|本期目录/Table of Contents|

[1]自海云,姜永雷,程小毛,等.千家寨不同海拔野生古茶树根际土壤微生物胞外酶活性特征[J].应用与环境生物学报,2020,26(05):1087-1095.[doi: 10.19675/j.cnki.1006-687x.2020.03046]
 ZI Haiyun,JIANG Yonglei,CHENG Xiaomao,et al.Microbial extracellular enzyme activity in the rhizosphere soil of ancient wild tea trees at different altitudes in the Qianjiazhai Reserve[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1087-1095.[doi: 10.19675/j.cnki.1006-687x.2020.03046]
点击复制

千家寨不同海拔野生古茶树根际土壤微生物胞外酶活性特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1087-1095
栏目:
土壤与农业微生物应用专栏
出版日期:
2020-10-25

文章信息/Info

Title:
Microbial extracellular enzyme activity in the rhizosphere soil of ancient wild tea trees at different altitudes in the Qianjiazhai Reserve
作者:
自海云姜永雷程小毛王鸿东黄晓霞
1西南林业大学园林园艺学院,国家林业与草原局西南风景园林工程技术研究中心 昆明 650224 2云南省烟草农业科学研究院烟草农艺研究中心 昆明 650021 3云南哀牢山国家级自然保护区镇沅管护局 普洱 666500
Author(s):
ZI Haiyun1 JIANG Yonglei2 CHENG Xiaomao1 WANG Hongdong3 & HUANG Xiaoxia1?
1 College of Landscape and Horticulture, Southwest Forestry University, Southwest Landscape Architecture Engineering Research Center of State Forestry and Grassland Administration, Kunming 650224, China 2 Tobacco Agronomic Research Center, Yunnan Academy of Tobacco Agriculture Science, Kunming 650021, China 3 Zhenyuan Management and Protection Bureau of Ailao Mountain National Nature Reserve in Yunnan Province, Puer 666500, China
关键词:
海拔梯度野生古茶树根际土壤胞外酶计量学微生物量
Keywords:
altitude gradient ancient wild tea tree rhizospheric extracellular enzyme ecological stoichiometry microbial biomass
DOI:
10.19675/j.cnki.1006-687x.2020.03046
摘要:
野生古茶树是亟需保护的珍稀种质资源. 为了解野生古茶树根际土壤碳氮磷生态化学计量、微生物量碳氮和胞外酶活性的垂直分布格局,以千家寨野生古茶树群落为对象,采集千家寨4个海拔2 050 m(E1)、2 200 m(E2)、2 350 m(E3)、2 500 m(E4)的野生古茶树群落的根际土壤,测定并分析其碳氮磷(C、N、P)生态化学计量、微生物量碳和氮(MBC和MBN)和胞外酶活性[磷素获取酶碱性磷酸酶(AKP)、碳素获取酶β-1,4-葡萄糖苷酶(βG)、氮素获取酶β-1,4-N-乙酰基氨基葡萄糖苷酶(NAG)和水解酶亮氨酸氨基肽酶(LAP)、多酚氧化酶(PPO)、过氧化物酶(PER)]的变化及其影响因素. 结果显示,千家寨野生古茶树根际土壤C:N较高(11.27-13.35),并随海拔升高而增加;C:P和N:P均随海拔升高呈先升高后降低的变化规律. 根际土壤MBC和MBN随海拔升高呈先上升后下降的规律,分别受根际土壤含水量和铵态氮(NH4+)的影响. 根际土壤AKP、βG和NAG活性随海拔升高均显著增加并与总磷含量(TP)密切相关,LAP活性在海拔上无显著变化,PPO活性随海拔升高而显著下降(P < 0.05). 根际土壤胞外酶活性生态化学计量大小顺序是βG:(NAG + LAP) > βG:AKP > (NAG + LAP):AKP,其中βG:AKP和(NAG + LAP):AKP值均小于1. 综上所述,不同海拔梯度上土壤碳氮磷生态化学计量、微生物量碳氮和胞外酶活性及其计量学差异显著,而TP是影响海拔梯度上野生古茶树根际土壤胞外酶活性大小的关键因子;千家寨野生古茶树根际土壤微生物受磷限制和碳限制相对于氮限制程度更高,在不同海拔中受碳氮磷限制的程度有差异;本研究结果对了解野生古茶树的养分循环和生态适应机制有重要意义. (图6 表3 参54)
Abstract:
