|本期目录/Table of Contents|

[1]温苗,施松梅,罗协,等.不同树龄桑园丛枝菌根侵染、球囊霉素土层分布及与土壤因子的关系[J].应用与环境生物学报,2020,26(05):1138-1146.[doi: 10.19675/j.cnki.1006-687x.2020.05003]
 WEN Miao,SHI Songmei,LUO Xie,et al.Relationships between spatial distribution of arbuscular mycorrhizal colonization, glomalin-related soil protein, and rhizhospheric soil chemical properties under different aged mulberry orchards[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1138-1146.[doi: 10.19675/j.cnki.1006-687x.2020.05003]
点击复制

不同树龄桑园丛枝菌根侵染、球囊霉素土层分布及与土壤因子的关系()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1138-1146
栏目:
土壤与农业微生物应用专栏
出版日期:
2020-10-25

文章信息/Info

Title:
Relationships between spatial distribution of arbuscular mycorrhizal colonization, glomalin-related soil protein, and rhizhospheric soil chemical properties under different aged mulberry orchards
作者:
温苗施松梅罗协何新华徐云飞胥晓
1西南大学资源环境学院土壤生物学研究中心 重庆 400715 2西华师范大学生命科学学院 南充 637002
Author(s):
WEN Miao1 SHI Songmei1 LUO Xie1 HE Xinhua1? XU Yunfei2 & XU Xiao2?
1 Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400716, China 2 College of Life Sciences, China West Normal University, Nanchong 637002, China
关键词:
桑树丛枝菌根真菌土壤化学性状球囊霉素脲酶蔗糖酶
Keywords:
Morus alba arbuscular mycorrhizal fungi soil chemical property glomalin urease sucrase
DOI:
10.19675/j.cnki.1006-687x.2020.05003
摘要:
桑树(Morus alba L.)对丛枝菌根真菌(arbuscular mycorrhiza fungi,AMF)具有较高的依赖性,为了解桑树根围AMF侵染、球囊霉素相关土壤蛋白含量及土壤化学性状的相互作用,分析四川省宜宾市兴文县不同树龄桑树(1、2、3和4年生)AMF侵染、桑园土层球囊霉素相关土壤蛋白变化与土壤主要无机养分及相关碳氮酶活性的相关关系. 结果发现0-30 cm土层桑树根系菌丝侵染率、0-10 cm和10-30 cm土壤易提取球囊霉素相关土壤蛋白(EE-GRSP)和总球囊霉素(T-GRSP)随树龄的增加都呈先上升后下降的趋势,峰值都出现在2年生桑园. 土壤pH、有机质、速效钾、脲酶、蔗糖酶活性在2年龄桑园达到最高,有效磷在3年龄桑园最高,而碱解氮高低与桑树龄无关. 冗余分析表明显著影响根系AMF侵染的主要土壤因子排序为T-GRSP > 脲酶 > pH > EE-GRSP(P < 0.05). 多元线性回归分析表明EE-GRSP和T-GRSP含量均与土壤pH、脲酶、蔗糖酶、有机质、速效钾呈显著正相关(P < 0.05),而与碱解氮、泡囊和丛枝侵染率无显著相关;此外,EE-GRSP还与土壤有效磷和菌丝侵染率呈显著正相关(P < 0.05). 上述研究表明1、2、3和4年龄桑树都能与AMF形成丛枝菌根共生关系,土壤pH、脲酶直接影响AMF侵染,而蔗糖酶通过影响EE-GRSP和T-GRSP含量来间接影响AMF侵染;因此,提高植物根系丛枝菌根形成和土层球囊霉素相关土壤蛋白含量对于提高土壤肥力,促进宿主植物生长发育和生态修复应用具有重要作用. (图7 表1 参55)
Abstract:
Mulberry (Morus alba L.) is a highly arbuscular mycorrhizal fungus (AMF)-dependent species. However, little information is available for relationships between mycorrhizal colonization, glomalin-related soil protein (GRSP), and soil chemical properties in mulberry orchards. In this study, the root colonization rate, GRSP, soil nutrients, and activity of urease and sucrase were examined from different aged (1-, 2-, 3- and 4-years) mulberry orchards in Xingwen County, Yibin City, Sichuan Province. These parameters were then examined to determine possible relationships between mycorrhizal colonization and the different ages of orchards. Results show that root AMF colonization rates and soil GRSP concentrations at soil depths of 0-10 cm and 10-30 cm were initially increased and then decreased with an increase in mulberry ages from 1 to 4 years, with their peak values appearing in the 2-year-old mulberry orchard. Soil pH, soil organic matter (SOM), available potassium (AK), and activity of urease and sucrase were highest in the 2-year-old mulberry orchard. In contrast, the