|本期目录/Table of Contents|

[1]安丽荣,卞文新,刘宝华,等.环境胁迫对氨氧化菌群的影响研究进展[J].应用与环境生物学报,2021,27(03):808-815.[doi:10.19675/j.cnki.1006-687x.2020.03005]
 AN Lirong,BIAN Wenxin,LIU Baohua & SHEN Tianlin.Advances in the effects of environmental stress on ammonia-oxidizing communities[J].Chinese Journal of Applied & Environmental Biology,2021,27(03):808-815.[doi:10.19675/j.cnki.1006-687x.2020.03005]
点击复制

环境胁迫对氨氧化菌群的影响研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年03期
页码:
808-815
栏目:
综述
出版日期:
2021-06-25

文章信息/Info

Title:
Advances in the effects of environmental stress on ammonia-oxidizing communities
作者:
安丽荣卞文新刘宝华申天琳
1山东农业大学资源与环境学院,土肥资源高效利用国家工程实验室 泰安 271018 2德州市平原县农业农村局 德州 253100
Author(s):
AN Lirong1 BIAN Wenxin1 LIU Baohua2 & SHEN Tianlin1?
1National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, College of Resource and Environment, Shandong Agricultural University, Taian 271018, China 2Dezhou Bureau of Agriculture and Rural Affairs, Dezhou 253100, China
关键词:
硝化作用氨氧化古菌氨氧化细菌功能基因环境监测
Keywords:
nitrification ammonia-oxidizing archaea ammonia-oxidizing bacteria functional gene environmental monitor
DOI:
10.19675/j.cnki.1006-687x.2020.03005
摘要:
土壤污染物具有隐蔽性、滞后性、难治理性等特点,长期影响着土壤生态环境的安全,如何全面、实时地监测土壤环境质量成为当今的研究热点. 氮素转化过程是元素地球化学循环中对土壤污染和质量十分敏感的代谢过程. 硝化作用是氮素转化的主要过程之一,从硝化作用的限速步骤——氨氧化过程为切入点,综述环境条件如pH、铵浓度、O2浓度、有机质含量、温度、季节等对氨氧化细菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)的生理生化性质、转录水平和群落结构的影响,以及利用分子生物学方法测定氨氧化菌群结构及其功能基因表达量用于反映环境变化的应用前景. 微生物在酶的协同作用下完成氨氧化作用;目前对氨氧化菌群群落结构的研究对象主要为16S rRNA基因和amoA功能基因;在不同的生态环境条件下,氨氧化古菌比氨氧化细菌的分布更广,且在同一环境因子胁迫下,AOB和AOA的响应有所不同,AOA在低温、低铵浓度、酸性等寡营养条件下更为活跃,AOB则在高铵浓度、碱性等条件下更为活跃,这表明二者在不同的环境条件下对硝化作用的贡献不同. 最后对氨氧化菌群群落结构以及氨氧化相关基因表达水平在揭示环境变化方面进行了展望,认为未来对氨氧化微生物代谢关键酶的基因表达信息、AOA和AOB变化规律与环境因子之间的相关性进行深入研究是非常有必要的. (图1 表1 参82)
Abstract:
Soil pollutants affect the safety of the soil ecology because they are concealed, difficult to control, and hysteretic. Following the “Soil Pollution Prevention and Control Action Plan” proposed by the State Council, studies have focused on the monitoring of soil environmental quality in a comprehensive and real-time manner. Nitrogen transformation is a geochemical cycle of elements that are sensitive to soil pollution and quality. Nitrification is an important process affecting nitrogen transformation. The first and rate-limiting step of nitrification is the ammonia-oxidizing process. In this study, the physiological and biochemical properties, transcription level, and community structure of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were reviewed under environmental stresses such as pH, ammonium availability, O2 concentration, organic matter content, temperature, and seasonal changes. Molecular biology methods to determine the structures of ammonia-oxidizing microbes and the expression of functional genes were summarized for their application in reflecting environmental change. The following inferences were derived: ammonia oxidation was accomplished under the synergistic action of enzymes; 16S rRNA genes and ammonia oxidation function genes need to be assessed primarily for studying the community structure of ammonia-oxidizing microbes; in different environments, AOA were more widely distributed than AOB; and the responses of AOA and AOB to the same environmental stress were different (AOA was more active under low temperature, low ammonium concentration, acid, and other oligotrophic conditions, whereas AOB was more active under high ammonium concentration and alkalinity), which indicated that they made different contributions to nitrification under the same environmental conditions. Finally, we concluded that ammonia-oxidizing microorganism community structure and ammonia-oxidizing function gene transcription levels can be used to reveal environmental changes. Studying the gene expression of key enzymes in the metabolism of ammonia-oxidizing microorganisms and the correlations between AOA/AOB changes and environmental stress is necessary in the future.