This study aimed to explore the vertical distribution of carbon, nitrogen, and phosphorus, microbial biomass (carbon and nitrogen), and extracellular enzyme activities in the rhizosphere soil of an ancient wild tea tree species, which?urgently needs protection as it is a rare genetic resource. Ancient wild tea communities at different altitudes of 2 050 m (E1), 2 200 m (E2), 2 350 m (E3), and 2 500 m (E4) in the Qianjiazhai Reserve were used to study the variation of rhizosphere soil C:N:P stoichiometry, microbial biomass carbon and nitrogen (MBC and MBN), and rhizosphere soil extracellular enzyme activities (phosphorus acquisition: alkaline phosphatase (AKP); carbon acquisition: β-glucosidase (βG); nitrogen acquisition: N-acetyl-β-D-glucosaminidase (NAG); and leucyl aminopeptidase (LAP), polyphenol oxidase (PPO), and peroxidase activity (PER)). Our results revealed that C:N was relatively high (11.27-13.35) in rhizosphere soil of ancient wild tea trees in the Qianjiazhai Reserve. With an increase in altitude, C:N increased whereas C:P and N:P increased initially and then decreased. MBC and MBN followed a similar pattern as altitude increased, which were affected by rhizosphere soil water content and ammonium nitrogen (NH4+), respectively. The activities of AKP, βG, and NAG in rhizosphere soil increased significantly with an increase in altitude and were closely related to total phosphorus content (TP). The LAP activity had no significant change owing to altitude, and the PPO activity decreased as altitude increased. The rank of extracellular enzyme stoichiometry was βG: (NAG + LAP) > βG:AKP > (NAG + LAP):AKP; both βG:AKP and (NAG + LAP):AKP were less than 1. The C:N:P stoichiometry, microbial biomass, and soil extracellular enzyme activity were significantly affected by an increase in the altitude gradient. The TP was a key factor affecting the activities of extracellular enzymes in rhizosphere soil. P and C were the main limiting elements in the determination and variation of the microbial community in the rhizosphere soil of ancient wild tea trees in the Qianjiazhai Reserve. This study provides significant information to better understand the regulatory mechanisms of nutrient cycles and ecological adaptation of wild ancient tea plants and aids in the preservation of this genetically rare resource.

参考文献/References:

1 赵盼盼, 周嘉聪, 林开淼, 林伟盛, 袁萍, 曾晓敏, 苏莹, 徐建国, 陈岳民, 杨玉盛. 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响[J]. 生态学报, 2019, 39 (8): 2676-2686 [Zhao PP, Zhou JC, Lin KM, Lin WS, Yuan P, Ceng XM, Su Y, Xu JG, Chen YM, Yang YS. Effects of different altitudes on soil microbial biomass and enzyme activities in Pinus taiwanensis forests on Daiyun Mountain, Fujian Province [J]. Acta Ecol Sin, 2019, 39 (8): 2676-2686]
2 曹瑞, 吴福忠, 杨万勤, 徐振锋, 谭波, 王滨, 李俊, 常晨晖. 海拔对高山峡谷区土壤微生物生物量和酶活性的影响[J]. 应用生态学报, 2016, 27 (4): 1257-1264 [Cao R, Wu FZ, Yang WQ, Xu ZF, Tan B, Wang B, Li J, Chang CH. Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions [J]. Chin J App Ecol, 2016, 27 (4): 1257-1264]
3 Burns RG. Enzyme activity in soil: location and a possible role in microbial ecology [J]. Soil Biol Biochem, 1982, 14 (5): 423-427
