|本期目录/Table of Contents|

[1]高爽,宋海凤.杨柳科植物对干旱胁迫的性别响应差异[J].应用与环境生物学报,2021,27(02):495-502.[doi:10.19675/j.cnki.1006-687x.2020.02010]
 GAO Shuang,& SONG Haifeng.Sex-related response of Salicaceae to drought stress[J].Chinese Journal of Applied & Environmental Biology,2021,27(02):495-502.[doi:10.19675/j.cnki.1006-687x.2020.02010]
点击复制

杨柳科植物对干旱胁迫的性别响应差异()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年02期
页码:
495-502
栏目:
综述
出版日期:
2021-04-25

文章信息/Info

Title:
Sex-related response of Salicaceae to drought stress
作者:
高爽宋海凤
1中国科学院水利部成都山地灾害与环境研究所山地表生过程与生态调控重点实验室 成都 610041 2中国科学院大学 北京 100049 3四川大学生命科学学院,生物资源与生态环境教育部重点实验室 成都 610065
Author(s):
GAO Shuang1 2 & SONG Haifeng3?
1 Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
关键词:
杨柳科雌雄异株干旱资源分配性别差异
Keywords:
Salicacea dioecious drought resource allocation sexual difference
DOI:
10.19675/j.cnki.1006-687x.2020.02010
摘要:
杨柳科(Salicaceae)植物多为雌雄异株植物,在自然种群中常出现性别偏倚现象,雌雄植株之间不同的资源吸收和利用策略以及外界环境压力是造成性别偏倚的重要因素. 干旱胁迫是影响植物生长的不利因素之一,了解雌雄异株植物对干旱胁迫的性别差异响应对全面认识植物在有限水分条件下的抗性机制至关重要. 本文从形态、生理、分子水平的变化及资源权衡关系等方面对干旱胁迫条件下不同性别杨柳科植物的响应差异进行阐述. 杨柳科植物在干旱胁迫条件下雌雄株生长形态、光合特征、水分利用效率、抗氧化防御系统及渗透调节能力、基因和蛋白质表达及资源分配等方面具有显著差异,而这种差异因干旱程度、速度、方式、时间尺度及植物生长阶段、林分年龄甚至物种遗传多样性的不同而异. 综合分析表明,干旱胁迫下杨树雄株比雌株有更强的耐受能力,表现为生长速率和光合作用下降幅度较小、细胞损伤较轻、抗氧化酶活性和防御能力较强;而多数柳树雌株比雄株具有较强的适应性. 因此在全球变化背景下未来应采用多组学联用的方法开展多种雌雄异株植物对干旱胁迫及其他复合胁迫的响应与适应机理的长期研究,为预测植物的种群结构和规模的变化提供参考依据. (图1 表1 参80)
Abstract:
Most Salicaceae are dioecious plants that have differing resource absorption and utilization strategies between sexes, as well as differing responses to environmental stress, resulting in sex bias in natural populations. Drought stress is an unfavorable factor that affects plant growth. Understanding the sex-differential response to drought stress in dioecious plants is very important to fully understand the resistance mechanisms of plants to limited water conditions. In this review, the sex-differential responses of Salicaceae under drought stress, specifically aspects of growth, physiology, molecular characteristics, and the trade-off of resources, were reviewed. There were marked differences in growth morphology, photosynthetic characteristics, water-use efficiency, antioxidant defense system, osmotic regulation, gene and protein expression, and resource allocation between male and female plants under drought stress. These differences vary with drought degree, speed, mode, and timescale and plant growth stage, stand age, and even genetic diversity. Comprehensive analysis showed that male poplars have a stronger tolerance to drought than females, with a lower growth rate, reduced photosynthesis, less cell damage, higher antioxidant enzyme activity, and higher defense ability. Conversely, female willows tend to have a stronger adaptability than males. Therefore, a long-term study on the adaptation mechanisms of many dioecious plants to drought stress using multi-omics should be conducted to provide a reference for predicting the changes in plant population structure under global changes in the future.