参考文献/References:

1 Wang X, Gao P, Li DP, Liu J, Yang N, Gu WZ, He XH, Tang WZ. Risk assessment for and microbial community changes in farmland soil contaminated with heavy metals and metalloids [J]. Ecotoxicol Environ Saf, 2019, 185: 109685
2 Jimoh AA, Lin J. Biosurfactant: a new frontier for greener technology and environmental sustainability [J]. Ecotoxicol Environ Saf, 2019, 184: 109607
3 焦欢, 李廷亮, 高继伟, 李彦, 何冰, 李顺. 不同培肥措施下复垦土壤氮素转化特征[J]. 水土保持学报, 2019, 33 (4): 147-153 [Jiao H, Li TL, Gao JW, Li Y, He B, Li S. Nitrogen transformation characteristics of reclaimed soil under different fertilizer application measures [J]. J Soil Water Convers, 2019, 33 (4): 147-153]
4 周旋, 郑琳, 胡可欣. 污染土壤的来源及危害性[J]. 武汉工程大学学报, 2014, 36 (7): 12-19 [Zhou X, Zheng L, Hu KX. Sources and hazards of polluted soil [J]. J Wuhan Inst Technol, 2014, 36 (7): 12-19]
5 Tang JY, Zhang JC, Ren LH, Zhou YY, Gao J, Luo L, Yang Y, Peng QH, Huang HL, Chen AW. Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution [J]. J Environ Manag, 2019, 242: 121-130
6 Machulla G. Soil microbial indicators and their environmental significance [J]. J Soils Sediments, 2003, 3 (4): 229
7 马波, 张绍东. 土壤质量微生物学指标研究概述[J]. 四川环境, 2010, 29 (5): 114-118 [Ma B, Zhang SD. Review on the microbial indicators of soil quality [J]. Sichuan Environ, 2010, 29 (5): 114-118]
8 刘沙沙, 付建平, 蔡信德, 周建民, 党志, 朱润良. 重金属污染对土壤微生物生态特征的影响研究进展[J]. 生态环境学报, 2018, 27 (6): 1173-1178 [Liu SS, Fu JP, Ca XD, Zhou JM, Dong Z, Zhu RL. Effect of heavy metals pollution on ecological characteristics of soil microbes: a review [J]. Ecol Environ Sci, 2018, 27 (6): 1173-1178]
9 邢奕, 司艳晓, 洪晨, 李洋. 铁矿区重金属污染对土壤微生物群落变化的影响[J]. 环境科学研究, 2013, 26 (11): 1201-1211 [Xing Y, Si YX, Hong C, Li Y. Impact of long-term heavy metal pollution on microbial community in iron mine soil [J]. Res Environ Sci, 2013, 26 (11): 1201-1211]
10 Zhang LH, Dong HR, Zhang JC, Chen YN, Zeng GM, Yuan YJ, Cao WC, Fang W, Hou KJ, Wang B, Long L. Influence of FeONPs amendment on nitrogen conservation and microbial community succession during composting of agricultural waste: relative contributions of ammonia-oxidizing bacteria and archaea to nitrogen conservation [J]. Bioresour Technol, 2019, 287: 121463
11 李培培, 仝昊天, 韩燕来, 姜瑛, 吴传发. 秸秆直接还田与炭化还田对潮土硝化微生物的影响[J]. 土壤学报, 2019, 56 (6): 1471-1481 [Effect of straw return, directly or as biochar, on nitrifying microbes in fluvo-aquic soil [J]. Acta Pedol Sin, 2019, 56 (6): 1471-1481]
12 Tran NH, Urase T, Ngo HH, Hu JY, Ong SL. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants [J]. Bioresour Technol, 2013, 146: 721-731
13 Luo J, Liu Y, Tao Q, Hou Q, Wu K, Song YC, Liu YK, Guo XY, Li JX, Rehman Hashmi ML, Liang YC, Li TQ. Successive phytoextraction alters ammonia oxidation and associated microbial communities in heavy metal contaminated agricultural soils [J]. Sci Total Environ, 2019, 664: 616-625
14 Aoi Y, Masaki Y, Tsuneda S, Hirata A. Quantitative analysis of amoA mRNA expression as a new biomarker of ammonia oxidation activities in a complex microbial community [J]. Lett Appl Microbiol, 2004, 39 (6): 477-482
15 Aoi Y, Shiramasa Y, Masaki Y, Tsuneda S, Hirata A, Kitayama A, Nagamune T. Expression of amoA mRNA in wastewater treatment processes examined by competitive RT-PCR [J]. J Biotechnol, 2004, 111 (2): 111-120