4 斯贵才, 王建, 夏燕青, 袁艳丽, 张更新, 雷天柱. 念青唐古拉山沼泽土壤微生物群落和酶活性随海拔变化特征[J]. 湿地科学, 2014, 12 (3): 340-348 [Si GC, Wang J, Xia YQ, Yuan YL, Zhang GX, Lei TZ. Change characteristics of microbial communities and enzyme activities in soils of marshes in Nyaiqentanglha Mountains with heights above sea level [J]. Wetl Sci, 2014, 12 (3): 340-348]
5 Margesin R, Minerbi S, Schinner F. Long-term monitoring of soil microbiological activities in two forest sites in South Tyrol in the Italian Alps [J]. Microbe Environ, 2014, 29 (3): 277-285
6 Reyes F, Lillo A, Ojeda N, Reyes M, Alvear M. Influence of slope and orientation on biological activities of a relict temperate forest from south-central Chile [J]. Bosque, 2011, 32 (3): 255-265
7 金裕华, 汪家社, 李黎光, 阮宏华, 徐自坤, 韩凌云. 武夷山不同海拔典型植被带土壤酶活性特征[J]. 生态学杂志, 2011, 30 (9): 1955-1961 [Jin YH, Wang JS, Li LG, Ruan HH, Xu ZK, Han LY. Soil enzyme activities in typical vegetation zones along an altitude gradient in Wuyi Mountains [J]. Chin J Ecol, 2011, 30 (9): 1955-1961]
8 冯瑞章, 周万海, 龙瑞军, 马玉寿. 江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究[J]. 土壤通报, 2010, 41 (2): 263-269 [Feng RZ, Zhou WH, Long RJ, Ma YS. Characteristics of soil physical, chemical and biological properties on degraded Alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau [J]. Chin J Soil Sci, 2010, 41 (2): 263-269]
9 Burns RG, Deforest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A. Soil enzymes in a changing environment: Current knowledge and future directions [J]. Soil Biol Biochem, 2013, 58: 216-234
10 Stone MM, Deforest JL, Plante AF. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory [J]. Soil Biol Biochem, 2014, 75: 237-247
11 张芳赐, 虞富莲, 张顺高. 哀牢山国家自然保护区云南省镇沅千家寨野生古茶树考察论证意见[J]. 农业考古, 1997 (2): 216-217 [Zhang FC, Yu FL, Zhang SG. Opinions on the investigation and study of ancient wild tea tree in the Qianjiazhai Reserve of Yunnan Ailao Mountains (Zhenyuan County) [J]. Agric Arch, 1997 (2): 216-217]
12 王邵军. “植物-土壤”相互反馈的关键生态学问题: 格局、过程与机制[J]. 南京林业大学学报(自然科学版), 2020, 44 (2): 1-9 [Wang SJ. Key ecological issues in plant-soil feedback: pattern, process and mechanism [J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44 (2): 1-9]
13 韩文炎, 阮建云, 林智, 吴洵, 许允文, 石元值, 马立峰. 茶园土壤主要营养障碍因子及系列茶树专用肥的研制[J]. 茶叶科学, 2002, 22 (1): 70-74 [Han WY, Ruan JY, Lin Z, Wu X, Xu YW, Shi YZ, Ma LF. The major nutritional limiting factors in tea soils and development of tea specialty fertilizer series [J]. J Tea Sci, 2002, 22 (1): 70-74]
14 杨广容, 王秀青, 谢瑾, 吕才有, 李永梅. 云南古茶园和现代茶园土壤养分与茶叶品质成分关系的研究[J]. 茶叶科学, 2015, 35 (6): 574-582 [Yang GR, Wang XQ, Xie J, Lu CY, Li YM. Analysis of the relationship between soil nutrients and tea main quality components of ancient tea arboretum and modern tea garden in Yunnan Province [J]. J Tea Sci, 2015, 35 (6): 574-582]