value of soil available phosphorus (AP) peaked in the 3-year-old mulberry orchard, and soil available nitrogen (AN) was similar among the four mulberry orchards. Redundancy analyses showed that the significant effects of soil properties on root AMF colonization were patterned as total GRSP (T-GRSP) > urease > pH > easily extracted GESP (EE-GRSP) (P < 0.05). Correlation analyses showed that both EE-GRSP and T-GRSP were significantly and positively related to soil pH, SOM, urease, sucrase, and AK but not to AN, root vesicular, and mycorrhizal colonization rate. In addition, EE-GRSP also significantly and positively related to AP and hyphal colonization rate. In summary, our results demonstrated that roots from all tested mulberry orchards had formed AMF associations. Root AMF colonization was directly affected by soil pH and urease activity but indirectly by sucrase activity, which in turn affected the production of EE-GRSP and T-GRSP. The increase of inorganic NPK in the soil was positively related to the increase of GRSP. In conclusion, an improvement of both AM formation and GRSP could play an important role in promoting soil fertility and host growth as well as practice in restoration ecology.

参考文献/References:

1 秦俭, 何宁佳, 向仲怀. 家蚕模式化研究进展[J]. 蚕业科学, 2010, 36 (4): 645-649 [Qin J, He NJ, Xiang ZH. Advances in silkworm modeling research [J]. Acta Sericol Sin, 2010, 36 (4): 645-649]
2 王钰婷, 李瑞雪, 夏家凤, 汪泰初. 桑树的经济价值及其在生态保护中的应用[J]. 中国市场, 2017 (11): 239-240 [Wang YT, Li RX, Xia JF, Wang TC. Economic value of mulberry and its application in ecological protection [J]. Chin Mar, 2017 (11): 2399-240]
3 杨彪, 石佳佳, 蒋佳, 杨远萍. 四川省2019年蚕桑产业发展回顾[J]. 四川蚕业, 2020, 48 (1): 1-3 [Yang B, Shi JJ, Jiang J, Yang YP. Review on the development of sericulture industry in Sichuan province in 2019 [J]. Sichuan Sericol, 2020, 48 (1): 1-3]
4 Smith S, Read D. Mycorrhizal Symbiosis [M]. London: Academic Press, 2008
5 Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity [J]. New Phytol, 2018, 220 (4): 1108-1115
6 Bernaola L, Cosme M, Schneider RW, Stout M. Belowground inoculation with arbuscular mycorrhizal fungi increases local and systemic susceptibility of rice plants to different pest organisms [J]. Front Plant Sci, 2018, 9: 747
7 Ardakani MR, Sharifi M. Worm castings-based growing media with biochar and arbuscular mycorrhizal fungi for producing organic tomato (Solanum lycopersicum L.) in greenhouse [J]. J Plant Physiol, 2017, 7 (3): 2083-2093
8 Bowles TM, Jackson LE, Cavagnaro TR. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes [J]. Glob Change Biol, 2018, 24 (1): 171-182
9 Shi SM, Ke C, Yuan G, Bei L, Yang XH, Huang XZ, Liu GX, Zuo LQ, He XH. Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (Morus alba L.) seedlings [J]. Front Microbiol, 2016, 7: 1030
10 Kim JC, Choi YH, Moon JY, Kim JU. Growth stimulation of mulberry trees in unsterilized soil under field conditions with VA mycorrhizal inoculation [J]. Korean J Sericult Sci, 1984, 26 (2): 7-10
11 Chen K, Shi SM, Yang XH, Huang XZ. Contribution of arbuscular mycorrhizal inoculation to the growth and photosynthesis of mulberry in Karst rocky desertification area [J]. Appl Mech Mater, 2014, 488-489: 769-773