参考文献/References:

1 李燕, 薛立, 吴敏. 树木抗旱机理研究进展[J]. 生态学杂志, 2007, 26 (11): 1857-1866 [Li Y, Xue L, Wu M. Research advances in mechanisms of tree species drought resistance [J]. Chin J Ecol, 2007, 26 (11): 1857-1866]
2 Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U. Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit [J]. Acta Physiol Plant, 2009, 31 (36): 1129-1138
3 费世民, 何亚平, 何飞, 王乐辉, 蔡小虎, 陈秀明. 雌雄异体生物种群的性比失调及其调控研究现状[J]. 四川林业科技, 2011, 32 (2): 23-37 [Fei SM, He YP, He F, Wang LH, Cai XH, Chen XM. Researches on the distortion of sex ratio in dioecism population and its controlling hypothesis [J]. J Sichuan Forestry Sci & Tech, 2011, 32 (2): 23-37]
4 Geber MA, Dawson TE, Delph LF. Gender and Sexual Dimorphism in Flowering Plants [M]. New York: Springer-Verlag Berlin Heidelberg, 2012: 349
5 Sanchez-Vilas J, Bermudez R, Retuerto R. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides [J]. Ann Bot, 2012, 110 (4): 839-848
6 Eric I, Francois L. Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system [J]. J Ecol, 2003, 91 (3): 447-456
7 Hughes FMR, Johansson M, Xiong SJ, Carlborg E, Hawkins D, Svedmark M, HayesA, Goodall A, Richards KS, Nilsson C. The influence of hydrological regimes on sex ratios and spatial segregation of the sexes in two dioecious riparian shrub species in northern Sweden [J]. Plant Ecol, 2009, 208 (1): 77-92
8 胥晓. 青杨(Populus cathayana Rehd.)雌雄植株对干旱胁迫的生理生态响应差异[D]. 成都: 中国科学院成都生物研究所. 2008 [Xu X. Different ecophysiological responses between males and females of Populus cathayana Rehd. to drought stress [D]. Chengdu Institute of Biology, Chinese Academy of Sciences, Beijing, 2008]
9 Li L, Barrett SCH, Song Z, Chen JK. Sex-specific plasticity of reproductive allocation in response to water depth in a clonal, dioecious macrophyte [J]. Am J Bot, 2019, 106 (1): 42-50
10 Kersten B, Pakull B, Groppe K, Lueneburg J, Fladung M. The sex-linked region in Populus tremuloides Turesson 141 corresponds to a pericentromeric region of about two million base pairs on P. trichocarpa chromosome 19 [J]. Plant Biol, 2014, 16 (2): 411-418
11 Geraldes A, Hefer CA, Capron A, Kolosova N, Martinez-Nunez F, Soolanayakanahally RY, Stanton B, Guy RD, Mansfield SD, Douglas CJ, Cronk QCB. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus) [J]. Mol Ecol, 2015, 24 (13): 3243-3256
12 Pakull B, Kersten B, Lüneburg J, Fladung M. A simple PCR-based marker to determine sex in aspen [J]. Plant Biol, 2015, 17 (1): 256-261
13 Hou J, Ye N, Zhang DF, Chen YN, Fang LC, Dai XG, Yin TM. Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus [J]. Sci Rep, 2015, 5: 9076
14 Pucholt P, Ronnberg-Wastljung AC, Berlin S. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.) [J]. Heredity, 2015, 114 (6): 575-583
15 Chen YN, Wang TT, Fang LC, Li XP, Yin TM. Confirmation of single-locus sex determination and female heterogamety in willow based on linkage analysis [J]. PLoS ONE, 2016, 11 (2): e0147671
16 Kersten B, Pakull B, Fladung M. Genomics of sex determination in dioecious trees and woody plants [J]. Trees, 2017, 31 (4): 1113-1125
17 Zimmerman JK. Ecological correlates of labile sex expression in the orchid Catasetum viridiflavum [J]. Ecology, 1991, 72 (2): 597-608
