|本期目录/Table of Contents|

[1]周思婕,张敏,王平.植物质膜H+-ATP酶对环境胁迫因子的响应研究进展[J].应用与环境生物学报,2021,27(02):485-494.[doi:10.19675/j.cnki.1006-687x.2020.02022]
 ZHOU Sijie,ZHANG Min & WANG Ping.Response of plant plasma membrane H+-ATPase to environmental stress factors: a review[J].Chinese Journal of Applied & Environmental Biology,2021,27(02):485-494.[doi:10.19675/j.cnki.1006-687x.2020.02022]
点击复制

植物质膜H+-ATP酶对环境胁迫因子的响应研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年02期
页码:
485-494
栏目:
综述
出版日期:
2021-04-25

文章信息/Info

Title:
Response of plant plasma membrane H+-ATPase to environmental stress factors: a review
作者:
周思婕张敏王平
南京林业大学生物与环境学院 南京 210037
Author(s):
ZHOU Sijie ZHANG Min & WANG Ping?
College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
关键词:
质子泵生理功能基因表达磷酸化胞内信号分子非生物胁迫
Keywords:
proton pump physiological role gene expression phosphorylation intracellular signaling molecule abiotic stress
DOI:
10.19675/j.cnki.1006-687x.2020.02022
摘要:
植物质膜质子泵(H+-ATP酶)是一种重要的功能蛋白,为次级主动运输提供质子动力,既参与调控植物正常生长,也参与植物响应环境因子等非生物胁迫时抗性机制的构建. 探讨植物质膜H+-ATP酶活性调控机理已成为植物生理学领域的研究热点. 在简要概括植物质膜H+-ATP酶结构与生理功能的基础上,结合近年来质膜H+-ATP酶对环境因子的响应研究,重点论述酶活性在基因表达和蛋白磷酸化水平上的调控以及胞内信号分子在调控中所起的作用. 在非生物胁迫下,植物通过调节质膜H+-ATP酶活性水平提高其对不利环境的适应性来响应温度、酸度、盐分、重金属等环境因子的变化. 植物质膜H+-ATP酶活性可以由转录水平改变引起的酶蛋白基因特异性表达调控,也可以由酶蛋白翻译后磷酸化修饰调控. 生长素、蛋白激酶、Ca2+、H2O2等胞内信号分子介导了这两种酶活性调节方式的进行,但是对植物细胞内信号分子在质膜H+-ATP酶活性调控过程中的作用及其传导途径的研究不够深入. 未来应结合细胞水平、能量代谢和信号传导,多角度系统深入探究植物质膜H+-ATP酶响应逆境胁迫活性调控机理,并重点分析植物细胞内信号分子在质膜H+-ATP酶活性转录及翻译后修饰调控过程中的作用机制及其传导途径. (图2 表1 参93)
Abstract:
The plant plasma membrane proton pump (PM H+-ATPase) is an important functional protein that provides a proton drive for secondary active transport and is involved in the regulation of plant growth and the construction of plant resistance mechanisms in response to abiotic stresses. Therefore, exploring the modification mechanism of plant plasma membrane H+-ATPase activity is of significance in plant physiology research. In this study, the structure and physiological functions of plant plasma membrane H+-ATPase are briefly summarized. Based on the research of plant plasma membrane H+-ATPase in response to environmental factors, the regulation of H+-ATPase activity at gene expression and protein phosphorylation levels and the role of intracellular signaling molecules in regulatory approaches are discussed in detail. Plants can respond to changes in environmental factors such as temperature, acidity, salinity, and heavy metals by regulating plasma membrane H+-ATPase activity to improve their adaptability to unfavorable environments. Plant plasma membrane H+-ATPase activity is regulated by the specific expression of protein genes at the transcriptional level or by protein post-translational phosphorylation modification. Intracellular signaling molecules, such as auxin, protein kinase, Ca2+, and H2O2, may mediate these two regulatory activities of plant plasma membrane H+-ATPase. However, studies on the role of intracellular signaling molecules and their transduction pathways in the regulatory process have not been conducted. Future research should focus on combining the cellular level, energy metabolism, and signal transduction to explore the regulatory mechanism of plant plasma membrane H+-ATPase activity in response to adversity stress from multiple perspectives. In addition, further study should focus on analyzing the action mechanism and transduction pathway of intracellular signaling molecules in the process of transcription and post-translational modification regulation of plant plasma membrane H+-ATPase activity.