16 Tang YQ, Yu GR, Zhang XY, Wang QF, Tian DS, Tian J, Niu SL, Ge JP. Environmental variables better explain changes in potential nitrification and denitrification activities than microbial properties in fertilized forest soils [J]. Sci Total Environ, 2019, 647: 653-662
17 Bustamante M, Verdejo V, Zuniga C, Espinosa F, Orlando J, Carú M. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil [J]. Front Microbiol, 2012, 3: 282
18 Li CC, Quan Q, Gan YD, Dong JY, Fang JH, Wang LF, Liu J. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management [J]. Sci Total Environ, 2020, 749: 141555
19 Van Hesteren S, Van de Leemkule MA, Pruiksma MA. Minimum soil quality: a use-based approach from an ecological perspective. Part 1: Metals [R]. The Hague, the Netherlands: Tech Soil Protection Committee, 1998
20 González-Cabaleiro R, Curtis TP, Ofi?eru ID. Bioenergetics analysis of ammonia-oxidizing bacteria and the estimation of their maximum growth yield [J]. Water Res, 2019, 154: 238-245
21 Feng W, Yan X, Le XC. Editorial: effects of metal contamination on ammonia-oxidizing microorganisms in a freshwater reservoir [J]. J Environ Sci, 2019, 79: 364-366
22 Zhang Y, Chen LJ, Dai TJ, Sun RH, Wen DH. Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms [J]. Appl Microbiol Biotechnol, 2015, 99 (15): 6481-6491
23 李景云, 李秀玲, 葛鹏, 刘灵芝. 土壤氨氧化古菌及其可能代谢类型[J]. 土壤通报, 2015, 46 (6): 1428-1432 [Li JY, Li XL, Ge P, Liu LZ. Soil ammonia-oxidizing archaea and their possible metabolism type [J]. Chin J Soil Sci, 2015, 46 (6): 1428-1432]
24 陈杨武, 胡爽, 方露, 蒋登梅, 谭周亮, 李旭东. 氨氧化古菌及其对环境因子的响应研究进展[J]. 应用与环境生物学报, 2014, 20 (6): 1117-1123 [Chen YW, Hu S, Fang L, Jiang DM, Tan ZL, Li XD. Progress on ammonia-oxidizing archaea and their response to environmental factors [J]. Chin J Appl Environ Biol, 2014, 20 (6): 1117-1123]
25 刘晶静, 吴伟祥, 丁颖, 石德智, 陈英旭. 氨氧化古菌及其在氮循环中的重要作用[J]. 应用生态学报, 2010, 21 (8): 2154-2160 [Liu JJ, Wu WX, Ding Y, Shi DZ, Chen YX. Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: a review [J]. Chin J Appl Ecol, 2010, 21 (8): 2154-2160]
26 Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MSM, Klotz MG. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs [J]. Environ Microbiol Rep, 2011, 3 (1): 91-100
27 董兴水, 王智慧, 黄学茹, 蒋先军. 硝化作用研究的新发现: 单步硝化作用与全程氨氧化微生物[J]. 应用生态学报, 2017, 28 (1): 345-352 [Dong XS, Wang ZH, Huang XR, Jiang XJ. Recent discovery in nitrification: one-step nitrification and complete ammonia oxidizing microorganisms [J]. Chin J Appl Ecol, 2017, 28 (1): 345-352]
28 Zhang T, Ye L, Tong AHY, Shao MF, Lok S. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors [J]. Appl Microbiol Biotechnol, 2011, 91 (4): 1215-1225
29 Klotz MG, Norton JM. Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria [J]. Fems Microbiol Lett, 1998, 168 (2): 303-311
30 Norton JM, Alzerreca JJ, Suwa Y, Klotz MG. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria [J]. Arch Microbiol, 2002, 177 (2): 139-149
31 贾仲君, 翁佳华, 林先贵, Ralf C. 氨氧化古菌的生态学研究进展[J]. 微生物学报, 2010, 50 (4): 431-437 [Jia ZJ, Weng JH, Lin XG, Ralf C. Advances in ecological research on ammonia-oxidizing archaea [J]. Acta Microbiol Sin, 2010, 50 (4): 431-437]