18 Lebel-Hardenack S, Grant SR. Genetics of sex determination in flowering plants [J]. Trends Plant Sci, 1997, 2 (4): 130-136
19 Aryal R, Ming R. Sex determination in flowering plants: papaya as a model system [J]. Plant Sci, 2014, 217-218: 56-62
20 Myers-Smith IH, Hik DS. Uniform female-biased sex ratios in alpine willows [J]. Am J Bot, 2012, 99 (7): 1243-1248
21 尹春英, 李春阳. 雌雄异株植物与性别比例有关的性别差异研究现状与展望[J]. 应用与环境生物学报, 2007, 13 (3): 419-425 [Yin CY, Li CY. Gender differences of dioecious plants related sex ratio: recent advances and future prospects [J]. Chin J Appl Environ Biol, 2007, 13 (3): 419-425]
22 Sinclair JP, Emlen J, Freeman DC. Biased sex ratios in plants: theory and trends [J]. Bot Rev, 2012, 78 (1): 63-86
23 Field DL, Pickup M, Barrett SC. Comparative analyses of sex-ratio variation in dioecious flowering plants [J]. Evolution, 2013, 67 (3): 661-672
24 陈小梅, 危晖, 林媚珍. 气候变化对雌雄异株植物影响的研究进展[J]. 生态学杂志, 2014, 33 (11): 3144-3149 [Chen XY, Wei H, Lin MZ. Response of dioecious plants to climate change: a review on the potential mechanisms [J]. Chin J Ecol, 2014, 33 (11): 3144-3149]
25 Chen L, Zhang S, Zhao HX, Korpelainen H, Li CY. Sex-related adaptive responses to interaction of drought and salinity in Populus yunnanensis [J]. Plant Cell Environ, 2010, 33 (10): 1767-1778
26 Hultine KR, Burtch KG, Ehleringer JR. Gender specific patterns of carbon uptake and water use in a dominant riparian tree species exposed to a warming climate [J]. Glob Chang Biol, 2013, 19 (11): 3390-3405
27 Grant MC, Mitton JB. Elevational gradients in adult sex ratios of Populus tremuloides and sexual differentiation invegetative growth rates [J]. Evolution, 1979, 33 (3): 914-918
28 王志峰, 胥晓, 李杨鹏, 袁新利, 霄峰. 青杨雌雄群体沿海拔梯度的分布特征[J]. 生态学报, 2011, 31 (23): 7067-7074 [Wang ZF, Xu X, Li YP, Yuan XL, Xiao F. The distribution of male and female Populus cathayana populations along an altitudinal gradient [J]. Acta Ecol Sin, 2011, 31 (23): 7067-7074]
29 樊艳欣, 姜永雷, 陈 珂, 类延宝. 贡嘎山高低海拔上优势杨柳科植物性别比例与繁殖特性[J]. 应用与环境生物学报, 2018, 24 (4): 704-710 [Fan YX, Jiang YL, Chen K, Lei YB. Sex ratio patterns and reproductive characteristics of Salicaceae species at high and low altitudes on Gongga Mountain [J]. Chin J Appl&Environ Biol, 2018, 24 (4): 704-710]
30 Zhang S, Chen F, Peng S, Korpelainen H, Li CY (2010). Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress [J]. Proteomics, 2010, 10 (14): 2661-2677
31 Xu X, Peng GQ, Wu CC, Korpelainen H, Li CY. Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana [J]. Tree Physiol, 2008, 28 (11): 1751-1759
32 Chen J, Duan BL, Wang ML, Korpelainen H, Li CY. Intra- and inter-sexual competition of Populus cathayana under different watering regimes [J]. Funct Ecol, 2014, 28 (1): 124-136
33 Xu X, Yang F, Xiao X, Korpelainen H, Li CY. Sex-specific responses of Populus cathayana to drought and elevated temperatures [J]. Plant Cell Environ, 2008, 31 (6): 850-860
34 Rood SB, Nielsen JL, Shenton L, Gill KM, Letts MG. Effects of flooding on leaf development, transpiration, and photosynthesis in narrowleaf cottonwood, a willow-like poplar [J]. Photosynth Res, 2010, 104 (1): 31-39
35 Letts MG, Phelan CA, Johnson DRE, Rood SB. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland [J]. Tree Physiol, 2008, 28 (7): 1037-1048
