃薯AS2蛋白主要以α-螺旋和不规则卷曲两种二级结构组成,定位在细胞核中. 通过对马铃薯植株进行高盐、干旱、低温和高温胁迫处理,并对叶片和根中部分AS2基因家族成员的表达量进行分析,发现ClassⅠ类和ClassⅡ类中大部分成员均参与逆境胁迫应答,但在不同逆境胁迫下的响应程度存在差异. 高盐胁迫下,叶片中StAS2-7和根中StAS2-27表达量分别是对照的10倍;干旱胁迫下,除StAS2-4外的其余成员在叶片和根部表达量明显上调;高温胁迫下,叶片中StAS2-15表达量下调,其余成员表达上调;低温胁迫下,大部分StAS2成员表达量变化上调. 本研究表明马铃薯AS2基因家族成员在系统发育过程中具有保守性与物种特异性,可以通过响应逆境胁迫维持马铃薯体内的正常代谢,增强马铃薯抵御非生物胁迫的能力. (图4 表3 参42)
Abstract:
Potato (Solanum tuberosum L.) is an important crop worldwide. Abiotic stresses, such as salt, drought, heat, and cold, inhibit potato growth and development and reduce yield. Therefore, identifying and understanding the genes involved in potato stress tolerance are important for molecular breeding. The transcription factor gene family, ASYMMETRIC LEAVES 2 (AS2), is widely found in plants and plays a key role in regulating growth, development, and stress resistance. This study aimed to uncover the AS2 gene family profile, secondary structure, and expression patterns under abiotic stress and to provide a theoretical basis for the function of the potato AS2 gene family (StAS2) during abiotic stress responses. The StAS2 genes during abiotic stress were identified and classified, their phylogenetic relationships were analyzed, and the expression profiles were measured. The AS2 genes were identified by BLAST software in the potato genome database for previously reported Arabidopsis AS2 genes. The plants were treated with high-salt, drought, low-temperature, and high-temperature stressors, and the expression levels of the AS2 gene family members in the leaves and roots were analyzed by fluorescence quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Bioinformatic analysis identified 43 StAS2 genes in the potato genome. Based on the differences in the conserved domains, the StAS2 gene family was categorized into Class I and Class II. Class I was classified into five subclasses (Ia, Ib, Ic, Id, and Ie), and class II was classified as IIa and IIb. The potato AS2 protein is composed of two secondary structures, α-helix and random coil, located in the nucleus. Furthermore, the expression patterns of StAS2 genes in response to abiotic stress were analyzed by qRT-PCR. Most members of Class I and Class II were involved in the stress response, but the degree of response changed with different stressors, indicating variable regulatory mechanisms. Under salt stress, the expression levels of StAS2-7 in leaves and StAS2-27 in roots were upregulated ten-fold compared with that under the control. Under drought stress, all StAS2 members, except StAS2-4, were significantly upregulated in leaves and roots. Under high temperature stress, StAS2-15 was downregulated in leaves, whereas the others were upregulated both in the leaves and roots. Moreover, most StAS2 members were upregulated after cold stress. Taken together, these results indicate that the members of the StAS2 gene family are conserved and species-specific by phylogenetic analysis, demonstrating that StAS2 genes play an important role in abiotic stress tolerance by maintaining the normal metabolism of potato plants.