32 Hommes NG, Sayavedra-Soto LA, Arp DJ. Transcript analysis of multiple copies of amo (encoding ammonia monooxygenase) and hao (encoding hydroxylamine oxidoreductase) in Nitrosomonas europaea [J]. J Bacteriol, 2001, 183 (3): 1096-1100]
33 Jin T, Zhang T, Ye L, Lee OO, Wong YH, Qian PY. Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary, China [J]. Appl Microbiol Biotechnol, 2011, 90 (3): 1137-1145
34 Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006, 442 (7104): 806-809
35 何翔, 吴佳鹏, 焦黎静, 温晓梅, 王岩, 欧林坚, 洪义国. 基于amoA基因扩增子高通量测序的氨氧化古菌多样性分析方法[J]. 微生物学通报, 2018, 45 (9): 1861-1870 [He X, Wu JP, Jiao LJ, Wen XM, Wang Y, Ou LJ, Hong YG. Development of a method for ammonia-oxidizing archaea diversity analysis based on amoA gene amplicons with high-throughput sequencing [J]. Microbiol Chin Lett, 2018, 45 (9): 1861-1870]
36 Vajrala N, Martens-Habbena W, Sayavedra-Soto AL, Schauer A, Bottomley JP, Stahl AD, Arp JD. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea [J]. PNAS, 2013, 110 (3): 1006-1011
37 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29 (1): 406-415 [He JZ, Zhang LM. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle [J]. Acta Ecol Sin, 2009, 29 (1): 406-415]
38 Blainey CP, Mosier CA, Potanina A, Francis AC, Quake RS. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis [J]. PLoS ONE, 2011, 6 (2): 16626
39 Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, Hemp J, Hugler M, Karr EA, Konneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea [J]. PNAS, 2010, 107 (19): 8818-8823
40 Hallam JS, Mincer JT, Schleper C, Preston MC, Roberts K, Richardson MP, Delong FE. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota [J]. PLoS Biol, 2006, 4 (4): 520-536
41 Liu T, Yang H. An RNA-based quantitative and compositional study of ammonium-oxidizing bacteria and archaea in Lake Taihu, a eutrophic freshwater lake [J]. FEMS Microbiol Ecol, 2019, 95 (9)
42 Kuo HWD, Robinson KG, Layton AC, Meyers AJ, Sayler GS. Transcription levels (amoA mRNA-based) and population dominance (amoA gene-based) of ammonia-oxidizing bacteria [J]. J Ind Microbiol Biotechnol, 2010, 37 (7): 751-757
43 Alifano P, Bruni CB, Carlomagno MS. Control of mRNA processing and decay in prokaryotes [J]. Genetica, 1994, 94 (2-3): 157-172
44 Wilson MS, Bakermans C, Madsen EL. In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater [J]. Appl Environ Microbiol, 1999, 65 (1): 80-87
45 Junier P, Verónica Molina, Dorador C, Hadas O, Kim OS, Junier T, Witzel KP, Imhoff FJ. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment [J]. Appl Microbiol Biotechnol, 2010, 85 (3): 425-440
46 Kapoor V, Elk M, Li X, Santo Domingo JW. Inhibitory effect of cyanide on wastewater nitrification determined using SOUR and RNA-based gene-specific assays [J]. Lett Appl Microbiol, 2016, 63 (2): 155-161
47 邱昭政, 罗专溪, 赵艳玲, 颜昌宙. 溶氧对富集培养的河口湿地表层沉积物氨氧化菌多样性及氨氧化速率的影响[J]. 环境科学, 2013, 34 (2): 532-539 [Qiu ZZ, Luo ZX, Zhao YL, Yan CZ. Effect of dissolved oxygen on diversity of ammonia-oxidizing microorganisms in enrichment culture from estuarine wetland surface sediments and ammonia-oxidizing rate [J]. Environ Sci, 2013, 34 (2): 532-539]
