|本期目录/Table of Contents|

[1]李炜,李潮,张雯君,等.海南岛及邻近陆地拟细鲫的种群遗传分化和亲缘地理过程[J].应用与环境生物学报,2021,27(01):191-199.[doi:10.19675/j.cnki.1006-687x.2020.01025]
 LI Wei,LI Chao,ZHANG Wenjun,et al.Population genetic structure and phylogeography of Aphyocypris normalis on Hainan island and adjacent mainland China[J].Chinese Journal of Applied & Environmental Biology,2021,27(01):191-199.[doi:10.19675/j.cnki.1006-687x.2020.01025]
点击复制

海南岛及邻近陆地拟细鲫的种群遗传分化和亲缘地理过程()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
27卷
期数:
2021年01期
页码:
191-199
栏目:
研究论文
出版日期:
2021-02-25

文章信息/Info

Title:
Population genetic structure and phylogeography of Aphyocypris normalis on Hainan island and adjacent mainland China
作者:
李炜李潮张雯君陈佳琪蒋淑莹高天扬王俊杰赵俊
华南师范大学生命科学学院,广东省水产健康安全养殖重点实验室,广东省水产优质环保养殖工程技术研究中心,广州市亚热带生物多样性与环境生物监测重点实验室 广州 510631
Author(s):
LI Wei LI Chao ZHANG Wenjun CHEN Jiaqi JIANG Shuying GAO Tianyang WANG Junjie & ZHAO Jun?
Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-friendly Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, China
关键词:
拟细鲫海南岛Cyt b遗传分化生物地理过程
Keywords:
Aphyocypris normalis Hainan Island Cyt b genetic differentiation phylogeography
DOI:
10.19675/j.cnki.1006-687x.2020.01025
摘要:
为了解海南岛及邻近陆地拟细鲫(Aphyocypris normalis)的遗传分化和亲缘地理过程,采用线粒体细胞色素b(Cyt b)对9个种群共124个个体的遗传多样性和遗传分化进行评估,并探讨这一物种的亲缘地理结构及演化历史. 结果显示,在1 140 bp的序列中,共检测到87个核苷酸变异位点,定义了34个单倍型. 基于Cyt b序列构建的系统发育树结果将所有个体分成3个主要谱系(A、B、C),谱系A包括海南岛大部分种群和邻近陆地全部种群,昌化江全部个体形成独立的谱系B,谱系C则为海南岛万泉河上安乡全部个体,各谱系间的遗传分化指数较高(0.707 5-0.971 9). 分化时间估算的结果表明,谱系C的分化时间为2.038百万年前,谱系B的分化时间为0.865百万年前. 种群历史动态分析表明,绝大部分种群均没有发生种群扩张,且所有谱系在近期都发生过有效种群数量减小的事件. 根据研究结果推测,海南岛内万泉河上安乡种群的分化主要是由于五指山鹦哥岭山脉的隆起而导致的,而海南岛内和邻近陆地大部分群体没有发生分化可能是由于更新世冰期期间,岛屿和邻近陆地之间的水系因海平面下降而发生连接,琼州海峡两岸的拟细鲫种群有机会发生基因交流. 因此认为琼州海峡并未对拟细鲫的扩散起到物理阻隔作用,海南岛为拟细鲫这一物种的起源扩散中心. (图4 表6 参48)
Abstract:
To understand the genetic differentiation and phylogeography of Aphyocypris normalis on Hainan Island and its neighboring regions, 124 individuals from nine populations in nine drainage basins (Changhua, Lingshui, Wangquan, Nandu, Moyang, Jianjiang, Fangcheng, Beilun, and Pearl Rivers) were analyzed using mitochondrial DNA cytochrome b (Cyt b). The results showed that 87 polymorphic sites were detected, and 34 haplotypes were defined in all Cyt b sequences. Phylogenetic trees based on the Cyt b sequences comprised three major lineages (A, B, and C). Lineage A consisted of most populations from Hainan Island and all populations from its neighboring regions. All individuals from the Changhua River formed an independent lineage B. Lineage C was formed by all individuals from Shang’an Village (Wanquan River). The Fst among the lineages was higher (0.707 5-0.971 9). The divergence time of lineage C was 2.038 million years ago, and lineage B originated 0.865 million years ago. The demographic history showed that there was no expansion in most populations, and all lineages had recently experienced an effective population reduction. According to the results, it is speculated that the differentiation between the three lineages A, B, and C resulted from the uplift of the Yinggeling and Wuzhishan Mountains. However, most of the populations from Hainan Island and its neighboring regions were not differentiated. This could be because of the connection between Hainan Island and its neighboring regions caused by the fluctuation?of?sea?level during the Pleistocene glacial period, resulting in gene flow between A. normalis populations on both sides of the Qiongzhou Strait. Based on these findings, we conclude that the Qiongzhou Strait did not act as a geographical barrier during the dispersion of A. normalis, and Hainan Island is the center of origin of the species.

