1 Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging [J]. Genes Dev, 2008, 22 (11): 1427-1438
2 Hartl FU, Hayer-Hartl M. Converging concepts of protein folding in vitro and in vivo [J]. Nat Struct Mol Biol, 2009, 16 (6): 574-581
3 Xu ZS, Li ZY, Chen Y, Chen M, Li LC, Ma YZ. Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses [J]. Int J Mol Sci, 2012, 13 (12): 15706-15723
4 Westerheide SD, Raynes R, Powell C, Xue B, Uversky VN. HSF transcription factor family, heat shock response, and protein intrinsic disorder [J]. Curr Protein Pept Sci, 2012, 13 (1): 86-103
5 Nakai A. Molecular basis of HSF regulation [J]. Nat Struct Mol Biol, 2016, 23 (2): 93-95
6 Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis [J]. J Genet Genomics, 2008, 35 (2): 105-118
7 Liu B, Hu J, Zhang J. Evolutionary divergence of duplicated Hsf genes in Populus [J]. Cells, 2019, 8 (5): 438
8 Guertin MJ, Lis JT. Chromatin landscape dictates HSF binding to target DNA elements [J]. PLoS Genet, 2010, 6 (9): e1001114
9 Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? [J]. Cell Stress Chaperones, 2001, 6 (3): 177-189
10 Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution [J]. Biochim Biophys Acta, 2012, 1819 (2): 104-119
11 Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Doring P. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization [J]. Plant J, 2004, 39 (1): 98-112
12 Doring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2 [J]. Plant Cell, 2000, 12 (2): 265-278
13 Dossa K, Diouf D, Cissé N. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response [J]. Front Plant Sci, 2016, 7: 1522-1522
14 Zhu X, Huang C, Zhang L, Liu H, Yu J, Hu Z, Hua W. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses [J]. Front Plant Sci, 2017, 8: 1174
15 Wan X, Yang J, Guo C, Bao M, Zhang J. Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume, and transcriptional analysis under heat stress [J]. PeerJ, 2019, 7: e7312
16 Busch W, Wunderlich M, Schoffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana [J]. Plant J, 2005, 41 (1): 1-14
17 Liu G, Chai F, Wang Y, Jiang J, Duan W, Wang Y, Wang F, Li S, Wang L. Genome-wide identification and classification of HSF family in grape, and their transcriptional analysis under heat acclimation and heat stress [J]. Horticult Plant J, 2018, 4 (4): 133-143
18 Yu XY, Yao Y, Hong YH, Hou PY, Li CX, Xia ZQ, Geng MT, Chen YH. Differential expression of the Hsf family in cassava under biotic and abiotic stresses [J]. Genome, 2019, 62 (8): 563-569
19 Zhang J, Jia HX, Li JB, Li Y, Lu MZ, Hu JJ. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar [J]. Sci Rep, 2016, 6: 30050
20 Peng S, Zhu Z, Zhao K, Shi J, Yang Y, He M, Wang Y. A novel heat shock transcription factor, VpHsf1, from Chinese wild Vitis pseudoreticulata is involved in biotic and abiotic stresses [J]. Plant Mol Biol Rep, 2013, 31 (1): 240-247
21 Xiang J, Ran J, Zou J, Zhou X, Liu A, Zhang X, Peng Y, Tang N, Luo G, Chen X. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice [J]. Plant Cell Rep, 2013, 32 (11): 1795-1806
22 Prieto-Dapena P, Almoguera C, Personat JM, Merchan F, Jordano J. Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis [J]. J Exp Bot, 2017, 68 (5): 1097-1108
23 Lin Q, Jiang Q, Lin J, Wang D, Li S, Liu C, Sun C, Chen K. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit [J]. Gene, 2015, 559 (2): 129-136
24 Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions [J]. Nucleic Acids Res, 2013, 41 (12): e121
25 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Res, 2004, 32 (5): 1792-1797
26 Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33 (7): 1870-1874
27 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 1997, 25 (17): 3389-3402
28 Jarvis DE, Ho YS, Lightfoot DJ, Schmockel SM, Li B, Borm TJ, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EG, Guo X, Momin AA, Negrao S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M. The genome of Chenopodium quinoa [J]. Nature, 2017, 542 (7641): 307-312
[1]陈诗佳 侯丽媛 蒋礼玲** 陈思宇 王琳超 张戎金蕾 贾举庆 王明雪 黄胜雄.藜麦及其祖先二倍体NAC基因的进化与胁迫应答[J].应用与环境生物学报,2022,28(04):1.[doi:10.19675/j.cnki.1006-687x.2021.07027]
CHEN Shijia,HOU Liyuan,JIANG Liling **,et al.Evolution characteristics and transcriptional responses to multiple stresses of NAC genes in Chenopodium quinoa and its ancestral diploidspecies[J].Chinese Journal of Applied & Environmental Biology,2022,28(01):1.[doi:10.19675/j.cnki.1006-687x.2021.07027]