48 Zheng L, Zhao X, Zhu G, Yang W, Xia C, Xu T. Occurrence and abundance of ammonia-oxidizing archaea and bacteria from the surface to below the water table, in deep soil, and their contributions to nitrification [J]. Microbiol Open, 2017, 6 (4): 488
49 陈泉睿, 樊景凤, 王斌. 氨氧化微生物在河口与海洋中的生态位研究进展[J]. 海洋环境科学, 2019, 38 (1): 129-138 [Chen QR, Fan JF, Wang B. Research advances in niche of ammonia-oxidizing microorganisms in estuaries and oceans [J]. Mar Environ Sci, 2019, 38 (1): 129-138]
50 Wang WD, Su Y, Wang BL, Wang Y, Zhuang LJ, Zhu GB. Spatiotemporal shifts of ammonia-oxidizing archaea abundance and structure during the restoration of a multiple pond and plant-bed/ditch wetland [J]. Sci Total Environ, 2019, 684: 629-640
51 González-Martínez A, Pesciaroli C, Martínez-Toledo MV, Hontoria E, González-López J, Osorio F. Study of nitrifying microbial communities in a partial-nitritation bioreactor [J]. Ecol Eng, 2014, 64: 443-450
52 涂晨, 骆永明, 马露瑶, 章海波, 滕应, 李振高. 分子生物学与系统生物学技术在土壤污染微生物生态研究中的应用[J]. 土壤学报, 2013, 50 (3): 609-617 [Tu C, Luo YM, Ma LY, Zhang HB, Teng Y, Li ZG. Applications of molecular and systematic biological technologies in polluted soil microbial ecology researches [J]. Acta Pedol Sin, 2013, 50 (3): 609-617]
53 Shen JP, Zhang LM, Di HJ, He JZ. A review of ammonia-oxidizing bacteria and archaea in Chinese soils [J]. Front Microbiol, 2012, 3 (296): 296
54 杨赛, 朱琳, 魏巍. 土壤生态系统硝化微生物研究进展[J]. 中国土壤与肥料, 2018, 278 (6): 7-16 [Yang S, Zhu L, Wei W. Research progress on nitrifying microorganisms of soil ecosystem [J]. Soil Fert Sci Chin, 2018, 278 (6): 7-16]
55 Shimomura Y, Morimoto S, Hoshino HY, Uchida Y, Akiyama H, Hayatsu M. Comparison among amoA primers suited for quantification and diversity analyses of ammonia-oxidizing bacteria in soil [J]. Microbes Environ, 2012, 27 (1): 94-98
56 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40 (1): 98-108 [He JZ, Zhang LM. Key processes and microbial mechanisms of soil nitrogen transformation [J]. Microbiol Chin Lett, 2013, 40 (1): 98-108]
57 Vetterli A, Hietanen S, Leskinen E. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea [J]. Mar Environ Res, 2016, 113: 153-163
58 He H, Li M, Zhen Y, Mi TZ, Yu ZG. Bacterial and archaeal communities in sediments from the adjacent waters of Rushan Bay (China) revealed by illumina sequencing [J]. Geomicrobiol J, 2019, 37 (1): 86-100
59 Pereg L, Mataix-Solera J, McMillan M, García-Orenes F. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil [J]. Sci Total Environ, 2018, 619-620 (APR 1): 1079-1087
60 Ciccolini V, Bonariauthor E, Ercoliauthor L, Pellegrino E. Phylogenetic and multivariate analyses to determine the effect of agricultural land-use intensification and soil physico-chemical properties on N-cycling microbial communities in drained Mediterranean peaty soils [J]. Biol Fertil Soils, 2016, 52 (6): 811-824
61 刘帅. 典型生境中氨氧化古菌(AOA)和氨氧化细菌(AOB)的微生物生态学研究[D]. 杭州: 浙江大学, 2015 [Liu S. Microbial ecology of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in typical ecosystems [D]. Hangzhou: Zhejiang University, 2015]
62 He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices [J]. Environ microbiol, 2007, 9 (9): 2364-2374
63 Jiang Q, Xia F, Zhu T, Wang D, Quan Z. Distribution of comammox and canonical ammonia-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary at different depths over four seasons [J]. J Appl Microbiol, 2019, 127 (2): 533-543