参考文献/References:

1 Voris HK. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations [J]. J Biogeogr, 2000, 27 (5): 1153-1167
2 施雅风. 中国第四纪冰期划分改进建议[J]. 冰川冻土, 2002 (6): 687-692 [Shi YF. A suggestion to improve the chronology of Quaternary Glaciations in China [J]. J Glaciol Geocryol, 2002 (6): 687-692]
3 Whittaker RJ, Fernández-Palacios JM. Island Biogeography: Ecology, Evolution, and Conservation [M]. 2nd ed. Oxford: Oxford University Press, 2007
4 曾昭璇, 曾宪中. 海南岛自然地理. 北京: 科学出版社, 1989 [Zeng ZX,Zeng XZ. Physical Geography of Hainan Island [M]. Beijing: Science Press, 1989]
5 Zhou TQ, Lin HD, Hsu KC, Kuo PH, Wang WK, Tang WQ, Liu D, Yang JQ. Spatial genetic structure of the cyprinid fish Onychostoma lepturum on Hainan Island [J]. Mitochondrial DNA A DNA Mapp Seq Anal, 2017, 28 (6): 901-908
6 陈佳琪, 李潮, 张雯君, 李炜, 高天扬, 赵俊. 海南岛宽额鳢(Channa gachua)群体遗传变异与生物地理过程[J]. 生态学报, 2019, 39 (7): 2591-2602 [Chen JQ, Li C, Zhang WJ, Li W, Gao TY, Zhao J. Genetic variation and phylogeography of Channa gachua in Hainan Island [J]. Acta Ecol Sin, 2019, 39 (7): 2591-2602]
7 Yang JQ, Hsu KC, Liu ZZ, Su LW, Kuo PH, Tang WQ, Zhou ZC, Dong L, Bao BL, Lin HD. The population history of Garra orientalis (Teleostei: Cyprinidae) using mitochondrial DNA and microsatellite data with approximate Bayesian computation [J]. BMC Evol Biol, 2016, 16: 73
8 左艳玲, 林岳光, 梁晓旭, 马天峰, 庆宁. 基于mtDNA控制区序列的拟平鳅遗传变异和种群分化[J]. 水产学报, 2009, 33 (6): 925-931 [Zuo YL, Lin YG, Liang XX, Ma TF, Qing N. Genetic variation and population differentiation of Liniparhomaloptera disparis (Cypriniformes: Homalopteridae) based on mtDNA sequences in the control region [J]. J Fish China, 2009, 33 (6): 925-931]
9 乐佩琦. 《中国动物志-硬骨鱼纲鲤形目》下卷[M]. 北京: 科学出版社, 2000 [Yue PQ. Fauna Sinica, Osteichthyes, Cypriniformes III [M]. Beijing: Science Press, 2000]
10 杜合军, 陈湘粦, 陈贝乐. 对拟细鲫(Nicholsicypris normalis)与瑶山鲤(Yaoshanicus arcus)的比较和澄清[J]. 华南师范大学学报(自然科学版), 2003 (2): 96-100 [Du HJ, Chen XL, Chen BL. Comparison and clarification between Nicholsicypris normalis and Yaoshanicus arcus [J]. J S Chin Norm Univ (Nat Sci Ed), 2003 (2): 96-100]
11 罗燕平. 广州从化拟细鲫基础生物学的研究[D]. 广州: 华南师范大学, 2010 [Luo YP. A preliminary study on the biology of Nicholsicypris normalis from Conghua in Guangzhou [D]. Guangzhou: School of Life Science, South China Normal University, 2010]
12 Xiao WH, Zhang YP, Liu HZ. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia [J]. Mol Phylogenet Evol, 2001, 18 (2): 163-173
13 Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33 (7): 1870-1874
14 Nei M, Tajima F. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data [J]. Genetics, 1983, 105 (1): 207-217
15 Buhay JE, Crandall KA. Subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes [J]. Mol Ecol, 2005, 14: 4259-4273
16 Templeton AR. The ‘Eve’ hypotheses: a genetic critique and reanalysis [J]. Am Anthropol, 1993, 95 (1): 51-72
17 Lefort V, Longueville JE, Gascuel O. SMS: smart model selection in PhyML [J]. Mol Biol Evol, 2017, 34 (9): 2422-2424
18 Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows [J]. Mol Ecol Resour, 2010, 10 (3): 564-567