参考文献/References:

1 Morsomme P, Boutry M. The plant plasma membrane H+-ATPase: structure, function and regulation [J]. BBA-Biomembranes, 2000, 1465: 1-16
2 Janicka-Russak M. Plant plasma membrane H+-ATPase in adaptation of plants to abiotic stresses [M]. Abiotic stress response in plants-physiological, biochemical and genetic perspectives. In Tech, 2011
3 Palmgren MG. Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake [J]. Annu Rev Plant Phys, 2001, 52: 817-845
4 周磊. 大豆14-3-3蛋白和质膜H+-ATP酶应答干旱胁迫的分子机制研究[D]. 昆明: 昆明理工大学, 2013 [Lei Z. Molecular mechanisms of 14-3-3 proteins and plasma membrane H+-ATPase of soybean in response to drought stress [D]. Kunming: Kunming University of Science and Technology, 2013]
5 Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Plasma membrane H+-ATPase regulation in the center of plant physiology [J]. Mol Plant, 2016, 9 (3): 323-337
6 Michelet B, Boutry M. The plasma membrane H+-ATPase (a highly regulated enzyme with multiple physiological functions) [J]. Plant Physiol, 1995, 108: 1-6
7 Duby G, Boutry M. The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles [J]. Pflug Arch Eur J Phy, 2009, 457 (3): 645-655
8 Sondergaard TE, Schulz A, Palmgren MG. Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase [J]. Plant Physiol, 2004, 136 (1): 2475-2482
9 赵菲佚, 焦成瑾, 贾贞, 周辉, 王茂, 赵雷. 拟南芥AtJ3通过核质转运调控植物质膜H+-ATPase活性与ABA响应[J]. 植物科学学报, 2016, 34 (3): 406-419 [Zhao FY, Jiao CJ, Jia Z, Zhou H, Wang M, Zhao L. Trafficking of AtJ3 from the nucleus to the cytoplasm regulates plasma membrane H+-ATPase activity and ABA response in Arabidopsis [J]. Plant Sci J, 2016, 34 (3): 406-419]
10 Inoue SI, Kinoshita T. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase [J]. Plant Physiol, 2017, 174 (2): 531-538
11 Hager A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects [J]. J Plant Res, 2003, 116 (6): 483-505
12 Zhang JR, Wei J, Li DX, Kong XY, Rengel Z, Chen LM, Yang Y, Cui XM, Chen Q. The role of the plasma membrane H+-ATPase in plant responses to aluminum toxicity [J]. Front Plant Sci, 2017, 8: 1757-1765
13 Haruta M, Gray WM, Sussman MR. Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation [J]. Curr Opin Plant Biol, 2015, 28: 68-75
14 Kanczewska J, Marco S, Vandermeeren C, Maudoux O, Rigaud JL, Boutry M. Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 proteins converts a dimer into a hexamer [J]. PNAS, 2005, 102 (33): 11675-11680
15 Ruiz-Granados YG, De La Cruz-Torres V, Sampedro JG. The oligomeric state of the plasma membrane H+-ATPase from Kluyveromyces lactis [J]. Molecules, 2019, 24 (5): 958
16 Parets-Soler A, Pardo JM, Serrano R. Immunocytolocalization of plasma membrane H+-ATPase [J]. Plant Physiol, 1990, 93: 1654-1658
17 Palmgren MG, Sommarin M, Serrano R, Larsson C. Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+-ATPase [J]. J Biol Chem, 1991, 266 (30): 20470-20475
18 Speth C, Jaspert N, Marcon C, Oecking C. Regulation of the plant plasma membrane H+-ATPase by its C-terminal domain: what do we know for sure? [J]. Eur J Cell Biol, 2010, 89 (2-3): 145-151
