|本期目录/Table of Contents|

[1]安彤,吴宗林,庞悦,等.导电材料强化挥发性脂肪酸互营氧化产甲烷菌群的种间直接电子传递研究进展[J].应用与环境生物学报,2021,27(03):800-807.[doi:10.19675/j.cnki.1006-687x.2020.06009]
 AN Tong,WU Zonglin,PANG Yue,et al.Direct interspecies electron transfer strengthened by conductive materials between syntrophic methanogenic communities of volatile fatty acids[J].Chinese Journal of Applied & Environmental Biology,2021,27(03):800-807.[doi:10.19675/j.cnki.1006-687x.2020.06009]
点击复制

导电材料强化挥发性脂肪酸互营氧化产甲烷菌群的种间直接电子传递研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年03期
页码:
800-807
栏目:
综述
出版日期:
2021-06-25

文章信息/Info

Title:
Direct interspecies electron transfer strengthened by conductive materials between syntrophic methanogenic communities of volatile fatty acids
作者:
安彤吴宗林庞悦孙照勇苟敏
四川大学建筑与环境学院,四川省环境保护有机废弃物资源化利用重点实验室 成都 610065
Author(s):
AN Tong WU Zonglin PANG Yue SUN Zhaoyong & GOU Min?
Sichuan Provincial Key Laboratory for Resource Utilization of Organic Waste, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
关键词:
厌氧消化挥发性脂肪酸碳材料铁材料种间直接电子传递
Keywords:
anaerobic digestion volatile fatty acid carbon material iron material direct interspecies electron transfer
DOI:
10.19675/j.cnki.1006-687x.2020.06009
摘要:
挥发性脂肪酸(volatile fatty acid,VFA)降解是厌氧消化的限速步骤,其产甲烷效率取决于微生物的种间电子传递能力. 种间直接电子传递(direct interspecies electron transfer,DIET)克服了种间氢/甲酸电子转移的热力学限制,可加速VFA降解产甲烷过程. 基于微生物利用自身结构(如纳米导线、细胞色素c及其他蛋白组分等)进行DIET的原理,综述了外源添加导电材料对VFA厌氧消化产甲烷过程中DIET的强化效果及作用机制. 碳材料和铁材料均能有效提高厌氧消化体系的甲烷产率,并缩短VFA的降解时间;碳材料通过替代纳米导线或富集具有DIET能力的微生物(如地杆菌)来实现DIET的强化. 但不同类型铁材料的DIET强化机制存在着差异:磁铁矿的作用包括替代细胞色素c、诱导与DIET相关蛋白质的表达以及富集DIET微生物等;赤铁矿和针铁矿也可富集DIET微生物,此外赤铁矿还可促进细胞聚集体的形成及稳定,使DIET的进行更加有利. 未来应进一步探究地杆菌以外微生物的DIET能力及作用机制,并优化导电材料强化厌氧消化产甲烷的工艺,以加速有机废弃物的高效资源化处理进程. (图2 表3 参59)
Abstract:
The degradation of volatile fatty acids (VFAs) is the rate-limiting step of anaerobic digestion, and its methane production efficiency depends on interspecific electron transport. Direct interspecies electron transfer (DIET) can overcome the thermodynamic limitations of interspecies hydrogen/formate transfer and accelerate methane production via VFA degradation. Based on the principle that microorganisms use their own structures (such as nanowires, cytochrome c, and other protein components) to perform DIET, this article summarizes the strengthening effect and mechanism of DIET in the methanogenesis process of VFA anaerobic digestion by adding conductive materials. We showed that carbon and iron materials can effectively increase methane generation in anaerobic digestive systems and shorten the degradation time of VFA, and carbon materials can enhance DIET by replacing nanowires or enriching with microorganisms that are capable of DIET (e.g., Geobacter). However, there are differences in the mechanism of DIET enhancement among different types of iron materials. The role of magnetite includes replacing cytochrome c, inducing the expression of proteins related to DIET, and enriching the microorganisms. Hematite and goethite can also enrich microorganisms related to DIET, and hematite can promote the formation and stabilization of aggregates, thereby supporting DIET. In the future, it is necessary to further explore the microorganisms that are capable of DIET other than Geobacter and optimize the process of anaerobic digestion with conductive materials to accelerate the efficiency and resource utilization processes of organic waste.

