|本期目录/Table of Contents|

[1]陈诗佳,张戎金蕾,蒋礼玲,等.藜麦Hsf家族的进化与多胁迫条件下的转录应答[J].应用与环境生物学报,2021,27(01):129-136.[doi:10.19675/j.cnki.1006-687x.2020.02002]
 CHEN Shijia,ZHANG Rongjinlei,JIANG Liling?,et al.Evolutionary characteristics of Hsf gene family and transcriptional responses to multiple abiotic and biotic stresses in Chenopodium quinoa Willd.[J].Chinese Journal of Applied & Environmental Biology,2021,27(01):129-136.[doi:10.19675/j.cnki.1006-687x.2020.02002]
点击复制

藜麦Hsf家族的进化与多胁迫条件下的转录应答()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年01期
页码:
129-136
栏目:
研究论文
出版日期:
2021-02-25

文章信息/Info

Title:
Evolutionary characteristics of Hsf gene family and transcriptional responses to multiple abiotic and biotic stresses in Chenopodium quinoa Willd.
作者:
陈诗佳张戎金蕾蒋礼玲陈志伟张真真贾举庆王明雪黄胜雄
1合肥工业大学食品与生物工程学院 合肥 2300092三江源生态与高原农牧业国家重点实验室/青海大学农林科学院/农业农村部作物基因资源与种质创新青海科学观测试验站/国家作物种质复份库 西宁 8100163山西农业大学农学院 太谷 030801
Author(s):
CHEN Shijia1 ZHANG Rongjinlei1 JIANG Liling2? CHEN Zhiwei3 ZHANG Zhenzhen1 JIA Juqing3 WANG Mingxue1 & HUANG Shengxiong1?
1 School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China2 State Key Laboratory of Plateau Ecology and Agriculture / Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University / Qinghai Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China / National Duplicate GenBank for Crops of China, Xining 810016, China3 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
关键词:
藜麦Hsf进化胁迫转录应答
Keywords:
Chenopodium quinoa Willd. Hsf evolution stress transcriptional response
DOI:
10.19675/j.cnki.1006-687x.2020.02002
摘要:
Hsf转录因子参与调控植物在生物和非生物胁迫下的防御应答机制. 基于系统的生物信息学分析方法,对藜麦Hsf家族成员进行序列特征、进化和多种生物和非生物逆境胁迫下的基因表达水平分析. 在藜麦基因组中共鉴定得到31个Hsf转录因子,主要分布在7号染色体. 系统进化树将藜麦31个Hsf成员划分到A1-A9、B1-B5和C组中;但藜麦Hsf成员在A6、A8、B5亚组中出现了缺失. 藜麦Hsf成员的HR-A/B区域蛋白序列比对结果进一步支持了进化树中藜麦Hsf成员的聚类结果. 藜麦Hsf成员蛋白序列中保守区域的分布呈现出组别特异性. A组Hsf成员的蛋白序列包括HSF domain、HR-A/B、NLS、NES和CTAD在内的保守区域;B组和C组的Hsf成员则缺失了CTAD. 在干旱、高温、盐、低磷胁迫和GCFSV病毒侵染下,31个藜麦Hsf基因的表达模式被阐明;其中大量Hsf基因的表达水平被显著地诱导表达,推测其参与了藜麦在生物和非生物胁迫下的防御应答反应. 本研究结果可为藜麦抗逆品种的遗传育种提供大量优良候选Hsf基因. (图6 表1 参28)
Abstract:
Hsf transcription factors widely participate in regulating defense against biotic and abiotic stresses. In this study, based on systematic bioinformatics methods, the sequence characteristics, evolution, and expression profiles of Hsf genes were analyzed in Chenopodium quinoa under multiple biotic and abiotic stresses. In total, 31 Hsf genes were identified in C. quinoa, mainly distributed on chromosome 7. According to the phylogenetic results, Hsf family members of C. quinoa could be classified into Groups A1-A9, Groups B1-B5, and Group C. The classification indicated the absence of Hsf members of C. quinoa in Groups A6, A8, and B5. The multiple alignments of HR-A/B regions further supported the classification of Hsf members in C. quinoa. The conserved domains represented a group-specific distribution. The Hsf members in Group A included HSF, HR-A/B, NLS, NES, and CTAD domains. In Hsf members of Groups B and C, none of the CTAD domains existed. Under drought, heat, salt, low Pi stresses, and GCFSV virus infection, the expression profiles of 31 Hsf genes were demonstrated, with a large number of Hsf genes showing significant upregulation or downregulation. These Hsf genes might participate in defense against various stresses. The results could provide good Hsf gene candidates and solid data for genetic breeding in C. quinoa.