15 Cakmak?? R, D?nmez MF, Ertürk Y, Erat M, Haznedar A, Sekban R. Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils [J]. Plant Soil, 2010, 332 (1-2): 299-318
16 卢开阳, 张云峰, 贾鳗, 高林瑞, 田飞, 唐蜀昆. 基于16S rRNA序列分析南糯山不同生境茶树根际土壤细菌群落分布多样性[J], 昆明理工大学学报(自然科学版). 2016, 41 (2): 89-95 [Lu KY, Zhang YF, Jia M, Gao LR, Tian F, Tang SK. Bacteria distribution diversity in tea rhizospheric soil from different habitats at Nannuo Mountain based on 16S rRNA sequence analysis [J]. J Kunming Univ Sci Tech, 2016, 41 (2): 89-95]
17 柴勇, 朱华, 孟广涛, 施济普, 杨国平. 云南哀牢山古茶树群落优势树种的种群结构与分布格局[J]. 林业科学研究, 2011, 24 (3): 277-284 [Chai Y, Zhu H, Meng GT, Shi JP, Yang GP. Population structure and distribution pattern of dominant tree species in ancient tea tree community in Ailao Mountains of Yunnan Province, China [J]. For Res, 2011, 24 (3): 277-284]
18 Debnath R, Yadav A, Gupta VK, Singh BP, Handique PJ, Saikia R. Rhizospheric bacterial community of endemic Rhododendron arboreum Sm. ssp. delavayi along eastern Himalayan slope in Tawang [J]. Front Plant Sci, 2016, 7: 1345
19 Tian H, Chen G, Zhang C, Melillo JM, Hall CAS. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data [J]. Biogeochemistry, 2010, 98 (1-3): 139-151
20 贾国梅, 岳云飞, 王世彤, Liu X, 向瀚宇, 瞿红云. 茶树根际土壤微生物碳氮磷及其生态化学计量[J]. 江苏农业科学, 2018, 46 (20): 125-128 [Jia GM, Yue YF, Wang ST, Liu X, Xiang HY, Ju HY. Ecological stoichiometry of soil microbial biomass carbon, nitrogen and phosphorus in rhizosphere soil of Tea [J]. Jiangsu Agric Sci, 2018, 46 (20): 125-128]
21 Li Y, Wu J, Liu S, Shen J, Huang D, Su Y, Wei W, Syers JK. Is the C:N:P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? [J]. Global Biogeochem Cy, 2012, 26 (4): GB4002
22 Batjes NH. Total carbon and nitrogen in the soils of the world [J]. Eur J Soil Sci, 2014, 65 (1): 2-3.
23 刘顺, 盛可银, 云哲, 肖复明, 朱新传, 胡冬南, 张文元. 不同林龄陈山红心杉根际与非根际土壤碳、氮、磷化学计量特征[J]. 江西农业大学学报, 2018, 40 (4): 725-733 [Liu S, Sheng KY, Yun Z, Xiao FM, Zhu XC, Hu DN, Zhang WY. Ecological stoichiometry of rhizosphere and non-rhizosphere soil C, N and P of chenshan-red-heart Chinese fir of different stand ages [J]. Acta Agric Jiangxiensis, 2018, 40 (4): 725-733]
24 鲁志云, 宋亮, 王训, 李玉武, 张一平, 沙丽清. 哀牢山森林凋落物与腐殖质及土壤的生态化学计量特征[J]. 山地学报, 2017, 35 (3): 274-282 [Lu ZY, Song L, Wang X, Li YW, Zhang YP, Sha LQ. Ecological stoichiometry characteristics of the litterfall-humus-soil continuum systems under different successional stages of the subtropical forest in SW China [J]. Mount Res, 2017, 35 (3): 274-282]
25 冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017, 23 (2): 400-408 [Feng DF, Bao WK. Review of the temporal and spatial patterns of soil C:N:P stoichiometry and its driving factors [J]. Chin J Appl Environ Biol, 2017, 23 (2): 400-408]