参考文献/References:

1 Ajay CM, Mohan S, Dinesha P, Rosen, MA. Review of impact of nanoparticle additives on anaerobic digestion and methane generation [J]. Fuel, 2020, 277: 118234
2 周婷, 余林鹏, 符力, 周顺桂. 微生物直接电子传递:甲烷代谢古菌研究进展[J]. 应用与环境生物学报, 2018, 24 (5): 1032-1040 [Zhou T, Yu LP, Fu L, Zhou SG. Microbial direct electron transfer: advances in its study in the metabolism of methane by Archaea [J]. Chin J Appl Environ Biol, 2018, 24 (5): 1032-1040]
3 张杰, 陆雅海. 互营氧化产甲烷微生物种间电子传递研究进展[J]. 微生物学通报, 2015, 42 (5): 920-927 [Zhang J, Lu YH. Advances in interspecific electron transport of methanogenic microorganisms [J]. Microbiol Chin, 2015, 42 (5): 920-927]
4 Zhang MZL. A review of interspecies electron transfer in anaerobic digestion [J]. IOP Confer Series Earth Environ, 2019, 310: 42026
5 Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria [J]. Science, 2010, 330 (6009): 1413-1415
6 Zhao ZQ, Wang JF, Li Y, Zhu TT, Yu QL, Wang TT, Liang S, Zhang YB. Why do DIETers like drinking: metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol [J]. Water Res, 2020, 171: 115425
7 Lovley DR, Tuominen MT, McCarthy KD, Nicoll JS, Reguera G, Mehta T. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435 (7045): 1098-1101
8 Park JH, Kang HJ, Park KH, Park, HD. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications [J]. Bioresour Technol, 2018, 254: 300-311
9 Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR. Tunable metallic-like conductivity in microbial nanowire networks [J]. Nat Nanotechnol, 2011, 6 (9): 573-579
10 Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J]. PNAS, 2006, 103 (30): 11358-11363
11 Rotaru A, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane [J]. Energy Environ Sci, 2014, 7 (1): 408-415
12 Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates [J]. mBio, 2011, 2 (4): e159
13 Rotaru A, Shrestha PM, Liu F, Markovaite B, Chen SH, Nevin KP, Lovley DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri [J]. Appl Environ Microbiol, 2014, 80 (15): 4599-4605
14 Mehta T, Coppi MV, Childers ST, Lovley DR. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens [J]. Appl Environ Microbiol, 2005, 71 (12): 8634-8641
15 Leang C, Qian X, Mester T, Lovley DR. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens [J]. Appl Environ Microbiol, 2010, 76 (12): 4080-4084
16 Lovley D. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination [J]. Energy Environ Sci, 2011, 12 (4): 4896-4906
17 Esteve Nú?ez A, Sosnik J, Visconti P, Lovley DR. Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens [J]. Environ Microbiol, 2008, 10 (2): 497-505
18 Malvankar NS, Mester T, Tuominen MT, Lovley DR. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria [J]. Chem Phys Chem, 2012, 13 (2): 463-468
19 Bonanni PS, Massazza D, Busalmen JP. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms [J]. Phys Chem Chem Phys, 2013, 15 (25): 10300
20 Lovley DR. Electromicrobiology [J]. Annu Rev Microbiol, 2012, 66: 391-409
21 Yang YG, Xu MY, Guo J, Sun GP. Bacterial extracellular electron transfer in bioelectrochemical systems [J]. Process Biochem, 2012, 47 (12): 1707-1714
22 Busalmen JP, Esteve-Nú?ez A, Berná A, Feliu JM. c-Type cytochromes wire electricity-producing bacteria to electrodes [J]. Angew Chem Int Edit, 2008, 47 (26): 4874-4877