12 Baqual MF, Das PK, Katiyar RS. Effect of arbuscular mycorrhizal fungi and other microbial inoculants on chlorophyll content of mulberry (Morus spp.) [J]. Mycorrhiza News, 2005, 17 (3): 12-14
13 任强, 杨晓红, 何炜, 陈仁芳. 丛枝菌根真菌对桑扦插苗生长的影响研究[J]. 西南大学学报(自然科学版), 2008, 30 (4): 121-124 [Ren Q, Yang XH, He W, Chen RF. Effects of AM fungi on the growth of Morus cuttings [J]. J SW Univ (Nat Sci), 2008, 30 (4): 115-118]
14 舒玉芳, 叶娇, 潘程远, 杨晓红, 黄先智, 秦俭. 三峡库区桑树菌根发育特征及菌根对桑苗生长的促进作用[J]. 蚕业科学, 2011, 37 (6): 978-984 [Shu YF, Ye J, Pan CY, Yang XH, Huang XZ, Qin J. Developmental features of mycorrhiza and its promotion effect on growth of mulberry saplings in Three Gorges Reservoir region [J]. Acta Sericol Sin, 2011, 37 (6): 978-984]
15 Setua GC, Kar R, Ghosh JK, Das KK, Sen SK. Influence of arbuscular mycorrhizae on growth, leaf yield and phosphorus uptake in mulberry (Morus alba L.) under rainfed, lateritic soil conditions [J]. Biol Fertil Soils, 1999, 29 (1): 98-103
16 Katiyar RS, Das PK, Choudhury PC, Ghosh A, Singh GB, Datta RK. Response of irrigated mulberry (Morus alba L.) to VA-mycorrhizal inoculation under graded doses of phosphorus [J]. Plant Soil, 1995, 170 (2): 331-337
17 Reddy MP, Rao DMR, Verma RS, Srinath B, Katiyar RS. Effect of VAM inoculation and addition of phosphorus on the growth of S13 mulberry saplings [J]. Indian J Sericol, 2000, 39 (1): 12-15
18 Baqual MF, Das PK. Influence of biofertilizers on macronutrient uptake by the mulberry plant and its impact on silkworm bioassay [J]. Caspian J Environ Sci, 2006, 4 (2): 98-109
19 Kumaresan S, Elumalai S, Prabhakaran M. Effect of VAM fungi on growth and physiological parameters of mulberry (Morus alba L.) cultivars in South India [J]. Biosci Biotechnol Res Asia, 2010, 7 (2): 793-806
20 刘贝. 菌根桑在水淹和干旱交替胁迫后的持续性生理抗性研究[D]. 重庆: 西南大学, 2015 [Liu B. The persistent physiological resistance of mycorrhizal mulberry after alternating stress of waterlogging in winter and drought in summer [D]. Chongqing: Southwest University, 2015]
21 唐许, 刘代军, 涂波, 杨晓红, 黄先智. 菌根桑的促生效应及耐旱生理生化机制分析[J]. 西南大学学报(自然科学版), 2013, 35 (8): 25-32 [Tang X, Liu D J, Xu B, Yang XH, Huang XZ. Promotion effect on growth of mycorrhiza-inoculated mulberry saplings and physiological and biochemical mechanism to drought tolerance [J]. J SW Univ (Nat Sci), 2013, 35 (8): 25-32]
22 叶娇, 涂波, 施松梅, 杨晓红, 黄先智, 秦俭. 桑菌根初生结构对梯度水分胁迫的细胞学生态响应[J]. 西南大学学报(自然科学版), 2012, 34 (8): 73-78 [Ye J, Tu B, Shi S M, Yang XH, Huang XZ, Qin J. Ecological response at the cytological level of the root primary structure in mycorrhiza-inoculated mulberry saplings to gradient water stress [J]. J SW Univ (Nat Sci), 2012, 34 (8): 73-78]
23 曹敏, 余米, 卢敏, 蒋圆圆, 黄先智, 杨晓红. 菌根桑苗在石漠化和消落带地区逆境胁迫下的生态适应性[J]. 蚕业科学, 2017, 43 (2): 15-21 [Cao M, Yu M, Lu M, Jiang YY, Huang XZ, Yang XH. Ecological adaptability of mulberry saplings inoculated with Gigaspora rosea under stress conditions in rocky desertification areas and riparian zones [J]. Acta Sericol Sin, 2017, 43 (2): 15-21]