26 谢锦, 常顺利, 张毓涛, 王慧杰, 宋成程, 何平, 孙雪娇. 天山北坡植物土壤生态化学计量特征的垂直地带性[J]. 生态学报, 2016, 36 (14): 4363-4372 [Xie J, Chang SL, Zhang YT, Wang HJ, Song CC, He P, Sun XJ. Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains [J]. Acta Ecol Sin, 2016, 36 (14): 4363-4372]
27 Cusack DF, Silver WL, Torn MS, Burton SD, Firestone MK. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests [J]. Ecology, 2011, 92 (3): 621-632
28 Edwards KA, Mcculloch J, Kershaw GP, Jefferies RL. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring [J]. Soil Biol Biochem, 2006, 38 (9): 2843-2851
29 Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology [J]. Nat Geosci, 2010, 3 (5): 336-340
30 徐华勤, 肖润林, 杨知建, 宋同清, 夏艳君, 罗文, 李盛华. 不同培肥措施对红壤茶园土壤微生物量碳的影响[J]. 生态学杂志, 2007, 26 (7): 1009-1013 [Xu HQ, Xiao RL, Yang ZJ, Song TQ, Xia YJ, Luo W, Li SH. Effects of different fertilization on red soil microbial biomass C in tea garden [J]. Chin J Ecol, 2007, 26 (7): 1009-1013]
31 王利民, 邱珊莲, 林新坚, 黄东风, 李卫华, 邱孝煊. 不同培肥茶园土壤微生物量碳氮及相关参数的变化与敏感性分析[J]. 生态学报, 2012, 32 (18): 5930-5936 [Wang LM, Qiu SL, Lin XJ, Huang DF, Li WH, Qiu XX. Sensitivity analysis and dynamics of soil microbial biomass carbon, nitrogen and related parameters in red-yellow soil of tea garden with different fertilization practices [J]. Acta Ecol Sin, 2012, 32 (18): 5930-5936]
32 沈程文, 肖润林, 徐华勤, 夏艳君, 任全, 黄瑶. 覆盖与间作对亚热带丘陵区茶园土壤微生物量的影响[J]. 水土保持学报, 2006, 20 (3): 141-144 [Shen CW, Xiao RL, Xu HQ, Xia YJ, Ren Q, Huang Y. Effects of cover and intercropping on soil microbial biomass of tea plantations in subtropical hilly region [J]. J Soil Water Conserv, 2006, 20 (3): 141-144]
33 Zak DR, Tilman D, Parmenter RR, Rice CW, Fisher FM, Vose J, Milchunas D, Martin CW. Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study [J]. Ecology, 1994, 75 (8): 2333
34 胡宗达, 刘世荣, 史作民, 刘兴良, 何飞. 不同海拔梯度川滇高山栎林土壤颗粒组成及养分含量[J]. 林业科学, 2012, 48 (3): 1-6 [Hu ZD, Liu SR, Shi ZM, Liu XL, He F. Soil particle composition and Its relationship with nutrient contents in a Quercus aquifolioides forest at different altitudinal gradient [J]. Sci Silv Sin, 2012, 48 (3): 1-6]
35 Uselman SM, Qualls RG, Thomas RB. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.) [J]. Plant Soil, 2000, 222 (1-2): 191-202
36 Carvalho NS, Rocha SMB, Santos VMD, Araujo FFD, Araújo ASD. Soil microbial biomass across a gradient of preserved native cerrado [J]. Flor Amb, 2018, 25 (2): e20170536
37 De Carvalho Mendes I, Fernandes MF, Chaer GM, Bueno Dos Reis Junior F. Biological functioning of Brazilian Cerrado soils under different vegetation types [J]. Plant Soil, 2012, 359 (1-2): 183-195
38 Eaton WD, Chassot O. Characterization of soil ecosystems in Costa Rica using microbial community metrics [J]. Trop Ecol, 2012, 53 (2): 185-195
39 Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment [J]. Soil Biol Biochem, 2003, 35 (3): 453-46.