64 Marcos MS, Barboza AD, Keijzer RM, Laanbroek HJ. Tide as steering factor in structuring archaeal and bacterial ammonia-oxidizing communities in mangrove forest soils dominated by avicennia germinans and rhizophora mangle [J]. Microbiol Ecol, 2018, 75 (4): 997-1008
65 Wang JG, Xia F, Zeleke J, Zou B, Rhee SK, Quan ZX. An improved protocol with a highly degenerate primer targeting copper-containing membrane-bound monooxygenase genes for community analysis of methane-and ammonia-oxidizing bacteria [J]. FEMS Microbiol Ecol, 2017, 93 (3): 3
66 Wu HP, Zeng GM, Liang J, Chen J, Xu JJ, Dai J, Li XD, Chen M, Xu P, Zhou YY, Li F, Hu L, Wan J. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil [J]. Appl Microbiol Biotechnol, 2016, 100 (19): 8583-8591
67 Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam [J]. Environ Microbiol, 2008, 10 (6): 1601-1611
68 Awolusi OO, Nasr M, Kumari S, Bux F. Principal component analysis for interaction of nitrifiers and wastewater environments at a full-scale activated sludge plant [J]. Intl J Environ Sci Technol, 2018, 15 (7): 1477-1490
69 李思远. 某铁矿酸性矿山废水区域嗜酸微生物的多样性研究[D]. 北京: 中国地质大学, 2014 [Li SY. Biodiversity research on acidophilic microorganisms in an acid mine drainage area [D]. Beijing: China University of Geosciences, 2014]
70 Zhang LM, Hu HW, Shen JP, He JZ. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils [J]. ISME J Multidiscip Microbiol Ecol, 2012, 6 (5): 1032-1045
71 刘红梅, 张海芳, 秦洁, 王慧, 张艳军, 杨殿林. 模拟氮沉降对贝加尔针茅草原土壤氮转化微生物的影响[J]. 农业环境科学学报, 2019, 38 (10): 2386-2394 [Liu HM, Zhang HF, Qin J, Wang H, Zhang YJ, Yang DL. Effects of simulated nitrogen deposition on soil nitrogen-transforming microorganisms in Stipa baicalensis steppe [J]. J Agro-Environ Sci, 2019, 38 (10): 2386-2394]
72 胡燕, 许轶菁. 有机碳对氨氧化细菌及氨氧化古菌的影响[J]. 江苏水利, 2019 (1): 52-55 [Hu Y, Xu YJ. Effects of organic carbon on ammonia-oxidizing bacteria and ammonia-oxidizing archaea [J]. Jiangsu Water Res, 2019 (1): 52-55]
73 方宇, 景晓明, 王飞, 陈济琛, 林诚, 林新坚. 长期施肥对氨氧化古菌丰度及群落结构的影响[J]. 植物营养与肥料学报, 2015, 21 (6): 1607-1614 [Fang Y, Jin XM, Wang F, Chen JC, Lin XJ. Effect of long-term fertilization on abundance and community structure of ammonia-oxidizing archaea in paddy soil [J]. J Plant Nutr Fertil, 2015, 21 (6): 1607-1614]
74 Di HJ, Cameron KC, Shen JP, Winefifield SC, O’Callaghan M, Bowatte S, He JZ. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions [J]. FEMS Microbiol Ecol, 2010, 72 (3): 386-394
75 Subrahmanyam G, Shen JP, Liu YR, Archana G, He JZ. Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India [J]. Environ Monit Assess, 2014, 186 (7): 4037-4050
76 Srithep P, Pornkulwat P, Limpiyakorn T. Contribution of ammonia-oxidizing archaea and ammonia-oxidizing bacteria to ammonia oxidation in two nitrifying reactors [J]. Environ Sci Pollut Res, 2018, 25 (9): 8676-8687
77 高景峰, 李婷, 张树军,樊晓燕, 潘凯玲, 马谦, 袁亚林. 两个CANON污水处理系统中氨氧化古菌的丰度和多样性研究[J]. 环境科学, 2015, 36 (8): 2939-2946 [Gao JF, Li T, Zhang SJ, Fan XY, Pan KL, Ma Q, Yuan YL. Abudance and community composition of ammonia-oxidizing archaea in two completely autotrophic nitrogen removal over nitrite systems [J]. Environ Sci, 2015, 36 (8): 2939-2946]