24 刘代军, 涂波, 施松梅, 杨晓红, 黄先智, 秦俭. 石漠化地区的生态危机及菌根桑生物修复潜力研究进展[J]. 中国岩溶, 2012, 31 (2): 185-190 [Liu DJ, Xu B, Shi SM, Yang XH, Huang XZ, Qin J. Research progress of the ecological crisis in rocky desertification area and the bioremediation potential of mycorrhizal mulberry [J]. Carsol Sin, 2012, 31 (2): 185-190]
25 刘家艳, 曹敏, 唐许, 杨晓红, 黄先智, 秦俭. 桑及菌根桑在库区消落带的生态重建功能及应用潜力[J]. 生态学报, 2016, 36 (1): 22-29 [Liu JY, Cao M, Tang X, Yang XH, Huang XZ, Qin J. Ecological reconstruction function and potential application of mulberry and mycorrhizal mulberry in the Three Gorges Reservoir area [J]. Acta Ecol Sin, 2016, 36 (1): 22-29
26 Beevi ND, Qadri SMH. Biological control of mulberry root rot disease (Fusarium spp.) with antagonistic microorganisms [J]. J Biopestic, 2010, 3 (1): 90-92
27 Chakraborty B, Chanda AK, Chakraborty SK. Effect of bio-organic amendments on the infestationof major pests & foliar disease, leaf productivityin mulberry (Morus alba L.) [J]. Am J Exp Agric, 2015, 7 (1): 10-16
28 Kashyap S, Sharma S, Vasudevan P. Role of bioinoculants in development of salt-resistant saplings of Morus alba (var. sujanpuri) in vivo [J]. Sci Hortic, 2004, 100 (1-4): 291-307
29 Bainard LD, Chagnon PL, Cade-Menun BJ, Lamb EG, Hamel C. Plant communities and soil properties mediate agricultural land use impacts on arbuscular mycorrhizal fungi in the mixed prairie ecoregion of the North American Great Plains [J]. Agric Ecos & Environ, 2017, 249: 187-195
30 李佳雨, 林家怡, 裴晨羽, 黄林, 黄锐洲, 唐光大. 桉树种植对林地土壤丛枝菌根真菌群落结构及多样性的影响[J]. 生态学报, 2019, 39 (8): 2723-2731 [Diversity and structure of the soil arbuscular mycorrhizal fungal community are altered by eucalyptus plantations [J]. Acta Ecol Sin, 2019, 39 (8): 2723-2731]
31 Xing D, Wang Z, Xiao J, Han S, Luo C, Zhang A, Song L, Gao X. The composition and diversity of arbuscular mycorrhizal fungi in karst soils and roots collected from mulberry of different ages [J]. Cienc Rural, 2018, 48 (10): 1-14
32 Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi [J]. Plant Soil, 1998, 198 (1): 97-107
33 Singh PK, Singh M, Tripathi BN. Glomalin: an arbuscular mycorrhizal fungal soil protein [J]. Protoplasma, 2013, 250 (3): 663-669
34 Lovelock CE, Wright SF, Clark DA, Ruess RW. Soil Stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape [J]. J Ecol, 2004, 92 (2): 278-287
35 Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils [J]. Plant Soil, 2001, 233 (2): 167-177
36 Schindler FV, Mercer EJ, Rice JA. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content [J]. Soil Biol Biochem, 2007, 39 (1): 320-329
37 Wright SF, Anderson RL. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains [J]. Biol Fertil Soils, 2000, 31 (3-4): 249-253
38 Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi [J]. Plant Soil, 1998, 198 (1): 97-107
39 王建, 周紫燕, 凌婉婷. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报, 2016, 27 (2): 634-642 [Wang J, Zhou ZY, Lin WT. Distribution and environmental function of glomalin-related soil protein: a review [J]. Chin J Appl Ecol, 2016, 27 (2): 634-642]
40 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008 [Yang JH, Wang CL, Dai HL. Soil agrochemical analysis and environmental monitoring [M]. Beijing: China Land Press, 2008]