参考文献/References:

1 Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging [J]. Genes Dev, 2008, 22 (11): 1427-1438
2 Hartl FU, Hayer-Hartl M. Converging concepts of protein folding in vitro and in vivo [J]. Nat Struct Mol Biol, 2009, 16 (6): 574-581
3 Xu ZS, Li ZY, Chen Y, Chen M, Li LC, Ma YZ. Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses [J]. Int J Mol Sci, 2012, 13 (12): 15706-15723
4 Westerheide SD, Raynes R, Powell C, Xue B, Uversky VN. HSF transcription factor family, heat shock response, and protein intrinsic disorder [J]. Curr Protein Pept Sci, 2012, 13 (1): 86-103
5 Nakai A. Molecular basis of HSF regulation [J]. Nat Struct Mol Biol, 2016, 23 (2): 93-95
6 Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis [J]. J Genet Genomics, 2008, 35 (2): 105-118
7 Liu B, Hu J, Zhang J. Evolutionary divergence of duplicated Hsf genes in Populus [J]. Cells, 2019, 8 (5): 438
8 Guertin MJ, Lis JT. Chromatin landscape dictates HSF binding to target DNA elements [J]. PLoS Genet, 2010, 6 (9): e1001114
9 Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? [J]. Cell Stress Chaperones, 2001, 6 (3): 177-189
10 Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution [J]. Biochim Biophys Acta, 2012, 1819 (2): 104-119
11 Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Doring P. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization [J]. Plant J, 2004, 39 (1): 98-112
12 Doring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2 [J]. Plant Cell, 2000, 12 (2): 265-278
13 Dossa K, Diouf D, Cissé N. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response [J]. Front Plant Sci, 2016, 7: 1522-1522
14 Zhu X, Huang C, Zhang L, Liu H, Yu J, Hu Z, Hua W. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses [J]. Front Plant Sci, 2017, 8: 1174
15 Wan X, Yang J, Guo C, Bao M, Zhang J. Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume, and transcriptional analysis under heat stress [J]. PeerJ, 2019, 7: e7312
16 Busch W, Wunderlich M, Schoffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana [J]. Plant J, 2005, 41 (1): 1-14
17 Liu G, Chai F, Wang Y, Jiang J, Duan W, Wang Y, Wang F, Li S, Wang L. Genome-wide identification and classification of HSF family in grape, and their transcriptional analysis under heat acclimation and heat stress [J]. Horticult Plant J, 2018, 4 (4): 133-143
18 Yu XY, Yao Y, Hong YH, Hou PY, Li CX, Xia ZQ, Geng MT, Chen YH. Differential expression of the Hsf family in cassava under biotic and abiotic stresses [J]. Genome, 2019, 62 (8): 563-569
19 Zhang J, Jia HX, Li JB, Li Y, Lu MZ, Hu JJ. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar [J]. Sci Rep, 2016, 6: 30050
20 Peng S, Zhu Z, Zhao K, Shi J, Yang Y, He M, Wang Y. A novel heat shock transcription factor, VpHsf1, from Chinese wild Vitis pseudoreticulata is involved in biotic and abiotic stresses [J]. Plant Mol Biol Rep, 2013, 31 (1): 240-247
21 Xiang J, Ran J, Zou J, Zhou X, Liu A, Zhang X, Peng Y, Tang N, Luo G, Chen X. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice [J]. Plant Cell Rep, 2013, 32 (11): 1795-1806
22 Prieto-Dapena P, Almoguera C, Personat JM, Merchan F, Jordano J. Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis [J]. J Exp Bot, 2017, 68 (5): 1097-1108
23 Lin Q, Jiang Q, Lin J, Wang D, Li S, Liu C, Sun C, Chen K. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit [J]. Gene, 2015, 559 (2): 129-136
24 Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions [J]. Nucleic Acids Res, 2013, 41 (12): e121
25 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Res, 2004, 32 (5): 1792-1797
26 Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33 (7): 1870-1874
27 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 1997, 25 (17): 3389-3402
28 Jarvis DE, Ho YS, Lightfoot DJ, Schmockel SM, Li B, Borm TJ, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EG, Guo X, Momin AA, Negrao S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M. The genome of Chenopodium quinoa [J]. Nature, 2017, 542 (7641): 307-312

相似文献/References:

[1]陈诗佳 侯丽媛 蒋礼玲** 陈思宇 王琳超 张戎金蕾 贾举庆 王明雪 黄胜雄.藜麦及其祖先二倍体NAC基因的进化与胁迫应答[J].应用与环境生物学报,2022,28(04):1.[doi:10.19675/j.cnki.1006-687x.2021.07027]
 CHEN Shijia,HOU Liyuan,JIANG Liling **,et al.Evolution characteristics and transcriptional responses to multiple stresses of NAC genes in Chenopodium quinoa and its ancestral diploidspecies[J].Chinese Journal of Applied & Environmental Biology,2022,28(01):1.[doi:10.19675/j.cnki.1006-687x.2021.07027]

更新日期/Last Update: 2021-02-25