19 Ekberg K, Palmgren MG, Veierskov B, Buch-Pedersen MJ. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein [J]. J Biol Chem, 2010, 285 (10): 7344-7350
20 Buch-Pedersen MJ, Rudashevskaya EL; Berner TS; Venema K; Palmgren MG. Potassium as an intrinsic uncoupler of the plasma membrane H+-ATPase [J]. J Biol Chem, 2006, 281 (50): 38285-38292
21 Pedersen JT, Falhof J, Ekberg K, Buch-Pedersen MJ, Palmgren M. Metal fluoride inhibition of a P-type H+ pump: stabilization of the phosphoenzyme intermediate contributes to post-translational pump activation [J]. J Biol Chem, 2015, 290 (33): 20396-20406
22 Hirsch RE, Lewis BD, Spalding EP, Sussman MR. A role for the AKT1 potassium channel in plant nutrition [J]. Science, 1998, 280: 918-921
23 Jahn T, Baluska F, Michalke W, Harper JF, Volkmann D. Plasma membrane H+-ATPase in the root apex: evidence for strong expression in xylem parenchyma and asymetric localization within cortical and epidermal cells [J]. Physiol Plantarum, 1998, 104: 311-316
24 杨颖丽, 杨宁, 安黎哲, 张立新. 植物质膜H+-ATPase的研究进展[J]. 西北植物学报, 2006, 26(11): 2388-2396 [Yang YL, Yang N, An LZ, Zhang LX. Research advances about plasma membrane H+-ATPase in Plants [J]. Acta Bot Bor-Occid Sin, 2006, 26 (11): 2388-2396]
25 Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer WA, Hazen SP, Murphy AS, Harper JF. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana [J]. PNAS, 2005, 102 (7): 2649-2654
26 Hentzen AE, Smart LB, Wimmers LE, Fang HH, Schroeder JI, Bennett AB. Two plasma membrane H+-ATPase genes expressed in guard cells of Vicia faba are also expressed throughout the plant [J]. Plant Cell Physiol, 1996, 37 (5): 650-659
27 Santi S, Locci G, Monte R, Pinton R, Varanini Z. Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms [J]. J Exp Bot, 2003, 54 (389): 1851-1864
28 Haruta M, Sussman MR. The effect of a genetically reduced plasma membrane protonmotive force on vegetative growth of Arabidopsis [J]. Plant Physiol, 2012, 158 (3): 1158-1171
29 Hoffmann RD, Olsen LI, Ezike CV, Pedersen JT, Manstretta R, Lopez-Marques RL, Palmgren M. Roles of plasma membrane proton ATPases AHA2 and AHA7 in normal growth of roots and root hairs in Arabidopsis thaliana [J]. Physiol Plantarum, 2019, 166 (3): 848-861
30 Zhang RP, Liu G, Wu N, Gu M, Zeng HQ, Zhu YY, Xu GH. Adaptation of plasma membrane H+ ATPase and H+ pump to P deficiency in rice roots [J]. Plant Soil, 2011, 349 (1-2): 3-11
31 Zhu YY, Di TJ, Xu GH, Chen X, Zeng HQ, Yan F, Shen QR. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition [J]. Plant Cell Environ, 2009, 32 (10): 1428-1440
32 Sperandio MVL, Santos LA, Bucher CA, Fernandes MS, de Souza SR. Isoforms of plasma membrane H+-ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3- or NH4+ [J]. Plant Sci, 2011, 180 (2): 251-258
33 Afzal MR, Zhang M, Jin H, Wang G, Zhang M, Ding M, Raza S, Hu J, Zeng H, Gao X, Subbarao GV, Zhu Y. Post-translational regulation of plasma membrane H+-ATPase is involved in the release of biological nitrification inhibitors from sorghum roots [J]. Plant Soil, 2020, doi: https://doi.org/10.1007/s11104-020-04511-6
34 Alsterfjord M. Plasma membrane H+-ATPase and 14-3-3 isoforms of arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H+-ATPase interaction [J]. Plant Cell Physiol, 2004, 45 (9): 1202-1210