参考文献/References:

1 Xu X, Pan SK, Cheng SF, Zhang B, Mu DS, Ni PX, Zhang GY, Yang S, Li RQ, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, Cruz GDL, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin NV, Kolganova TV, Beletsky AV, Mardanov AV, Genova AD, Bolser DM, Martin DMA, Li GC, Yang Y, Kuang HH, Hu Q, Xiong XY, Bishop GJ, Sagredo B, Mejia N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang SW, Zhang ZH, Liang CB, He J, Li Y, He Y, Xu JF, Zhang YJ, Xie BY, Du YC, Qu DY, Bonierbale M, Ghislain M, Herrera MR, Giuliano G, Pietrella M, Perrotta G, Facella P, O’Brien K; Feingold SE, Barreiro LE, Massa GA, Diambra L, Whitty BR, Vaillancourt B, Lin HN, Massa AN, Geoffroy M, Lundback S, DellaPenna D, Buell R, Sharma SK, Marshall DF, Waugh R, Bryan GJ, Destefanis M, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JME, Nielsen KL, Sonderkaer M, Iovene M, Torres GA, Jiang JM, Veilleux RE, Bachem CWB, Boer J, Borm T, Kloosterman B, Eck H, Datema E, Lintel HB, Goverse A, Ham RCHJ, Visser RGF. Genome sequence and analysis of the tuber crop potato [J]. Nature, 2011, 475 (7355): 189-195
2 张千友, 王万疆, 廖武霜. 马铃薯主粮化与产业开发研究综述[J]. 西昌学院学报: 自然科学版, 2016, 30: 5 [Zhang QY, Wang WJ, Liao WS. The Review of the researches on the promotion and industrialization of potatoes as the staple food [J]. J Xichang Coll (Nat Sci Ed), 2016, 30: 5]
3 Majer C, Hochholdinger F. Defining the boundaries: structure and function of LOB domain proteins [J]. Trends Plant Sci, 2011, 16 (1): 47-52
4 Machida C, Ueno Y, Machida Y. Function of the ASYMMETRIC LEAVES1 and ASYMMETRIC LEAVES2 genes in leaf development of Arabidopsis [J]. Plant Morphol, 2003, 15 (1): 30-39
5 Matsumura Y, Iwakawa H, Machida Y, Machida C. Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members [J]. Plant J, 2009, 58 (3): 525-537
6 Zhang YM, Zhang SZ, Zheng CC. Genomewide analysis of lateral organ boundaries domain gene family in Zea mays [J]. J Genet, 2014, 93 (1): 79-91
7 Guo BJ, Wang J, Lin S, Tian Z, Zhou K, Luan HY, LYU C, Zhang XZ, Xu RG. A genome-wide analysis of the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family in barley (Hordeum vulgare L.) [J]. J Zhejiang Univ Sci B, 2016, 17 (10): 763-774
8 刘洋, 郑洋洋, 宫超, 程谟桢, 黄海峰, 张瑶, 陈秀玲, 王傲雪. 番茄AS2基因家族的系统进化分析[J]. 基因组学与应用生物学, 2018, 37 (9): 3958-3965 [Liu Y, Zheng YY, Gong C, Cheng MZ, Huang HF, Zhang Y, Chen XL, Wang AX. Phylogenetic analysis of the AS2 gene family in tomato [J]. Genom Appl Biol, 2018, 37 (9): 3958-3965]
9 郑忠凡, 张亚利, 胡灿, 戴雄泽, 刘峰, 袁祖华. 辣椒全基因组中LBD转录因子的鉴定与表达分析[J]. 园艺学报, 2016, 43 (4): 683-694 [Zheng ZF, Zhang YL, Hu C, Dai XZ, Liu F, Yuan ZH. Genome-wide identification and expressing analysis of LBD transcription factors in pepper [J]. Acta Hortlc Sin, 2016, 43 (4): 683-694]
10 孙亭亭, 龚达平, 张磊, 陈雅琼, 赵维, 向小华, 孙玉合. 普通烟草LBD基因家族的全基因组序列鉴定与表达分析[J]. 植物遗传资源学报, 2016, 17 (2): 316-325 [Sun TT, Gong DP, Zhang L, Chen YQ, Zhao W, Xiang XH, Sun YH. Genome-wide sequence identification and expression analysis of the LBD gene family in Nicotiana tabacum [J]. J Plant Genet Resour, 2016, 17 (2): 316-325]
11 Wang XF, Zhang SZ, Su L, Liu X, Hao YJ. A Genome-Wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene gamily in Malus domestica with a functional characterization of MdLBD11 [J]. PLoS ONE, 2013, 8 (2): e57044