41 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986 [Guan SY. Soil Enzyme and Its Research Method [M]. Beijing: Agriculture Publishing House, 1986]
42 杨亚宁, 巴雷, 白晓楠, 张立朝, 王德利. 一种改进的丛枝菌根染色方法[J]. 生态学报, 2008, 30 (3): 774-779 [Yamg YN, Ba L, Bai XN, Zhang LD, Wang DL. An improved method to stain arbuscular mycorrhizal fungi in plant roots [J]. Acta Ecol Sin, 2008, 30 (3): 774-779]
43 McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi [J]. New Phytol, 1990, 115 (3): 495-501
44 Liu RJ. Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton [J]. Mycorrhiza, 1995, 5 (4): 293-297
45 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007 [Liu RJ, Chen YL. Mycorrhizology [M]. Beijing: Science Press, 2007]
46 刘振坤, 田帅, 唐明. 不同树龄刺槐林丛枝菌根真菌的空间分布及与根际土壤因子的关系[J]. 林业科学, 2013, 49 (8): 92-98 [Liu ZK, Tian S, Tang M. Spatial distribution of arbuscular mycorrhizal fungi and its relationship with soil factors in the rhizosphere of Robinia pseudoacacia at different ages [J]. Sci Silv Sin, 2013, 49 (8): 92-98]
47 Vasconcellos RLF, Bonfim JA, Baretta D, Cardoso EJBN. Arbuscular mycorrhizal fungi and glomali-related soil protein as potential indicators of soil quality in a recuperation gradient of the Atlantic forest in Brazil [J]. Land Degrad Dev, 2016, 27 (2): 325-334
48 肖龙敏, 唐明, 张好强. 不同种植年限宁夏枸杞根际微生物的群落多样性[J]. 西北林学院学报, 2018, 33 (6): 31-39 [Xiao LM, Tang M, Zhang HQ. Diversity of microbial community in rhizosphere soils of Lyciumbarbarum relative to cultivation history [J]. J NW For Univ, 2018, 33 (6): 31-39]
49 Kil YJ, Eo JK, Lee EH, Eom AH. Root Age-dependent changes in arbuscular mycorrhizal fungal communities colonizing roots of Panax ginseng [J]. Mycobiol, 2014, 42 (4): 416-421
50 Wang P, Wang Y, Wu QS. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China [J]. Soil Tillage Res, 2016, 155: 54-61
51 Chen H, Li DJ, Zhao J, Xiao K, Wang K. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: a meta-analysis [J]. Agric Ecosyst Environ, 2018, 252: 126-131
52 Wang P, Zhang JJ, Shu B, Xia RX. Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, southern China [J]. Plant Soil Environ, 2012, 58 (7): 302-308
53 郭亚楠, 左易灵, 贺学礼. 蒙古沙冬青AM真菌定殖和球囊霉素与土壤因子的相关性研究[J]. 中国科技论文, 2017, 12 (9): 1030-1037 [Guo YN, Zuo YL, He XL. Study on the correlation between colonization of arbuscular mycorrhiza fungi and glomalin and soil factors in Ammopiptanthus mongolicus [J]. Chin Sciencepaper, 2017, 12 (9): 1030-1037]
54 Hodge A, Helgason T, Fitter AH. Nutritional ecology of arbuscular mycorrhizal fungi [J]. Fungal Ecol, 2010, 3 (4): 267-273
55 Hawkins HJ, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi [J]. Plant Soil, 2000, 226 (2): 275-285.

相似文献/References:

[1]梁昌聪,肖艳萍,赵之伟.云南会泽废弃铅锌矿区植物丛枝菌根和深色有隔内生真菌研究[J].应用与环境生物学报,2007,13(06):811.
 LIANG Changcong,et al..Arbuscular Mycorrhiza and Dark Septate Endophytes in an Abandoned Lead-Zinc Mine in Huize, Yunnan, China[J].Chinese Journal of Applied & Environmental Biology,2007,13(05):811.
[2]王树和 王昶 王晓娟 金樑.根瘤菌、丛枝菌根(AM)真菌与宿主植物共生的分子机理*[J].应用与环境生物学报,2008,14(05):721.