35 Duby G, Poreba W, Piotrowiak D, Bobik K, Derua R, Waelkens E, Boutry M. Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region [J]. J Biol Chem, 2009, 284 (7): 4213-4221
36 Spartz AK, Lor VS, Ren H, Olszewski NE, Miller ND, Wu GS, Spalding EP, Gray WM. Constitutive expression of arabidopsis small auxin up RNA19 (SAUR19) in tomato confers auxin-independent hypocotyl elongation [J]. Plant Physiol, 2017, 173 (2): 1453-1462
37 Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, Murphy AS, Sussman MR, Overvoorde PJ, Gray WM. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in arabidopsis [J]. Plant Cell, 2014, 26 (5): 2129-2142
38 Wen Z, Mei Y, Zhou J, Cui Y, Wang D, Wang NN. SAUR49 can positively regulate leaf senescence by suppressing SSPP in Arabidopsis [J]. Plant Cell Physiol, 2020, 61 (3): 644-658
39 De Bont L, Naim E, Arbelet-Bonnin D, Xia Q, Palm E, Meimoun P, Mancuso S, El-Maarouf-Bouteau H, Bouteau F. Activation of plasma membrane H+-ATPases participates in dormancy alleviation in sunflower seeds [J]. Plant Sci, 2019, 280: 408-415
40 Fuglsang AT, Tulinius G, Cui N, Palmgren MG. Protein phosphatase 2A scaffolding subunit A interacts with plasma membrane H+-ATPase C-terminus in the same region as 14-3-3 protein [J]. Physiol Plantarum, 2006, 128 (2): 334-340
41 Fuglsang AT, Guo Y, Cuin TA, Qiu QS, Song CP, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein [J]. Plant Cell, 2007, 19 (5): 1617-1634
42 Xu WF, Jia LG, Shi WM, Balu?ka F, Kronzucker HJ, Liang JS, Zhang JH. The tomato 14-3-3 protein TFT4 modulates H+ efflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress [J]. Plant Physiol, 2013, 163 (4): 1817-1828
43 Majumdar A, Kar RK. Congruence between PM H+-ATPase and NADPH oxidase during root growth: a necessary probability [J]. Protoplasma, 2018, 255 (4): 1129-1137
44 Xia LF, Mar Marquès-Bueno MM, Bruce CG, Karnik R. Unusual roles of secretory SNARE SYP132 in plasma membrane H+-ATPase traffic and vegetative plant growth [J]. Plant Physiol, 2019, 180 (2): 837-858
45 Zhang H, Deng C, Wu X, Yao J, Zhang Y, Zhang Y, Deng S, Zhao N, Zhao R, Zhou X, Lu C, Lin S, Chen S. Populus euphratica remorin 6.5 activates plasma membrane H+-ATPases to mediate salt tolerance [J]. Tree physiol, 2020, DOI: https://doi.org/10.1093/treephys/tpaa022
46 Wang Y, Noguchi K, Ono N, Inouea S, Terashimab I, Kinoshita T. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth [J]. PNAS, 2014, 111 (1): 533-538
47 Takahashi K, Hayashi K, Kinoshita T. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis [J]. Plant Physiol, 2012, 159 (2): 632-641
48 Hayashi Y, Nakamura S, Takemiya A, Takahashi Y, Shimazaki K, Kinoshita T. Biochemical characterization of in vitro phosphorylation and dephosphorylation of the plasma membrane H+-ATPase [J]. Plant Cell Physiol, 2010, 51 (7): 1186-1196
49 Fuglsang AT, Kristensen A, Cuin TA, Schulze WX, Persson J, Thuesen KH, Ytting CK, Oehlenschl?ger CB, Mahmood K, Sondergaard TE, Shabala S, Palmgren MG. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane [J]. Plant J, 2014, 80 (6): 951-964