23 Meyer TE, Tsapin AI, Vandenberghe I, De Smet L, Frishman D, Nealson, KH, Cusanovich, MA, Van Beeumen JJ. Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes [J]. OMICS, 2004, 8 (1): 57-77
24 Bücking C, Piepenbrock A, Kappler A, Gescher J. Outer-membrane cytochrome-independent reduction of extracellular electron acceptors in Shewanella oneidensis [J]. Microbiology, 2012, 158 (8): 2144-2157
25 孔冠楠, 许玫英, 杨永刚. 基于直接接触的微生物胞外电子传递[J]. 微生物学报, 2017, 57 (5): 643-650 [Kong GN, Xu MY, Yang YG. Microbial extracellular electron transport based on direct contact [J]. Acta Microbiol Sin, 2017, 57 (5): 643-650]
26 Zhang S, Chang J, Lin C, Pan YR, Cui KP, Zhang XY, Liang P, Huang X. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon [J]. Bioresour Technol, 2017, 245: 132-137
27 Chen SS, Rotaru AE, Shrestha PM, Malvankar NS, Liu FH, Fan W, Nevin KP, Lovley DR. Promoting interspecies electron transfer with biochar [J]. Sci Rep, 2014, 4 (1): 5019
28 李坚, 汤佳, 庄莉, 许杰龙. 导电性生物炭促进Geobacter和Methanosarcina共培养体系互营产甲烷过程[J]. 生态环境学报, 2018, 27 (7): 1260-1268 [Li J, Tang J, Zhang L, Xu JL. Conductive biochar stimulates acetate conversion to methane by syntrophic interaction between Geobacter and Methanosarcina [J]. Ecol Environ Sci, 2018, 27 (7): 1260-1268]
29 Zhao ZQ, Zhang YB, Yu QL, Dang Y, Li Y, Quan X. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate [J]. Water Res, 2016, 102: 475-484
30 Barua S, Zakaria BS, Dhar BR. Enhanced methanogenic co-degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers [J]. Bioresour Technol, 2018, 266: 259-266
31 Lin L, Chowdhury B, Zakaria BS, Dhar BR. Temperature-dependent (20-55 °C) electrocatalytic characteristics during ethanol/propionate degradation by methanogenic communities grown on conductive carbon fibers [J]. Chem Eng J, 2020, 391: 123566
32 Zhao ZQ, Zhang YB, Holmes DE, Dang Y, Woodard TL, Nevin KP, Lovley DR. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors [J]. Bioresour Technol, 2016, 209: 148-156
33 Lee J, Lee S, Park H. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors [J]. Bioresour Technol, 2016, 205: 205-212
34 Park J, Park J, Je Seong H, Sul WJ, Jin K, Park H. Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon [J]. Bioresour Technol, 2018, 259: 414-422
35 潘怡然, 崔康平, 张硕, 常佳丽, 黄霞. 颗粒活性炭促进高温厌氧消化的研究[J]. 中国环境科学, 2018, 38 (4): 1324-1328 [Pan YR, Cui KP, Zhang S, Chang JL, Hunag X. The study on granular activated carbon to promote thermophilic anaerobic digestion [J]. Chin Environ Sci, 2018, 38 (4): 1324-1328]
36 Zhang J, Lu Y. Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments [J]. Front Microbiol, 2016, 7: 1316
37 Shen N, Liang Z, Chen Y, Song H, Wan JF. Enhancement of syntrophic acetate oxidation pathway via single walled carbon nanotubes addition under high acetate concentration and thermophilic condition [J]. Bioresour Technol, 2020, 306: 123182
38 Xu YG, Wang MW, Yu QL, Zhang YB. Enhancing methanogenesis from anaerobic digestion of propionate with addition of Fe oxides supported on conductive carbon cloth [J]. Bioresour Technol, 2020, 302: 122796
39 Liu FH, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Promoting direct interspecies electron transfer with activated carbon [J]. Energy Environ Sci, 2012, 5 (10): 8982-8989
40 Zhao ZS, Li Y, Yu QL, Zhang YB. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion [J]. Bioresour Technol, 2018, 250: 79-85
