|本期目录/Table of Contents|

[1]舒浩然,徐霞,李伟杰,等.金属配位交联功能水凝胶的生物医学应用[J].应用与环境生物学报,2020,26(06):1554-1559.[doi:DOI: 10.19675/j.cnki.1006-687x.2020.04038]
 SHU Haoran,XU Xia,LI Weijie,et al.Biomedical applications of hydrogels cross-linked by metal-ligand coordination[J].Chinese Journal of Applied & Environmental Biology,2020,26(06):1554-1559.[doi:DOI: 10.19675/j.cnki.1006-687x.2020.04038]
点击复制

金属配位交联功能水凝胶的生物医学应用()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年06期
页码:
1554-1559
栏目:
综述
出版日期:
2020-12-25

文章信息/Info

Title:
Biomedical applications of hydrogels cross-linked by metal-ligand coordination
作者:
舒浩然徐霞李伟杰王润月郭坤
1西南民族大学药学院 成都 610041 2西南民族大学化学与环境保护工程学院 成都 610041 3中国科学院成都生物研究所 成都 610041
Author(s):
SHU Haoran1 XU Xia1 LI Weijie2 WANG Runyue1 3 & GUO Kun1?
1 College of Pharmacy, Southwest Minzu University, Chengdu 610041, China 2 College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China 3 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
水凝胶金属配位生物医学
Keywords:
hydrogel metal-ligand coordination biomedical
DOI:
DOI: 10.19675/j.cnki.1006-687x.2020.04038
摘要:
水凝胶以其良好的亲水性和生物相容性逐渐发展成为一种新型的智能材料,广泛应用于医疗卫生、化妆品行业以及工农林业等领域. 基于金属-配体之间的配位化学作用构筑的水凝胶在药物控制输送、生物3D打印和组织再生等医学领域中具有潜在的应用价值. 综述了金属配位交联功能水凝胶在生物医学领域的研究进展、应用价值和未来发展趋势. 重点阐述了金属-配体配位交联制备的自愈合水凝胶在药物输送、组织黏合剂、3D打印、组织工程支架和传感器等生物医学领域的应用,对这类水凝胶分子的设计思路、应用和性能研究进行了总结与分析,为功能性聚合物水凝胶的应用研究提供理论基础和参考价值,最后介绍了水凝胶当前的研究现状及其将来发展的趋势. 我们相信,随着社会和科技的进步,功能水凝胶的构筑设计和应用研究将大大拓展水凝胶材料在生物医学领域的应用前景,在一定程度上促进功能材料领域的快速发展. (图3 参50)
Abstract:
Hydrogels have been gradually developed into novel smart materials owing to their outstanding hydrophilicity and biocompatibility. Therefore, it has been widely used in biomedical applications such as healthcare, cosmetic industry, and agriculture. In this study, we summarized the research progress, application value, and development trends of hydrogels, focusing on the application of hydrogels cross-linked by metal-ligand coordination in the field of drug delivery systems, tissue adhesives, 3D printable “bioink,” injectable tissue engineering scaffolds, and biological sensors. Furthermore, we summarized and analyzed design ideas, applications, and properties of these hydrogel molecules, providing a theoretical basis and reference values for application research of functional polymer hydrogels. Finally, we introduced the research status and development trends of hydrogels. As functional materials, hydrogels cross-linked by metal–ligand coordination will be one of the crucial research directions for preparing functional polymers with high application value and excellent biocompatibility by a simple method in the future. We believe that research on the construction and application of functional hydrogels will greatly expand the application prospects of hydrogel materials in the biomedical field and can also promote the development of functional materials.

参考文献/References:

1 Green R, Abidjan M R. Conducting polymers for neural prosthetic and neural interface applications [J]. Adv Mater, 2015, 27: 7620-7637
2 Su D, Di F, Xing J, Che JF, Xiao YH. Application of conducting polymers in controlled drug delivery system [J]. Prog Chem, 2014, 26 (12): 1962-1976
3 Moore AN, Hartgerink JD. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration [J]. Acc Chem Res, 2017, 50 (4): 714-722
4 Li R, Fan T, Chen G, Zhang K, Su B, Tian J, He M. Autonomous self-healing, antifreezing, and transparent conductive elastomers [J]. Chem Mater, 2020, 32 (2): 874-881
5 Leach DG, Dharmaraj N, Piotrowski SL, Lopez-Silva TL, Lei YL, Sikora AG, Young S, Hartgerink JD. STINGel: controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy [J]. Biomatirials, 2018, 163: 67-75
6 Limongi T, Rocchi A, Cesca F, Tan H, Miele E, Giugni A, Orlando M, Perrone Donnorso M, Perozziello G, Benfenati F, Fabrizio ED. Delivery of brain-derived neurotrophic factor by 3D biocompatible polymeric scaffolds for neural tissue engineering and neuronal regeneration [J]. Mol Neurobiol, 2018, 55: 8788-8798
7 Wen Y, Waltman A, Han H, Collier JH. Switching the immunogenicity of peptide assemblies using surface properties [J]. ACS Nano, 2016, 10 (10): 9274-9286
8 Boehler C, Oberueber F, Schlabach S, Stieglitz T, Asplund M. Long-term stable adhesion for conducting polymers in biomedical applications: irox and nanostructured platinum solve the chronic challenge [J]. ACS Appl Mater Interfaces, 2017, 9 (1): 189-197
9 Xue J Q, Dai JZ, Zhang J, Zhao CX, Zhang YJ. New chemical materials [J]. Adv Mater Ind, 2017, 45 (9): 56-58
10 Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials [J]. Semin Immunol, 2017, 29: 72-91
11 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 5: 5133-5141 [Yang J, Chen Y, Zhao L, Zhang Z, Yang W, Liu Y, Peng K, Wang Y. Research progress of the construction of self-healing hydrogels based on dynamic reversible non-covalent systems [J]. Mater Rep, 2020, 5: 5133-5141]
12 Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar C A, Suo Z, Mooney D J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy [J]. PNAS, 2014, 111 (27): 9762-9767
13 Mao X, Cheng R, Zhang H, Bae J, Cheng L, Zhang L, Deng L, Cui W, Zhang Y, Santos HA, Sun X. Self-healing and injectable hydrogel for matching skin flap regeneration [J]. Adv Sci, 2019, 6 (3): 1801555
14 Satarkar NS, Hilt JZ. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release [J]. J Contr Release, 2008, 130 (3): 246-251
15 Cao Y, Tao X, Jiang S, Gao N, Sun Z. Tuning thermodynamic properties of deep eutectic solvents for achieving highly efficient photothermal sensor [J]. J Mol Liq, 2020, 308: 113163
16 Shi L, Han Y, Hilborn J, Ossipov D. “Smart” drug loaded nanoparticle delivery from a self-healing hydrogel enabled by dynamic magnesium-biopolymer chemistry [J]. Chem Com, 2016, 52 (74): 11151-11154
17 Yavvari PS, Pal S, Kumar S, Kar A, Awasthi AK, Naaz A, Srivastava A, Bajaj A. Injectable, self-healing chimeric catechol-Fe(iii) hydrogel for localized combination cancer therapy [J]. ACS Biomater Sci Eng, 2017, 3 (12): 3404-3413
18 Ohta S, Hiramoto S, Amano Y, Sato M, Suzuki Y, Shinohara M, Emoto S, Yamaguchi H, Ishigami H, Sakai Y. Production of cisplatin-incorporating hyaluronan nanogels via chelating ligand-metal coordination [J]. Bioconjugate Chem, 2016, 27 (3): 504-508
19 Han L, Liu K, Wang M, Wang K, Fang L, Chen H, Zhou J, Lu X. Mussel-inspired adhesive and conductive hydrogel with long‐lasting moisture and extreme temperature tolerance [J]. Adv Funct Mater, 2018, 28 (3): 1704195
20 Liang S, Zhang Y, Wang H, Xu Z, Chen J, Bao R, Tan B, Cui Y, Fan G, Wang W. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches [J]. Adv Mater, 2018, 30 (23): 1704235
21 Li L, Smitthipong W, Zeng H. Mussel-inspired hydrogels for biomedical and environmental applications [J]. Polym Chem, 2015, 6 (3): 353-358
22 Avdeef A, Sofen S R, Bregante TL, Raymond KN. Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin [J]. J Am Chem Soc, 1978, 100 (17): 5362-5370
23 Webber MJ, Appel EA, Meijer EW, Langer R. Supramolecular biomaterials [J]. Nat Mater, 2016, 15: 13-26
24 Krogsgaard M, Nue V, Birkedal H. Mussel-inspired materials: self-healing through coordination chemistry [J]. Chem Eur J, 2016, 22 (3): 844-857