50 郭传龙, 赵艳, 武孔焕, 李昆志, 陈丽梅. AMP对铝胁迫诱导丹波黑大豆柠檬酸分泌及其铝耐受性的影响[J]. 大豆科学, 2015, 34 (1): 82-86 [Guo CL, Zhao Y, Wu KH, Li KZ, Chen LM. Effects of AMP on the Al-induced citrate exudation and Al-resistance of tamba black soybean [J]. Soybean Sci, 2015, 34 (1): 82-86]
51 Yang YQ, Wu YJ, Ma L, Yang ZJ, Dong QY, Li QP, Ni XP, Kudla J, Song CP, Guo Y. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis [J]. Plant Cell, 2019, 31 (6): 1367-1384
52 Minami A, Takahashi K, Inoue S, Tada Y, Kinoshita T. Brassinosteroid induces phosphorylation of the plasma membrane H+-ATPase during hypocotyl elongation in Arabidopsis thaliana [J]. Plant Cell Physiol, 2019, 60 (5): 935-944
53 Sadura I, Libik-Konieczny M, Jurczyk B, Gruszka D, Janeczko A. Plasma membrane ATPase and the aquaporin HvPIP1 in barley brassinosteroid mutants acclimated to high and low temperature [J]. J Plant Physiol, 2020, 244: 153090
54 Huang Y, Cao HS, Yang L, Chen C, Shabala L, Xiong M, Niu ML, Liu J, Zheng ZH, Zhou LJ, Peng ZW, Bie ZL, Shabala S. Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae [J]. J Exp Bot, 2019, 70 (20): 5879-5893
55 Okumura M, Inoue S, Kuwata K, Kinoshita T. Photosynthesis activates plasma membrane H+-ATPase via sugar accumulation [J]. Plant Physiol, 2016, 171 (1): 580-589
56 Harada A, Okazaki Y, Kinoshita T, Nagai R, Takagi S. Role of proton motive force in photoinduction of cytoplasmic streaming in vallisneria mesophyll cells [J]. Plants-Basel, 2020, 9 (3): 376
57 Yang J, Liang T, Liu L, Pan T, Zou Z. Stomatal opening and growth in tomato seedlings treated with different proportions of red and blue light [J]. Can J Plant Sci, 2019, 99 (5): 688-700
58 Ando E, Kinoshita T. Red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells [J]. Plant Physiol, 2018, 178 (2): 838-849
59 Ando E, Kinoshita T. Fluence rate dependence of red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells [J]. Plant Signal Behav, 2019, 14 (2): 1561107
60 Yamauchi S, Takemiya A, Sakamoto T, Kurata T, Tsutsumi T, Kinoshita T, Shimazaki K. The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light [J]. Plant Physiol, 2016, 171 (4): 2731-2743
61 Kyu SY, Naing AH, Pe PPW, Park KI, Kim CK. Tomato seeds pretreated with antifreeze protein type I (AFP I) promotes the germination under cold stress by regulating the genes involved in germination process [J]. Plant Signal Behav, 2019, 14 (12): 1682796
62 Kim HS, Oh JM, Luan S, Carlson JE, Ahn SJ. Cold stress causes rapid but differential changes in properties of plasma membrane H+-ATPase of camelina and rapeseed [J]. J Plant Physiol, 2013, 170 (9): 828-837
63 Janicka-Russak M, Kaba?a K, Wdowikowska A, K?obus G. Response of plasma membrane H+-ATPase to low temperature in cucumber roots [J]. J Plant Res, 2012, 125 (2): 291-300
64 Janicka-Russak M, Kabala K. Abscisic acid and hydrogen peroxide induce modification of plasma membrane H+-ATPase from Cucumis sativus L. roots under heat shock [J]. J Plant Physiol, 2012, 169 (16): 1607-1614
65 Muzi C, Camoni L, Visconti S, Aducci P. Cold stress affects H+-ATPase and phospholipase D activity in Arabidopsis [J]. Plant Physiol Biochem, 2016, 108: 328-336