36 Zhao H, Li Y, Zhang X, Korpelainen H, Li CY. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO2 and elevated temperature [J]. Tree Physiol, 2012, 32 (11): 1325-1338
37 Zhang S, Jiang H, Zhao HX, Korpelainen H, Li CY. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies [J]. Tree Physiol, 2014, 34 (4): 343-354
38 Xu X, Zhao HX, Zhang X, Korpelainen H, Li CY. Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana [J]. Tree Physiol, 2010, 30 (12): 1489-1498
39 Ueno N, Suyama Y, Seiwa K. What makes the sex ratio female-biased in the dioecious tree Salix sachalinensis? [J]. J Ecol, 2007, 95 (5): 951-959
40 Liao J, Song HF, Tang DT, Zhang S. Sexually differential tolerance to water deficiency of Salix paraplesia—A female-biased alpine willow [J]. Ecol Evol, 2019, 9 (15): 8450-8464
41 Christian CC, Charlie MC, John GB, William FF. What causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape? [J]. Am J Bot, 2015, 102 (8): 1309-1322
42 Dudley LS, Galen C. Stage-dependent patterns of drought tolerance and gas exchange vary between sexes in the alpine willow, Salix glauca [J]. Oecologia, 2007, 153 (1): 1-9
43 Dawson TE, Bliss LC. Patterns of water use and the tissue water relations in the dioecious shrub, Salix arctica: the physiological basis for habitat partitioning between sexes [J]. Oecologia, 1989, 79 (3): 332-343
44 Lei YB, Chen K, Jiang H, Yu L, Duan BL. Contrasting responses in the growth and energy utilization properties of sympatric Populus and Salix to different altitudes: implications for sexual dimorphism in Salicaceae [J]. Physiol Plantarum, 2017, 159 (1): 30-41
45 Lei YB, Jiang YL, Chen K, Duan BL, Zhang S, Korpelainen H, Niinemets U, Li CY. Reproductive investments driven by sex and altitude in sympatric Populus and Salix trees [J]. Tree Physiol, 2017, 37 (11): 1503-1514
46 Hultine KR, Grady KC, Wood TE, Shuster SM, Stella JC, Whitham TG. Climate change perils for dioecious plant species [J]. Nat Plant, 2016, 2 (8): 16109
47 Hultine KR, Bush SE, Ward JK, Dawson TE. Does sexual dimorphism predispose dioecious riparian trees to sex ratio imbalances under climate change? [J]. Oecologia, 2018, 187 (4): 921-931
48 Delph LF. Sexual dimorphism in gender plasticity and its consequences for breeding system evolution [J]. Evol Dev, 2003, 5 (1): 34-39
49 安玉燕, 梁宗锁. 植物应对干旱胁迫的阶段性策略[J]. 应用生态学报, 2012, 23 (10): 2907-2915 [An YY, Liang ZS. Staged strategy of plants in response to drought stress [J]. Chin J Appl Ecol, 2012, 23 (10): 2907-2915]
50 Zhang R, Liu JY, Liu QS, He HG, Xu X, Dong TF. Sexual differences in growth and defence of Populus yunnanensis under drought stress [J]. Can J Forest Res, 2019, 49 (5): 491-499
51 Fang YJ, Xiong LZ. General mechanisms of drought response and their application in drought resistance improvement in plants [J]. Cell Mol Life Sci, 2015, 72 (4): 673-689
52 Zhang S, Chen L, Duan BL, Korpelainen H, Li CY. Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress [J]. Forest Ecol Manag, 2012, 275 (1): 68-78
53 Han Y, Wang Y, Jiang H, Korpelainen H, Li CY. Reciprocal grafting separates the roles of the root and shoot in sex-related drought responses in Populus cathayana males and females [J]. Plant Cell Environ, 2013, 36 (2): 356-364