25 Han L, Lu X, Liu K, Wang K, Fang L, Weng L T, Zhang H, Tang Y, Ren F, Zhao C. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization [J]. ACS Nano, 2017, 11 (3): 2561-2574
26 Han L, Lu X, Wang M, Gan D, Deng W, Wang K, Fang L, Liu K, Chan C W, Tang Y. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics [J]. Small, 2017, 13 (2): 1601916
27 Haller C, Buerzle W, Kivelio A, Perrini M, Brubaker C, Gubeli R, Mallik A, Weber W, Messersmith P, Mazza E. Mussel-mimetic tissue adhesive for fetal membrane repair: an ex vivo evaluation [J]. Acta Biomater, 2012, 8 (12): 4365-4370
28 Liu Y, Meng H, Qian Z, Fan N, Choi W, Zhao F, Lee B P. A moldable nanocomposite hydrogel composed of a mussel-inspired polymer and a nanosilicate as a fit-to-shape tissue sealant [J]. Angew Chem Int Ed, 2017, 56 (15): 4224-4228
29 Liu Y, Meng H, Konst S, Sarmiento R, Rajachar R, Lee B P. Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity [J]. ACS Appl Mater Interfaces, 2014, 6 (19) 16982-16992
30 Chan CY, Choi JS, Jung YJ, Cho YW. Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking [J]. J Mater Chem B, 2014, 2 (2): 201-209
31 Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs [J]. Prog Polym Sci, 2012, 37 (8) 1079-1104
32 Murphy SV, Atala A. 3D bioprinting of tissues and organs [J]. Nat Biotechnol, 2014, 32: 773-785
33 H?lzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting [J]. Biofabrication, 2016, 8 (3): 032002
34 Deng Z, Wang H, Ma PX, Guo B. Self-healing conductive hydrogels: preparation, properties and applications [J]. Nanoscale, 2020, 12 (3): 1224-1246
35 Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, Guan X, Zhong Z, Jin X, Khademhosseini A. Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks [J]. Adv Healthcare Mater, 2017, 6 (12): 1601451
36 Highley CB, Rodell CB, Burdick JA. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels [J]. Adv Mater, 2015, 27 (34): 5075-5079
37 Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking [J]. ACS Biomater Sci Eng, 2016, 2 (10): 1743-1751
38 Shi L, Carstensen H, H?lzl K, Lunzer M, Li H, Hilborn J, Ovsianikov A, Ossipov DA. Dynamic coordination chemistry enables free directional printing of biopolymer hydrogel [J]. Chem Mater, 2017, 29(14): 5816-5823
39 Zheng SY, Ding H, Qian J, Yin J, Wu ZL, Song Y, Zheng Q. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability [J]. Macromolecules, 2016, 49 (24): 9637-9646
40 Nejadnik MR, Yang X, Bongio M, Alghamdi HS, Beucken JJ, Huysmans MC, Jansen JA, Hilborn J, Ossipov D, Leeuwenburgh SC. Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles [J]. Biomaterials, 2014, 35 (25): 6918-6929
41 Shi L, Wang F, Zhu W, Xu Z, Fuchs S, Hilborn J, Zhu L, Ma Q, Wang Y, Weng X, Ossipov DA. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach [J]. Adv Funct Mater, 2017, 27 (37): 1700591
42 Shi L, Zhao Y, Xie Q, Fan C, Hilborn J, Dai J, Ossipov DA. Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing [J]. Adv Healthcare Mater, 2018, 7 (5): 1700973
43 Tian R, Qiu X, Yuan P, Lei K, Wang L, Bai Y, Liu S, Chen X. Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration [J]. ACS Appl Mater Interfaces, 2018, 10 (20): 17018-17027
44 Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water [J]. Nat Commun, 2017, 8: 14230
45 Wang Z, Lu X, Sun S, Yu C, Xia H. Preparation, characterization and properties of intrinsic self-healing elastomers [J]. J Mater Chem B, 2019, 7 (32): 4876-4926
46 Palleau E, Morales D, Dickey MD, Velev OD. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting [J]. Nat Commun, 2013, 4: 2257
47 Lee BP, Lin MH, Narkar A, Konst S, Wilharm R. Modulating the movement of hydrogel actuator based on catechol-iron ion coordination chemistry [J]. Sens Actuators B, 2015, 206: 456-462
48 Lee BP, Konst S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry [J]. Adv Mater, 2014, 26 (21): 3415-3419
49 Liu S, Oderinde O, Hussain I, Yao F, Fu G. Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties [J]. Polymer, 2018, 144: 111-120
50 Liu S, Li K, Hussain I, Oderinde O, Yao F, Zhang J, Fu G. A conductive self-healing double network hydrogel with toughness and force sensitivity [J]. Chem Eur J, 2018, 24 (25): 6632-6638

更新日期/Last Update: 2020-12-25