41 靖宪月, 陈姗姗, 周顺桂. 吸收胞外电子的电活性微生物[J]. 微生物学报, 2018, 58 (1): 19-27 [Jing XY, Chen SS, Zhou SG. Electroactive microorganisms absorbing extracellular electrons [J]. Acta Microbiol Sin, 2018, 58 (1): 19-27]
42 唐家桓, 刘毅, 周顺桂, 袁勇. 电活性生物膜:形成、表征及应用[J]. 应用与环境生物学报, 2014, 20 (6): 1096-1103 [Tang JH, Liu Y, Zhou SG, Yuan Y. Electrochemically active bio?lms: formation, characterization and application [J]. Chin J Appl Environ Biol, 2014, 20 (6): 1096-1103]
43 Holmes DE, Shrestha PM, Walker DJF, Dang Y, Nevin KP, Woodard TL, Lovley DR. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils [J]. Appl Environ Microbiol, 2017, 83 (9): e00223-17
44 Maruthupandy M, Anand M, Maduraiveeran G, Beevi ASH, Priya RJ. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa [J]. Adv Nat Sci-Nanosci, 2015, 6 (4): 45007
45 Reimers CE, Li C, Graw MF, Schrader PS, Wolf M. The identification of cable bacteria attached to the anode of a benthic microbial fuel cell: evidence of long distance extracellular electron transport to electrodes [J]. Front Microbiol, 2017, 8: 2055
46 Li H, Chang J, Liu P, Fu L, Ding D, Lu Y. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments [J]. Environ Microbiol, 2015, 17 (5): 1533-1547
47 李坚. 磁铁矿介导丙酸互营氧化产甲烷过程的微生物机制[D]. 北京:中国科学院大学, 2018 [Li J. Microbial mechanism of magnetite-mediated syntrophic propionate degradation to methane [D]. Beijing: University of Chinese Academy of Sciences, 2018]
48 Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation [J]. Environ Sci Technol, 2014, 48 (13): 7536-7543
49 Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate [J]. J Biosci Bioeng, 2015, 119 (6): 678-682
50 钟成. 高温下添加铁氧化物对乙酸厌氧产甲烷的影响[D]. 合肥: 合肥工业大学, 2019 [Zhong C. The impact of addition of iron oxides on anaerobic methanogenic acetate degradation at the thermophilic environment [D]. Hefei: Hefei University of Technology, 2019]
51 钟成, 王进, 张勋, 岳正波. 高温下添加不同铁氧化物对乙酸厌氧产甲烷及微生物互营的影响[Z]. 合肥: 2018中国环境科学学会科学技术年会, 2018 [Zhong C, Wang J, Zhang X, Yue ZB. The impact of addition of different iron oxides on anaerobic methanogenic acetate degradation and microbial interaction at the thermophilic environment [Z]. Heifei: Annual Science and Technology Conference of Chinese Society for Environmental Sciences in 2018, 2018]
52 Wang J, Zhong C, Zhang X, Liu HM, Ma D, Yue ZB. Quantitative analysis of acetate oxidation in the presence of iron in a thermophilic methanogenic reactor [J]. Renew Energy, 2020, 149: 928-932
53 Jing YH, Wan JJ, Angelidaki IJ, Zhang SC, Luo G. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite [J]. Water Res, 2017, 108: 212-221
54 Yang ZM, Guo RB, Shi XH, Wang CS, Wang L, Dai M. Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane [J]. RSC Adv, 2016, 6 (31): 25662-25668
55 Yin QD, Yang S, Wang ZZ, Xing LZ, Wu GX. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide [J]. Chem Eng J, 2018, 333: 216-225
56 Yin QD, Li BMJ. Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon [J]. Int Biodeter Biodegrad, 2017, 119: 104-110
57 Liu FH, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange [J]. Environ Microbiol, 2015, 17 (3): 648-655
58 Ye J, Hu AD, Ren GP, Chen M, Tang JH, Zhang PY, Zhou, Shungui, He Z. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud [J]. Water Res, 2018, 134: 54-62
59 Liu XM, Sheng GP, Luo HW, Zhang F, Yuan SJ, Xu J, Zeng RJ, Wu JG, Yu HQ. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation [J]. Environ Sci Technol, 2010, 44 (11): 4355-4360