19 刘思情, 唐琼英, 李小娟, 刘焕章. 基于线粒体细胞色素b基因的黑鳍鳈(Sarcocheilichthys nigripinnis)生物地理学过程分析[J]. 动物学研究, 2013, 34 (5): 437-445 [Liu SQ, Tang QY, Li XJ, Liu HZ. Phylogeographic analyses of Sarcocheilichthys nigripinnis (Teleostei: Cyprinidae) based on mitochondrial DNA Cyt b gene sequences [J]. Zool Res, 2013, 34 (5): 437-445]
20 沈浩, 刘登义. 遗传多样性概述. 生物学杂志, 2001, 18 (3): 5-7 [Shen H, Liu DY. Summary of genetic diversity [J]. J Biol, 2001, 18 (3): 5-7]
21 Chiang TY, Lee TW, Hsu KC, Kuo CH, Lin DY, Lin HD. Population structure in the endangered cyprinid fish Pararasbora moltrechti in Taiwan, based on mitochondrial and microsatellite DNAs [J]. Zool Sci, 2011, 28 (9): 642-651
22 Chiang TY, Lin HD, Zhao J, Kuo PH. Diverse processes shape deep phylogeographical divergence in Cobitis sinensis (Teleostei: Cobitidae) in East Asia [J]. Zool Syst Evol Res, 2013, 51 (4): 316-326
23 Chen XL, Chiang TY, Lin HD, Zheng HS, Shao KT, Zhang Q, Hsu KC. Mitochondrial DNA phylogeography of Glyptothorax fokiensis and Glyptothorax hainanensis in Asia [J]. J Fish Biol, 2007, 70: 75-93
24 Morton B, Blackmore G. South China Sea [J]. Mar Pollut Bull, 2001, 42 (12): 1236-1263
25 Yap SY. On the distributional patterns of Southeast-East Asian freshwater fish and their history [J]. J Biogeogr 2002, 29 (9): 1187–1199
26 Lin HD, Kuo PH, Wang WK, Chiu YW, Ju YM, Lin FJ, Hsu KC. Speciation and differentiation of the genus Opsariichthys (Teleostei: Cyprinidae) in East Asia [J]. Biochel System Ecol, 2016, 68: 92-100
27 Rissler LJ. Union of phylogeography and landscape genetics [J]. Proc Natl Acad Sci USA, 2016, 113 (29): 8079-8086
28 Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics [J]. Annu Rev Ecol Evol Syst, 1987, 18: 489-522
29 Williams MAJ, Dunkerley DL, Deckker PD, Kershaw AP, Stokes TJ. Quaternary Environment [M]. London: Edward Arnold, 1993: 1-10
30 王颖. 海南岛海岸环境特征[J]. 海洋地质动态, 2002 (3): 1-9 [Wang Y. Features of Hainan island costal environment [J]. Mar Geol Lett, 2002 (3): 1-9]
31 赵焕庭, 王丽荣, 袁家义. 琼州海峡成因与时代[J]. 海洋地质与第四纪地质, 2007 (2): 33-40 [Zhao HT, Wang LR, Yuan JY. Origin and time of Qiongzhou strait [J]. Mar Geol Quat geol, 2007 (2): 33-40]
32 李平日, 黄镇国, 张仲英, 宗永强. 广东东部晚更新世以来的海平面变化[J]. 海洋学报(中文版), 1987 (2): 216-222 [Li PR, Huang ZG, Zhang ZY, Zong YQ. Sea level changes in eastern Guangdong since the Late Pleistocene [J]. Acta Oceanol Sin (Chin Ed), 1987 (2): 216-222]
33 Kershaw S, Guo L. Marine notches in coastal cliffs: indicators of relative sea-level change, Perachora Peninsula, central Greece [J]. Mar Geol, 2001, 179 (3): 213-228
34 赵信文, 向薇, 肖尚斌, 黄长生, 陈双喜. 末次冰消期以来海平面变化研究进展[J]. 华南地质与矿产, 2012, 28 (3): 189-196 [Zhao XW, Xiang W, Xiao S, Huang CS, Chen SX. Research progress in sea-level changes since the Last Deglaciation [J]. Geol Mar Res South Chin, 2012, 28 (3): 189-196]
35 庄振业, 林振宏, 刘志杰, 祁兴芬. 海平面变化及其海岸响应[J]. 海洋地质动态, 2003 (7): 1-12 [Zhuang ZY, Lin ZH, Liu ZJ, Qi XF. Sea level changes and costal responses [J]. Mar Geol letts, 2003 (7): 1-12]