12 何红红, 马宗桓, 张元霞, 张娟, 卢世雄, 张志强, 赵鑫, 吴玉霞, 毛娟. 葡萄LBD基因家族的鉴定与表达分析[J]. 中国农业科学, 2018, 51 (21): 4102-4118 [He HH, Ma ZH, Zhang YX, Zhang J, Lu SX, Zhang ZQ, Zhao X, Wu YX, Mao J. Identification and expression analysis of LBD gene gamily in grape [J]. Sci Agric Sin, 2018, 51 (21): 4102-4118]
13 芦强, 邵芬娟, 邱德有. 毛果杨LBD基因家族的全基因组分析[J]. 基因组学与应用生物学, 2018, 37 (1): 313-315 [Lu Q, Shao FJ, Qiu DY. Genome-wide analysis of gene gamily of lateral organ boundaries domain in Populus trichocarpa [J]. Genom Appl Biol, 2018, 37 (1): 313-315]
14 Xu CZ, Luo F, Hochholdinger F. LOB domain proteins: beyond lateral organ boundaries [J]. Trends Plant Sci, 2016, 21 (2): 159-167
15 Chalfun-Junior A, Franken J, Mes JJ, Marsch-Martinez N, Pereira A, Angenent GC. ASYMMETRIC LEAVES2-LIKE1 gene a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals [J]. Plant Mol Biol, 2005, 57 (4): 559-575
16 Guo MJ, Thomas J, Collins G, Timmermans MCP. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis [J]. Plant Cell, 2008, 20 (1): 48-58
17 Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves [J]. Development, 2001, 128 (10): 1771
18 Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis [J]. Plant Cell, 2009, 21 (11): 3567-3584
19 Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis [J]. Plant Cell, 2007, 19 (1): 118-130
20 Taramino G, Sauer M, Stauffer Jr JL, Multani D, Niu XM, Sakai H, Hochholdinger F. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation [J]. Plant J, 2007, 50 (4): 649-659
21 Evans MMS. The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development [J]. Plant Cell, 2007, 19 (1): 46-62
22 Liu HJ, Wang SF, Yu XB, Yu J, Hw XW, Zhang SL, Shou HX, Wu P. ARL1, a LOB-domain protein required for adventitious root formation in rice [J]. Plant J, 2005, 43 (1): 47-56
23 InukaiY, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura L, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling [J]. Plant Cell, 2005, 17 (5): 1387-1396
24 Li CN, Zhu SS, Zhang H, Chen LP, Cai MH, Wang JC, Chai JT, Wu FQ, Cheng ZJ, Guo XP, Zhang X, Wan JM. OsLBD37 and OsLBD38, two class II type LBD proteins, are involved in the regulation of heading date by controlling the expression of Ehd1 in rice [J]. BBRC, 2017, 486 (3): 720-725
25 Yang H, Shi GX, Du HY, Wang H, Zhang ZZ, Hu DZ, Wang J, Huang F, Yu DY. Genome-wide analysis of soybean LATERAL ORGAN BOUNDARIESDomain -containing genes: a functional investigation of GmLBD12 [J]. Plant Genome, 2017, 10 (1)
26 Liu HZ, Cao MX, Chen XL, Ye MH, Zhao P, Nan YY, Li W, Zhang C, Kong LS, Kong NN, Yang CH, Chen Y, Wang DD, Chen Q. Genome-Wide analysis of the Lateral Organ Boundaries Domain (LBD) gene family in Solanum tuberosum [J]. Int Mol Sci, 2019, 20 (21): 5360
27 Huang X, Bao YN, Wang B, Liu LJ, Chen J, Dai LJ, Peng DX. Identification and expression of Aux/IAA, ARF, and LBD family transcription factors in Boehmeria nivea [J]. Biol Plant, 2016, 60 (2): 244-250
28 Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress [J]. J Exp Bot, 2005, 56 (421), 2907–2914