[3]龙良鲲,姚青,艾云灿,等.丛枝菌根真菌Gigaspora margarita孢子伴生菌群效应分析[J].应用与环境生物学报,2008,14(06):798.[doi:10.3724/SP.J.1145.2008.00798]
 LONG Liangkun,YAO Qing,et al.Community Effects of Microbes Associated with Arbuscular Mycorrhizal Fugus Gigaspora margarita Spores[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):798.[doi:10.3724/SP.J.1145.2008.00798]
[4]王志勇,方治伟,江雪飞,等.空心莲子草入侵对土壤AM真菌生物量和群落结构的影响——以湖北省典型区域为例[J].应用与环境生物学报,2013,19(01):105.[doi:10.3724/SP.J.1145.2013.00105]
 WANG Zhiyong,FANG Zhiwei,JIANG Xuefei,et al.Effect of Alligator Weed Invasion on Soil Arbuscular Mycorrhizal Fungal Biomass and Community Structure of Representative Regions in Hubei, China[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):105.[doi:10.3724/SP.J.1145.2013.00105]
[5]林先贵,胡君利,戴珏,等.丛枝菌根真菌群落结构与多样性研究方法概述及实例比较[J].应用与环境生物学报,2017,23(2):343.[doi:10.3724/SP.J.1145.2016.04008]
 LIN Xiangui**,HU Junli,DAI Jue,et al.Overview and comparison of research methods for determining the community structure and diversity of arbuscular mycorrhizal fungi[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):343.[doi:10.3724/SP.J.1145.2016.04008]
[6]单明娟,秦华,陈俊辉,等.两种间作体系对丛枝菌根真菌侵染及多氯联苯去除的影响[J].应用与环境生物学报,2018,24(03):470.[doi:10.19675/j.cnki.1006-687x.2017.07001]
 SHAN Mingjuan,QIN Hua,et al.Effects of two different intercropping systems on arbuscular mycorrhizal fungal colonization and polychlorinated biphenyl (PCB) dissipation[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):470.[doi:10.19675/j.cnki.1006-687x.2017.07001]
[7]侯劭炜,胡君利,吴福勇,等.丛枝菌根真菌的抑病功能及其应用[J].应用与环境生物学报,2018,24(05):941.[doi:10.19675/j.cnki.1006-687x.2017.12018]
 HOU Shaowei,HU Junli,et al.The function and potential application of disease suppression by arbuscular mycorrhizal fungi[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):941.[doi:10.19675/j.cnki.1006-687x.2017.12018]
[8]孔维宝,陈冬,杨树玲,等.油橄榄与丛枝菌根真菌的共生效应研究进展[J].应用与环境生物学报,2019,25(03):750.[doi:10.19675/j.cnki.1006-687x.201807015]
 KONG Weibao**,CHEN Dong,YANG Shuling,et al.Recent progress in research on the symbiotic relationship between olive (Olea europaea L.) and arbuscular mycorrhizal fungi[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):750.[doi:10.19675/j.cnki.1006-687x.201807015]
[9]吕鉴于,高文俊,牛群,等.丛枝菌根真菌对采煤塌陷复垦土壤磷形态和玉米吸磷量的影响[J].应用与环境生物学报,2020,26(01):81.[doi:10.19675/j.cnki.1006-687x.2019.04041]
 L? Jianyu,GAO Wenjun,NIU Qun,et al.Effects of inoculation with arbuscular mycorrhizal fungi on maize phosphorus uptake and soil phosphorus forms in a coal mining subsidence area[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):81.[doi:10.19675/j.cnki.1006-687x.2019.04041]
[10]周利承,曹梦珂,郑晨露,等.接种丛枝菌根真菌对紫花苜蓿修复石油污染土壤的潜在作用[J].应用与环境生物学报,2020,26(05):1129.[doi: 10.19675/j.cnki.1006-687x.2019.11029]
 ZHOU Licheng,CAO Mengke,ZHENG Chenlu,et al.The potential effect of Medicago sativa inoculated with arbuscular mycorrhizal fungi on remedying petroleum-contaminated soil[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1129.[doi: 10.19675/j.cnki.1006-687x.2019.11029]

更新日期/Last Update: 2020-10-25