78 刘正辉,李德豪. 氨氧化古菌及其对氮循环贡献的研究进展[J]. 微生物学通报, 2015, 42 (4): 774-782 [Liu ZH, Li DH. Ammonia-oxidizing archaea and their contribution to global nitrogen cycling: a review [J]. Microbiol Chin Lett, 2015, 42 (4): 774-782]
79 Hu JJ, Liu S, Yang WL, He ZF, Wang JQ, Liu H, Zheng P, Xi CW, Ma F, Hu BL. Ecological success of the nitrosopumilus and nitrosospira clusters in the intertidal zone [J]. Microbiol Ecol, 2019, 78 (3): 555-564
80 Lin ZY, Huang W, Zhou J, He XJ, Wang JL, Wang XT, Zhou J. The variation on nitrogen removal mechanisms and the succession of ammonia oxidizing archaea and ammonia oxidizing bacteria with temperature in biofilm reactors treating saline wastewater [J]. Bioresour Technol, 2020, 314
81 Liu B, Wu C, Zhou X. Community structure of ammonia-oxidizing microorganisms in the Grand Canal, Zhenjiang, of Jiangsu Province, China [J]. Water Technol, 2014, 70 (6): 990-995
82 Liu JM, Cao WW, Jiang HM, Cui J, Shi CF, Qiao XH, Zhao J, Si WT. Impact of heavy metal pollution on ammonia oxidizers in soils in the vicinity of a tailings dam, Baotou, China [J]. Bull Environ Contam Toxicol, 2018, 101 (1): 110-116

相似文献/References:

[1]何洁,刘长发,吴钰.三种载体上生物膜硝化作用动力学初步研究[J].应用与环境生物学报,2003,9(05):546.
 ZHONG Rong,et al..Spatialtemporal expression of fertility development in a novel Indica-Japonnica rice hybrid and sterile mutant—91FS[J].Chinese Journal of Applied & Environmental Biology,2003,9(03):546.
[2]刘琳,孙庚,吴彦,等.季节性雪被对青藏高原东缘高寒草甸土壤氮矿化的影响[J].应用与环境生物学报,2011,17(04):453.[doi:10.3724/SP.J.1145.2011.00453]
 LIU Lin,SUN Geng,WU Yan,et al.Effect of Seasonal Snow Cover on Soil Nitrogen Mineralization in an Alpine Meadow on the Eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):453.[doi:10.3724/SP.J.1145.2011.00453]
[3]陈杨武,胡爽,方露,等.氨氧化古菌及其对环境因子的响应研究进展[J].应用与环境生物学报,2014,20(06):1117.[doi:10.3724/SP.J.1145.2014.003024]
 CHEN Yangwu,HU Shuang,FANG Lu,et al.Progress on ammonia-oxidizing archaea and their response to environmental factors[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):1117.[doi:10.3724/SP.J.1145.2014.003024]
[4]谢丽飒,徐蕾,何莹,等.南海北部陆坡真光层海水中古菌的多样性[J].应用与环境生物学报,2017,23(01):21.[doi:10.3724/SP.J.1145.2016.03005]
 XIE Lisa,XU Lei,HE Ying,et al.Archaeal diversity in the euphotic seawater at a slope in the northern South China Sea[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):21.[doi:10.3724/SP.J.1145.2016.03005]
[5]张军,周丹丹,吴敏,等.生物炭对土壤硝化反硝化微生物群落的影响研究进展?[J].应用与环境生物学报,2018,24(05):993.[doi:10.19675/j.cnki.1006-687x.2017.11001]
 ZHANG?Jun,ZHOU?Dandan**,WU?Min,et al.Advances in the study of the effects of biochar on soil nitrifying and denitrifying microbial communities[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):993.[doi:10.19675/j.cnki.1006-687x.2017.11001]
[6]李会琳,路璐.多环芳烃对不同类型稻田土壤硝化潜势及氨氧化微生物的影响[J].应用与环境生物学报,2019,25(03):584.[doi:10.19675/j.cnki.1006-687x.201808011]
 LI Huilin,& LU Lu**.Effects of polycyclic aromatic hydrocarbons (PAHs) on nitrification potential and the abundance and community composition of ammonia-oxidizing* microorganisms in different types of paddy soils in China[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):584.[doi:10.19675/j.cnki.1006-687x.201808011]

更新日期/Last Update: 2021-06-25