29 Wang RQ, Zhao P,Kong NN, Lu RZ, Pei Y, Huang CX, Ma HL, Chen Q. Genome-Wide identification and characterization of the Potato bHLH transcription factor family [J]. Genes, 2018, 9: 54
30 Zhang C, Wang DD, Yang CH, Kong NN, Shi Z, Zhao P, Nan YY, Nie TK, Wang RQ, Ma HL, Chen Q. Genome-wide identification of the potato WRKY transcription factor family [J]. PLoS ONE, 2017, 12 (7): e0181573
31 Gao JP, Cao XL, Shi SD, Ma YL, Wang K, Liu SJ, Chen D, Chen Q, Ma HL. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): identification, expression analysis, and evaluation of their roles in tuber development [J]. Biochem Biophys Res Com, 2016, 471 (2): 320-327
32 Islam S, Choudhury M, Majlish ANK, Islam T, Ghosh A. Comprehensive genome-wide analysis of Glutathione S-transferase gene family in potato (Solanum tuberosum L.) and their expression profiling in various anatomical tissues and perturbation conditions [J]. Gene, 2017, 639: 149-162
33 Liu WG, Tang X, Zhu X, Qi XH, Zhang N, Si HJ. Genome-wide identification and expression analysis of the E2 gene family in potato [J]. Mol Biol Rep, 2019, 46: 777-791
34 Shuai B, Reynaga-Pena CG, Springer PS. The Lateral Organ Boundaries gene defines a novel, plant-specific gene family [J]. Plant Physiol, 2002, 129 (2): 747-761
35 Naito T, Yamashino T, Kiba T, Koizumi N, Kojima M, Sakakibara H, Mizuno T. A link between cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) that belongs to the AS2/LOB (LATERAL ORGAN BOUNDARIES) family genes in Arabidopsis thaliana [J]. Biosci Biotechnol Bioch, 2007, 71 (5): 1269-1278
36 Soyano T, Thitamadee S, Machida Y, Chua NH. ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis [J]. Plant Cell, 2008, 20 (12): 3359-3373
37 Xu B, Li ZY, Zhu Y, Wang H, Ma H, Dong AW, Huang H. Arabidopsis genes AS1, AS2, and JAG negatively regulate boundary-specifying genes to promote sepal and petal development [J]. Plant Physiol, 2007, 146 (2): 566-575
38 Lee HW, Kim NY, Lee DJ, Kim J. LBD18/ASL20 Regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis [J]. Plant Physiol, 2009, 151 (3): 1377-1389
39 Mangeon A, Lin WC, Springer PS. Functional divergence in the Arabidopsis LOB-domain gene family [J]. Plant Sign Behav, 2012, 7 (12): 1544-1547
40 Sun SB, Meng LS, Sun XD, Feng ZH. Using high competent shoot apical meristems of cockscomb as explants for studying function of ASYMMETRIC LEAVES2-LIKE11 (ASL11) gene of Arabidopsis [J]. Mol Biol Rep, 2010, 37 (8): 3973-3982
41 Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis [J]. Plant Cell, 2007, 19 (10): 3037-3057
42 刘铃, 武小龙, 诸葛强. 植物应答非生物胁迫信号传导研究进展[J]. 分子植物育种, 2018, 16 (2): 614-625 [Liu L, Wu XL, Zhuge Q. Research progress of abiotic stress responsive signal pathway in plant [J]. Mol Plant Breed, 2018, 16 (2): 614-625]

相似文献/References:

[1]叶彦,缪树华.长期继代培养马铃薯愈伤组织的植株再生[J].应用与环境生物学报,1995,1(01):26.
 Ye Yan,Miao Shuhua.PLANT REGENERATION FROM LONG-TERM SUBCULTURED CALLI OF POTATO[J].Chinese Journal of Applied & Environmental Biology,1995,1(06):26.
[2]唐巍,杨映根,郭仲琛,等.马铃薯微型薯诱导的激素调节[J].应用与环境生物学报,1996,2(04):347.
 Tang Wei,Yang Yinggen,Guo Zhongchen,et al.HORMONAL CONTROL ON THE FORMATION OF MICROTUBERS OF POTATO[J].Chinese Journal of Applied & Environmental Biology,1996,2(06):347.

更新日期/Last Update: 2020-12-25