54 Pucholt P, Sjodin P, Weih M, R?nnberg-W?stljung AC, Berlin S. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes [J]. BMC Plant Biol, 2015, 15: 244-259
55 Ghosh S, Mahoney SR, Penterman JN, Peirson D, Dumbroff EB. Ultrastructural and biochemical changes in chloroplasts during Brassica napus senescence [J]. Plant Physiol Bioch, 2001, 39 (9): 777-784
56 Yordanov I, Velikova V, Tsonev T. Plant responses to drought, acclimation, and stress tolerance [J]. Photosynthetica, 2008, 38 (2): 171-186
57 张胜. 青杨(Populus cathayana Rehd.)雌雄植株对锈病和干旱胁迫的生理响应及差异蛋白质组比较[D]. 成都: 中国科学院成都生物研究所, 2009 [Zhang S. Comparison in physiology and proteomics between male and female Populus cathayana Rehd to rust disease and drought stress [D]. Chengdu Institute of Biology, Chinese Academy of sciences, Beijing, 2009]
58 Han Y, Wang L, Zhang X, Korpelainen H, Li CY. Sexual differences in photosynthetic activity, ultrastructure and phytoremediation potential of Populus cathayana exposed to lead and drought [J]. Tree Physiol, 2013, 33 (10): 1043-1060
59 周欢欢, 傅卢成, 马玲, 赵亚红, 张汝民, 高岩. 干旱胁迫及复水对波叶金桂特性的影响[J]. 浙江农林大学学报, 2019, 34 (4): 687-696 [Zhou HH, Fu LC, Ma L, Zhao YH, Zhang RM, Gao Y. Physiological characteristics of Osmanthus fragrans Boyejingui with drought stress and rewatering [J]. J Zhejiang A&F University, 2019, 34 (4): 687-696]
60 Wang XZ, Curtis PS. Gender-specific response of Populus tremuloides to atmospheric CO2 enrichment [J]. New Phytol, 2001, 150 (3): 675-684
61 Jones MH, Macdonald SE, Henry GHR. Sex- and habitat-specific responses of a high arctic willow, Salix arctica, to experimental climate change [J]. Nordic Society Oikos,1999, 87 (1): 129
62 Yu L, Han Y, Jiang YL, Dong TF, Lei YB. Sex-specific responses of bud burst and early development to nongrowing season warming and drought in Populus cathayana [J]. Can J Forest Res, 2018, 48: 68-76
63 Moller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants [J]. Ann Rev Plant Biol, 2007, 58 (1): 459-481
64 Misra N, Gupta AK. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram [J]. Plant Sci, 2005, 169 (2): 331-339
65 Fan Y, Miao LF. Adaptive responses to progressive drought stress in two poplar species originating from different altitudes [J]. Silva Fenn, 2010, 44 (1): 23-37
66 Juvany M, Munne-Bosch S. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context [J]. J Exp Bot, 2015, 66 (22): 6083-6092
67 Peng S, Jiang H, Zhang S, Korpelainen H, Li CY. Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis [J]. Tree Physiol, 2012, 32 (12): 1541-1555
68 Hughes FMR, Barsoum N, Richards KS, Winfield M, Hayes A. The response of male and female black poplar [ Populus nigra L. subspecies betulifolia (Pursh) W. Wettst.] cuttings to different water table depths and sediment types [J]. Hydrol Process, 2000, 14 (16): 3075-3098
69 Gong ZZ, Xiong LM, Shi HZ, Yang SH, Herrera-Estrella LR, Xu GH, Chao DY, Li JR, Wang PY, Qin F, Li JJ, Ding YL, Shi YT, Wang Y, Yang YQ, Guo Y, Zhu JK. Plant abiotic stress response and nutrient use efficiency [J]. Sic China Life Sci, 2020, 63 (5): 635-674
70 Gipson SA, Hall MD. The evolution of sexual dimorphism and its potential impact on host-pathogen coevolution [J]. Evolution, 2016, 70 (5): 959-968