66 Liang CJ, Ge YQ, Su L, Bu JJ. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain [J]. Environ Sci Pollut Res Int, 2015, 22(1): 535-545
67 卜津津, 苏垒, 吕霞, 梁婵娟. 模拟酸雨对水稻叶片质膜H+-ATPase活性与矿质元素含量的影响[J]. 环境科学学报. 2015, 35 (9): 3020-3024 [Bu JJ, Su L, Lü X, Liang CJ.Effect of simulated acid rain on plasma membrane H+-ATPase activity and mineral elements contents in rice leaves [J].Acta Sci Circum, 2015, 35 (9) : 3020-3024]
68 Zhang BJ, Bu JJ, Liang CJ. Regulation of nitrogen and phosphorus absorption by plasma membrane H+-ATPase in rice roots under simulated acid rain [J]. Int J Environ Sci Technol, 2016, 14 (1): 101-112
69 Liang C, May LL. Comparison of plasma membrane H+-ATPase response to acid rain stress between rice and soybean [J]. Environ Sci Pollut R, 2019, 27 (6): 6389-6400
70 Liang CJ, Zhang BJ. Effect of exogenous calcium on growth, nutrients uptake and plasma membrane H+-ATPase and Ca2+-ATPase activities in soybean (Glycine max) seedlings under simulated acid rain stress [J]. Ecotoxicol Environ Saf, 2018, 165: 261-269
71 Li Y, Liang C. Exogenous application of Ca2+ mitigates simulated acid rain stress on soybean productivity and quality by maintaining nutrient absorption [J]. Environ Sci Pollut R, 2019, 26 (5): 4975-4986
72 Zhang YK, Zhu DF, Zhang YP, Chen HZ, Xiang J, Lin XQ. Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings [J]. PLoS One, 2015, 10 (2): e0116971
73 Chen HF, Zhang Q, Cai HM, Xu FS. Ethylene mediates alkaline-induced rice growth inhibition by negatively regulating plasma membrane H+-ATPase activity in roots [J]. Front Plant Sci, 2017, 8:1839
74 Xue Y, Zhao SS, Yang ZJ, Guo Y, Yang YQ. Regulation of plasma membrane H+-ATPase activity by the members of the V-SNARE VAMP7C family in arabidopsis thaliana [J]. Plant Signal Behav, 2019, 14 (3): e1573097
75 Wu Z, Luo J, Han Y, Hua Y, Guan C, Zhang Z. Low nitrogen enhances nitrogen use efficiency by triggering NO3- uptake and its long-distance translocation [J]. J Agric Food Chem, 2019, 67 (24): 6736-6747
76 Tang B, Yin C, Liu Q. Characteristics of ammonium and nitrate fluxes along the roots of Picea asperata [J]. J Plant Nutr, 2019, 42 (7): 772-782
77 Weng L, Zhang M, Wang K, Chen G, Ding M, Yuan W, Zhu Y, Xu W, Xu F. Potassium alleviates ammonium toxicity in rice by reducing its uptake through activation of plasma membrane H+-ATPase to enhance proton extrusion [J]. Plant physiol biochem, 2020, 151: 429-437
78 Stein S, Faust F, Jung S, Schubert S. Expression of plasma membrane H+-ATPase in cluster roots of white lupin under phosphorus deficiency [J]. J Plant Nutr Soil Sci, 2019, 182 (6): 867-870
79 Nikolic M, Cesco S, Monte R, Tomasi N, Gottardi S, Zamboni A, Pinton R, Varanini Z. Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H+-ATPase activity and abundance [J]. BMC Plant Biol, 2012, 12 (1): 1-12
80 Zhao Q, Ren YR, Wang QJ, Yao YX, You CX, Hao YJ. Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple [J]. Plant Biotechnol J, 2016, 14 (7): 1633-1645
81 Zhou LJ, Zhang CL, Zhang RF, Wang GL, Li YY, Hao YJ. The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H+-ATPase activity and iron homeostasis [J]. Plant Physiol, 2019, 179 (1): 88-106