相似文献/References:

[1]沈东升,徐向阳,冯孝善.进水PCP和CODCr质量浓度对厌氧反应器运行效能的影响[J].应用与环境生物学报,1997,3(04):375.
 Shen Dongsheng,Xu Xiangyang,Feng Xiaoshan.EFFECT OF PCP & CODcr MASS CONCENTRATIONS IN INFLUENT ON OPERATIONAL BEHAVIORS OF ANAEROBIC REACTORS[J].Chinese Journal of Applied & Environmental Biology,1997,3(03):375.
[2]张丽娟,符波,罗衎,等.同型产乙酸菌富集物的群落解析及转化合成气产乙酸[J].应用与环境生物学报,2014,20(06):1052.[doi:10.3724/SP.J.1145.2014.04040]
 ZHANG Lijuan,FU Bo,LUO Kan,et al.Microbial community characterization of homoacetogen enrichment culture and its acetate production through syngas bioconversion[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):1052.[doi:10.3724/SP.J.1145.2014.04040]
[3]向元英,杨暖,孙霞,等.单室微生物电解池强化混合脂肪酸产甲烷*[J].应用与环境生物学报,2016,22(05):872.[doi:10.3724/SP.J.1145.2015.12009]
 XIANG Yuanying,YANG Nuan,et al.Enhanced methane production from SCFAs wastewater using single-chamber microbial electrolysis cell*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):872.[doi:10.3724/SP.J.1145.2015.12009]
[4]孙娟,李东,郑涛,等.微量元素对蔬菜废弃物连续厌氧消化系统微生物群落结构的影响[J].应用与环境生物学报,2019,25(01):156.[doi:10.19675/j.cnki.1006-687x.2018.03035]
 SUN Juan,LI Dong**,ZHENG Tao**,et al.Effects of trace elements on microbial community structure in continuous anaerobic digestion of vegetable waste[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):156.[doi:10.19675/j.cnki.1006-687x.2018.03035]
[5]乔子茹,魏华炜,马佳莹,等.餐厨垃圾生物处理过程中VOCs的产生与控制研究进展[J].应用与环境生物学报,2020,26(01):210.[doi:10.19675/j.cnki.1006-687x.2019.04018]
 QIAO Ziru,WEI Huawei,MA Jiaying,et al.Review of the generation of volatile organic compounds during the bio-treatment process of food waste[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):210.[doi:10.19675/j.cnki.1006-687x.2019.04018]
[6]聂宇,陈娅婷,孙照勇,等.污水/城市污泥中抗生素对厌氧消化的影响研究进展[J].应用与环境生物学报,2020,26(02):479.[doi:10.19675/j.cnki.1006-687x.2019.05001]
 NIE Yu,CHEN Yating,SUN Zhaoyong,et al.Research progress on the effects of antibiotics on anaerobic digestion in sewage and municipal sludge[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):479.[doi:10.19675/j.cnki.1006-687x.2019.05001]
[7]马佳莹,汪冰寒,乔子茹,等.碳基材料对餐厨垃圾厌氧消化效率和微生物群落的影响研究进展[J].应用与环境生物学报,2020,26(03):730.[doi:10.19675/j.cnki.1006-687x.2019.07040]
 MA Jiaying,WANG Binghan,QIAO Ziru & XIE Bing.Effects of carbon-based materials on anaerobic digestion efficiency and microbial community of food waste[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):730.[doi:10.19675/j.cnki.1006-687x.2019.07040]
[8]蒋心茹,姬高升,刘杨,等.市政污泥胞外聚合物(EPS)的形成过程与解聚方法研究进展[J].应用与环境生物学报,2020,26(05):1282.[doi: 10.19675/j.cnki.1006-687x.2019.10014]
 JIANG Xinru,,et al.Overview of extracellular polymeric substance (EPS) generation and disaggregation in municipal sewage sludge[J].Chinese Journal of Applied & Environmental Biology,2020,26(03):1282.[doi: 10.19675/j.cnki.1006-687x.2019.10014]

更新日期/Last Update: 2021-06-25