36 卓书辉, 胡能, 陈康, 李佳灵, 尹为治, 黄良鸿, 龙文兴. 五指山自然保护区不同坡向和海拔的乔木群落物种分布格局[J]. 热带生物学报, 2017, 8 (4): 436-443 [Zhuo SH, Hu N, Chen K, Li JL, Yin WZ, Huang LH, Long WX. Species distribution pattern of tree plant communities on different slopes and altitudes in the Wuzhishan Nature Reserve [J]. J Trop Biol, 2017, 8 (4): 436-443]
37 Knowles LL. Genealogical portraits of speciation in montane grasshoppers (genus Malanoplus) from the sky island of the Rocky Mountains [J]. Proc R Soc B Biol Sci, 2001, 268: 319-324
38 Robin VV, Vishnudas CK, Gupta P, Ramarkrishnan U. Deep and wide valleys drive nested phylogeographic patterns across a montane bird community [J]. Proc R Soc B Biol Sci, 2015, 282: 1-6.
39 凌少军, 孟千万, 唐亮, 任明迅. 海南岛苦苣苔科植物的地理分布格局与系统发育关系[J]. 生物多样性, 2017, 25 (8): 807-815 [Ling SJ, Meng QW, Tang L, Ren MX. Gesneriaceae on Hainan Island: distribution patterns and phylogenetic relationships [J]. Biod Science, 2017, 25 (8): 807-815]
40 Ling SJ, Meng QW, Tang L, Ren MX. Pollination syndromes of Chinese Gesneriaceae: a comparative study between Hainan Island and neighboring regions [J]. Bot Rev, 2017, 83: 59-74
41 邢福武. 海南岛特有植物的研究[J]. 热带亚热带植物学报, 1995 (3): 1-12 [Xing FW. Endemic plants of Hainan Island [J]. J Trop Subtrl Bot, 1995 (3): 1-12]
42 蓝昭军, 范明君, 黄小林, 赵俊. 基于线粒体Cyt b基因的中国南方唇?(Hermibarbus labeo) 和间?(Hermibarbus medius)种群分化及亲缘地理研究[J]. 生态学报, 2016, 36 (19): 6099-6100 [Lan ZJ, Fan MJ, Huang XL, Zhao J. Population diversity and phylogeography of Hemibarbus labeo and Hemibarbus medius in South China [J]. Acta Ecol Sin, 2016, 36 (19): 6099-6100]
43 Liang B, Zhou RB, Liu YL, Chen B, Grismer LL, Wang N. Renewed classification within Goniurosaurus (Squamata: Eublepharidae) uncovers the dual roles of a continental island (Hainan) in species evolution [J]. Mol Phylogenet Evol, 2018, 127: 646-654
44 Moritz C, Faith DP. Comparative phylogeography and the identification of genetically divergent areas for conservation [J]. Mol Ecol, 1998 (7): 419-429
45 Milot E, Gibbs HL, Hobson KA. Phylogeography and genetic structure of northern population of the yellow warbler (Dendroica petechia) [J]. Mol Ecol, 2000 (9): 667-681
46 陈辈乐, 陈湘粦. 海南鹦哥岭地区的鱼类物种多样性与分布特点[J]. 生物多样性, 2008, 16 (1): 44-52 [Chen BL, Chen XL. Species diversity and distribution of freshwater fishes at Mt. Yinggeling, Hainan Island, China [J]. Biody Sci, 2008, 16 (1): 44-52]
47 Loeschcke V, Tomiuk J, Jian SK. Conservation Genetics [M]. Basel: Birkhauser Veriag, 1994
48 Ryder OA. Species conservation and systematics: the dilemma of subspecies [J]. Trends Ecol Evol, 1986, 1: 9-10

相似文献/References:

[1]郑慧,祁士华,王志勇,等.高位池养虾对土壤微生物脂肪酸和土壤酶活及其表征的土壤质量的影响[J].应用与环境生物学报,2011,17(01):69.[doi:10.3724/SP.J.1145.2011.00069]
 ZHENH Hui,QI Shihua,WANG Zhiyong,et al.Effects of Shrimp Aquaculture on the Quality of Upland Pond Soil Indicated by Microbial FAME and Enzyme Activity[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):69.[doi:10.3724/SP.J.1145.2011.00069]
[2]李玉龙,王循刚,付磊,等.海南岛饰纹姬蛙种群的形态变异[J].应用与环境生物学报,2017,23(06):1135.[doi:10.3724/SP.J.1145.2017.03021]
 LI Yulong,WANG Xungang,et al.Morphological variation of Microhyla fissipes on Hainan Island[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):1135.[doi:10.3724/SP.J.1145.2017.03021]

更新日期/Last Update: 2021-02-25