82 Shabala L, Zhang JY, Pottosin I, Bose J, Zhu M, Fuglsang AT, Velarde-Buendia A, Massart A, Hill CB, Roessner U, Bacic A, Wu HH, Azzarello E, Pandolfi C, Zhou MX, Poschenrieder C, Mancuso S, Shabala S. Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress [J]. Plant Physiol, 2016, 172 (4): 2445-2458
83 董秋丽, 夏方山, 董宽虎. 盐胁迫对芨芨草苗期质膜H+-ATP酶活性及5’-核苷酸酶活性的影响[J]. 草业与畜牧, 2010 (7): 23-26 [Dong QL, Xia FS, Dong KH. Effects of salinity stress on activity of PM-ATPase and 5′-AMPase of Achnatherum splendens at seedling stage [J]. J Grassland For Sci, 2010 (7): 23-26]
84 Xu Z, Marowa P, Liu H, Du H, Zhang C, Li Y. Genome-wide identification and analysis of P-type plasma membrane H+-ATPase sub-gene family in sunflower and the role of HHA4 and HHA11 in the development of salt stress resistance [J]. Genes, 2020, 11 (4): 361
85 Fan YF, Yin XC, Xie Q, Xia YQ, Wang ZY, Song J, Zhou Y, Jiang XY. Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance[J]. BMC Plant Biol, 2019, 19(1): 74-86
86 Su N, Wu Q, Chen J, Shabala L, Mithoefer A, Wang H, Qu M, Yu M, Cui J, Shabala S. GABA operates upstream of H+-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K+ retention and Na+ exclusion [J]. J Exp Bot, 2019, 70 (21): 6349-6361
87 Han XL, Yang YQ, Wu YJ, Liu XH, Lei XG, Guo Y. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis [J]. J Exp Bot, 2017, 68 (11): 2951-2962
88 Yu Y, Kou M, Gao Z, Liu Y, Xuan Y, Liu Y, Tang Z, Cao Q, Li Z, Sun J. Involvement of phosphatidylserine and triacylglycerol in the response of sweet potato leaves to salt stress [J]. Front Plant Sci, 2019, 10: 1086
89 Jakubowska D, Janicka M. The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress [J]. Plant Sci, 2017, 264: 37-47
90 何龙飞, 刘友良, 沈振国, 王爱勤. 铝对小麦根细胞质膜ATP酶活性和膜脂组成的影响[J]. 中国农业科学, 2001, 34 (5): 465-468 [He LF, Liu YL, Sheng ZG, Wang AQ. Effects of aluminum on ATPase activity and lipid composition of plasma membranes of wheat roots [J]. Sci Agric Sin, 2001, 34 (5): 465-468]
91 何龙飞, 沈振国, 刘友良. 铝胁迫下钙对小麦根系细胞质膜ATP酶活性和膜脂组成的效应[J]. 中国农业科学, 2003, 36 (10): 1139-1142 [He LF, Sheng ZG, Liu YL. Effects of calcium on ATPase activity and lipid composition of plasma membranes of wheat roots under aluminum stress [J]. Sci Agric Sin, 2003, 36 (10): 1139-1142]
92 Li XW, Li YL, Mai JW, Tao L, Qu M, Liu JY, Shen RF, Xu GL, Feng YM, Xiao HD, Wu LS, Shi L, Guo SX, Liang J, Zhu YY, He YM, Balu?ka F, Shabala S, Yu M. Boron alleviates aluminum toxicity by promoting root alkalization in transition zone via polar auxin transport [J]. Plant Physiol, 2018, 177 (3): 1254-1266
93 陈东杰, 王平, 庞晓璐, 陈丽梅, 李昆志. 铝胁迫下不同耐铝性黑大豆硝态氮吸收机理研究[J]. 大豆科学, 2014, 33 (6): 870-875 [Chen DJ, Wang P, Pang XL, Chen LM, Li KZ. Study on the mechanism of NO3- uptake by different Al-tolerance black soybean under Al stress [J]. Soybean Sci, 2014, 33 (6): 870-875]

相似文献/References:

[1]黄荣峰,王学巨.气孔运动机理研究进展[J].应用与环境生物学报,1996,2(03):320.
 Huang Rongfeng,Wang Xuechen.ADVANCES IN MECHANISM OF STOMATAL MOVEMENTS[J].Chinese Journal of Applied & Environmental Biology,1996,2(02):320.

更新日期/Last Update: 2021-04-25