1 Green R, Abidjan M R. Conducting polymers for neural prosthetic and neural interface applications [J]. Adv Mater, 2015, 27: 7620-7637 2 Su D, Di F, Xing J, Che JF, Xiao YH. Application of conducting polymers in controlled drug delivery system [J]. Prog Chem, 2014, 26 (12): 1962-1976 3 Moore AN, Hartgerink JD. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration [J]. Acc Chem Res, 2017, 50 (4): 714-722 4 Li R, Fan T, Chen G, Zhang K, Su B, Tian J, He M. Autonomous self-healing, antifreezing, and transparent conductive elastomers [J]. Chem Mater, 2020, 32 (2): 874-881 5 Leach DG, Dharmaraj N, Piotrowski SL, Lopez-Silva TL, Lei YL, Sikora AG, Young S, Hartgerink JD. STINGel: controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy [J]. Biomatirials, 2018, 163: 67-75 6 Limongi T, Rocchi A, Cesca F, Tan H, Miele E, Giugni A, Orlando M, Perrone Donnorso M, Perozziello G, Benfenati F, Fabrizio ED. Delivery of brain-derived neurotrophic factor by 3D biocompatible polymeric scaffolds for neural tissue engineering and neuronal regeneration [J]. Mol Neurobiol, 2018, 55: 8788-8798 7 Wen Y, Waltman A, Han H, Collier JH. Switching the immunogenicity of peptide assemblies using surface properties [J]. ACS Nano, 2016, 10 (10): 9274-9286 8 Boehler C, Oberueber F, Schlabach S, Stieglitz T, Asplund M. Long-term stable adhesion for conducting polymers in biomedical applications: irox and nanostructured platinum solve the chronic challenge [J]. ACS Appl Mater Interfaces, 2017, 9 (1): 189-197 9 Xue J Q, Dai JZ, Zhang J, Zhao CX, Zhang YJ. New chemical materials [J]. Adv Mater Ind, 2017, 45 (9): 56-58 10 Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials [J]. Semin Immunol, 2017, 29: 72-91 11 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 5: 5133-5141 [Yang J, Chen Y, Zhao L, Zhang Z, Yang W, Liu Y, Peng K, Wang Y. Research progress of the construction of self-healing hydrogels based on dynamic reversible non-covalent systems [J]. Mater Rep, 2020, 5: 5133-5141] 12 Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar C A, Suo Z, Mooney D J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy [J]. PNAS, 2014, 111 (27): 9762-9767 13 Mao X, Cheng R, Zhang H, Bae J, Cheng L, Zhang L, Deng L, Cui W, Zhang Y, Santos HA, Sun X. Self-healing and injectable hydrogel for matching skin flap regeneration [J]. Adv Sci, 2019, 6 (3): 1801555 14 Satarkar NS, Hilt JZ. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release [J]. J Contr Release, 2008, 130 (3): 246-251 15 Cao Y, Tao X, Jiang S, Gao N, Sun Z. Tuning thermodynamic properties of deep eutectic solvents for achieving highly efficient photothermal sensor [J]. J Mol Liq, 2020, 308: 113163 16 Shi L, Han Y, Hilborn J, Ossipov D. “Smart” drug loaded nanoparticle delivery from a self-healing hydrogel enabled by dynamic magnesium-biopolymer chemistry [J]. Chem Com, 2016, 52 (74): 11151-11154 17 Yavvari PS, Pal S, Kumar S, Kar A, Awasthi AK, Naaz A, Srivastava A, Bajaj A. Injectable, self-healing chimeric catechol-Fe(iii) hydrogel for localized combination cancer therapy [J]. ACS Biomater Sci Eng, 2017, 3 (12): 3404-3413 18 Ohta S, Hiramoto S, Amano Y, Sato M, Suzuki Y, Shinohara M, Emoto S, Yamaguchi H, Ishigami H, Sakai Y. Production of cisplatin-incorporating hyaluronan nanogels via chelating ligand-metal coordination [J]. Bioconjugate Chem, 2016, 27 (3): 504-508 19 Han L, Liu K, Wang M, Wang K, Fang L, Chen H, Zhou J, Lu X. Mussel-inspired adhesive and conductive hydrogel with long‐lasting moisture and extreme temperature tolerance [J]. Adv Funct Mater, 2018, 28 (3): 1704195 20 Liang S, Zhang Y, Wang H, Xu Z, Chen J, Bao R, Tan B, Cui Y, Fan G, Wang W. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches [J]. Adv Mater, 2018, 30 (23): 1704235 21 Li L, Smitthipong W, Zeng H. Mussel-inspired hydrogels for biomedical and environmental applications [J]. Polym Chem, 2015, 6 (3): 353-358 22 Avdeef A, Sofen S R, Bregante TL, Raymond KN. Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin [J]. J Am Chem Soc, 1978, 100 (17): 5362-5370 23 Webber MJ, Appel EA, Meijer EW, Langer R. Supramolecular biomaterials [J]. Nat Mater, 2016, 15: 13-26 24 Krogsgaard M, Nue V, Birkedal H. Mussel-inspired materials: self-healing through coordination chemistry [J]. Chem Eur J, 2016, 22 (3): 844-857 25 Han L, Lu X, Liu K, Wang K, Fang L, Weng L T, Zhang H, Tang Y, Ren F, Zhao C. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization [J]. ACS Nano, 2017, 11 (3): 2561-2574 26 Han L, Lu X, Wang M, Gan D, Deng W, Wang K, Fang L, Liu K, Chan C W, Tang Y. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics [J]. Small, 2017, 13 (2): 1601916 27 Haller C, Buerzle W, Kivelio A, Perrini M, Brubaker C, Gubeli R, Mallik A, Weber W, Messersmith P, Mazza E. Mussel-mimetic tissue adhesive for fetal membrane repair: an ex vivo evaluation [J]. Acta Biomater, 2012, 8 (12): 4365-4370 28 Liu Y, Meng H, Qian Z, Fan N, Choi W, Zhao F, Lee B P. A moldable nanocomposite hydrogel composed of a mussel-inspired polymer and a nanosilicate as a fit-to-shape tissue sealant [J]. Angew Chem Int Ed, 2017, 56 (15): 4224-4228 29 Liu Y, Meng H, Konst S, Sarmiento R, Rajachar R, Lee B P. Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity [J]. ACS Appl Mater Interfaces, 2014, 6 (19) 16982-16992 30 Chan CY, Choi JS, Jung YJ, Cho YW. Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking [J]. J Mater Chem B, 2014, 2 (2): 201-209 31 Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs [J]. Prog Polym Sci, 2012, 37 (8) 1079-1104 32 Murphy SV, Atala A. 3D bioprinting of tissues and organs [J]. Nat Biotechnol, 2014, 32: 773-785 33 H?lzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting [J]. Biofabrication, 2016, 8 (3): 032002 34 Deng Z, Wang H, Ma PX, Guo B. Self-healing conductive hydrogels: preparation, properties and applications [J]. Nanoscale, 2020, 12 (3): 1224-1246 35 Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, Guan X, Zhong Z, Jin X, Khademhosseini A. Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks [J]. Adv Healthcare Mater, 2017, 6 (12): 1601451 36 Highley CB, Rodell CB, Burdick JA. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels [J]. Adv Mater, 2015, 27 (34): 5075-5079 37 Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking [J]. ACS Biomater Sci Eng, 2016, 2 (10): 1743-1751 38 Shi L, Carstensen H, H?lzl K, Lunzer M, Li H, Hilborn J, Ovsianikov A, Ossipov DA. Dynamic coordination chemistry enables free directional printing of biopolymer hydrogel [J]. Chem Mater, 2017, 29(14): 5816-5823 39 Zheng SY, Ding H, Qian J, Yin J, Wu ZL, Song Y, Zheng Q. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability [J]. Macromolecules, 2016, 49 (24): 9637-9646 40 Nejadnik MR, Yang X, Bongio M, Alghamdi HS, Beucken JJ, Huysmans MC, Jansen JA, Hilborn J, Ossipov D, Leeuwenburgh SC. Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles [J]. Biomaterials, 2014, 35 (25): 6918-6929 41 Shi L, Wang F, Zhu W, Xu Z, Fuchs S, Hilborn J, Zhu L, Ma Q, Wang Y, Weng X, Ossipov DA. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach [J]. Adv Funct Mater, 2017, 27 (37): 1700591 42 Shi L, Zhao Y, Xie Q, Fan C, Hilborn J, Dai J, Ossipov DA. Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing [J]. Adv Healthcare Mater, 2018, 7 (5): 1700973 43 Tian R, Qiu X, Yuan P, Lei K, Wang L, Bai Y, Liu S, Chen X. Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration [J]. ACS Appl Mater Interfaces, 2018, 10 (20): 17018-17027 44 Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water [J]. Nat Commun, 2017, 8: 14230 45 Wang Z, Lu X, Sun S, Yu C, Xia H. Preparation, characterization and properties of intrinsic self-healing elastomers [J]. J Mater Chem B, 2019, 7 (32): 4876-4926 46 Palleau E, Morales D, Dickey MD, Velev OD. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting [J]. Nat Commun, 2013, 4: 2257 47 Lee BP, Lin MH, Narkar A, Konst S, Wilharm R. Modulating the movement of hydrogel actuator based on catechol-iron ion coordination chemistry [J]. Sens Actuators B, 2015, 206: 456-462 48 Lee BP, Konst S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry [J]. Adv Mater, 2014, 26 (21): 3415-3419 49 Liu S, Oderinde O, Hussain I, Yao F, Fu G. Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties [J]. Polymer, 2018, 144: 111-120 50 Liu S, Li K, Hussain I, Oderinde O, Yao F, Zhang J, Fu G. A conductive self-healing double network hydrogel with toughness and force sensitivity [J]. Chem Eur J, 2018, 24 (25): 6632-6638