71 Vega-Frutis R, Munguía-Rosas MA, Varga S, Kytoviita MM. Sex-specific patterns of antagonistic and mutualistic biotic interactions in dioecious and gynodioecious plants [J]. Perspect Plant Ecol, 2013, 15 (1): 45-55
72 Obeso, JR. The cost of reproduction in plants [J]. New Phytol, 2002, 155 (3): 321-348
73 Ba?uelos MJ, Obeso JR. Resource allocation in the dioecious shrub Rhamnus alpinus: the hidden costs of reproduction [J]. Evol Ecol Res, 2004, 6 (3): 397-413
74 Ueno N, Kanno H, Seiwa K. Sexual differences in shoot and leaf dynamics in the dioecious tree, Salix sachalinensis [J]. Can J Bot, 2006, 84 (12): 1852-1859
75 张容. 增温对杨树雌雄植株生长和防御能力的影响[D]. 南充: 西华师范大学, 2019 [Zhang R. Sex-related responses in growth and defense of Populus to elevated temperature [D]. Nanchong: China West Normal University, 2019]
76 Jiang H, Zhang S, Lei YB, Xu G, Zhang D. Alternative growth and defensive strategies reveal potential and gender specific trade-offs in dioecious plants Salix paraplesia to nutrient availability [J]. Front Plant Sci, 2016, 7: 1064
77 Tozawa M, Ueno N, Seiwa K. Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra [J]. Botany, 2009, 87 (3): 315-323
78 Hacket-Pain AJ, Lageard JGA, Thomas PA. Drought and reproductive effort interact to control growth of a temperate broadleaved tree species (Fagus sylvatica) [J]. Tree Physiol, 2017, 37 (6): 744-754
79 Lauder JD, Moran EV, Hart SC. Fight or flight? Potential tradeoffs between drought defense and reproduction in conifers [J]. Tree Physiol, 2019, 39 (7): 1071-1085
80 Randriamanana TR, Nybakken L, Lavola A, Aphalo PJ, Nissinen K, Julkunen-Tiitto R. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories [J]. Tree Physiol, 2014, 34 (5): 471-487

相似文献/References:

[1]陈娟,李春阳.环境胁迫下雌雄异株植物的性别响应差异及竞争关系[J].应用与环境生物学报,2014,20(04):743.[doi:10.3724/SP.J.1145.2014.06008]
 CHEN Juan,LI Chunyang.Sex-specific responses to environmental stresses and sexual competition of dioecious plants[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):743.[doi:10.3724/SP.J.1145.2014.06008]
[2]樊艳欣,姜永雷,陈珂,等.贡嘎山高低海拔上优势杨柳科植物性别比例与繁殖特性[J].应用与环境生物学报,2018,24(04):704.[doi: 10.19675/j.cnki.1006-687x.2017.09036]
 FAN Yanxin,JIANG Yonglei,et al.Sex ratio patterns and reproductive characteristics of Salicaceae species at high and low altitudes on Gongga Mountain[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):704.[doi: 10.19675/j.cnki.1006-687x.2017.09036]
[3]柴淑丽,陈亚菲,樊晓旭,等.地钱(Marchantia polymorpha)雌雄配子体对酸雨胁迫的耐受性差异[J].应用与环境生物学报,2019,25(01):100.[doi:10.19675/j.cnki.1006-687x.2018.03010]
 CHAI Shuli,CHEN Yafei,FAN Xiaoxu,et al.Gender differences of Marchantia polymorpha in tolerance to acid rain stress[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):100.[doi:10.19675/j.cnki.1006-687x.2018.03010]
[4]毛晓瑜,楼艳笑,戴超,等.镉和酸雨对不同性别桑树幼苗光合生理的影响[J].应用与环境生物学报,2020,26(01):117.[doi:10.19675/j.cnki.1006-687x.2019.03056]
 MAO Xiaoyu,LOU Yanxiao,DAI Chao,et al.Effects of cadmium pollution and acid rain on photosynthetic characteristics of Morus alba seedling sexes[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):117.[doi:10.19675/j.cnki.1006-687x.2019.03056]

更新日期/Last Update: 2021-04-25