40 张雅茜, 方晰, 冼应男, 王振鹏, 项文化. 亚热带区4种林地土壤微生物生物量碳氮磷及酶活性特征[J]. 生态学报, 2019, 39 (14): 5326-5338 [Zhang YQ, Fang X, Xian YN, Wang ZP, Xiang WH. Characteristics of soil microbial biomass carbon, nitrogen, phosphorus and enzyme activity in four subtropical forests, China [J]. Acta Ecol Sin, 2019, 39 (14): 5326-5338]
41 Luo L, Meng H, Gu J. Microbial extracellular enzymes in biogeochemical cycling of ecosystems [J]. J Environ Manage, 2017, 197: 539-549
42 Zhou X, Chen C, Wang Y, Xu Z, Han H, Li L, Wan S. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland [J]. Sci Total Environ, 2013, 444: 552-558
43 Zuo Y, Li J, Zeng H, Wang W. Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts [J]. Biogeochemistry, 2018, 141 (1): 23-39
44 斯贵才, 袁艳丽, 王建, 夏燕青, 雷天柱, 张更新. 藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化[J]. 微生物学通报, 2014, 41 (10): 2001-2011 [Si GC, Yuan YL, Wang J, Xia YQ, Lei TZ, Zhang GX. Microbial community and soil enzyme activities along an altitudinal gradient in Sejila Mountains [J]. Mocrobiology, 2014, 41 (10): 2001-2011]
45 V?re H, Vestberg M, Ohtonen R. Shifts in mycorrhiza and microbial activity along an oroarctic altitudinal gradient in northern Fennoscandia [J]. Arct Antarct Alp Res, 1997, 29 (1): 93-104
46 刘广深, 徐冬梅, 许中坚, 王红宇, 刘维屏. 用通径分析法研究土壤水解酶活性与土壤性质的关系[J]. 土壤学报, 2003, 40 (5): 756-762 [Liu GS, Xu DM, Xu ZJ, Wang HY, Liu WP. Relationship between hydrolase activity in soils and soil properties in Zhejlang province [J]. Acta Pedol Sin, 2003, 40 (5):756-762]
47 洪慧滨, 林成芳, 彭建勤, 陈岳民, 魏翠翠, 杨玉盛. 磷添加对中亚热带米槠和杉木细根分解及其酶活性的影响[J]. 生态学报, 2017, 37 (1): 136-146 [Hong HB, Lin CF, Peng JQ, Chen YM, Wei CC, Yang YS. Effects of phosphorus addition on fine root decomposition and enzyme activity of Castanopsis carlesii and Cunninghamia lanceolata in subtropical forest [J]. Acta Ecol Sin, 2017, 37 (1): 136-146]
48 Richardson AE, Simpson RJ. Soil microorganisms mediating phosphous availability update on microbial phosphorus [J]. Plant Physiol, 2011, 156 (3): 989-996
49 Sinsabaugh RL. Phenol oxidase, peroxidase and organic matter dynamics of soil [J]. Soil Biol Biochem, 2010, 42 (3): 391-404
50 谷晓楠, 贺红士, 陶岩, 靳英华, 张心昱, 徐志伟, 王钰婷, 宋祥霞. 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子[J]. 生态学报, 2017, 37 (24): 8374-8384 [Gu XN, He HS, Tao Y, Jin YH, Zhang XY, Xu ZW, Wang YT, Song XX. Soil microbial community structure, enzyme activities, and their influencing factors among different altitudes of Changbai Mountain [J]. Acta Ecol Sin, 2017, 37 (24): 8374-8384]
51 Sinsabaugh RL, Hill BH, Follstad Shah JJ. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462 (7274): 795-798
52 Waring BG, Weintraub SR, Sinsabaugh RL. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils [J]. Biogeochemistry, 2014, 117 (1): 101-113
53 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇 亮, 王辉民. 亚热带人工林下植被根际土壤酶化学计量特征[J]. 植物生态学报, 2019, 43 (3): 258-272 [Gao YQ, Dai XQ, Wang JL, Fu XL, Kou L, Wang HM. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43 (3): 258-272]
54 Chapin FS III, Matson PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology [M]. New York: Springer-Verlag, 2002: 436

相似文献/References:

[1]吴彦,刘庆,陈庆恒,等.亚高山30 a人工针叶林物种多样性的定量分析[J].应用与环境生物学报,2001,7(05):408.
 WU Yan,et al..Quantitative analysis of species diversity and soil factors in 30 a subalpine coniferous plantations at different altitudes[J].Chinese Journal of Applied & Environmental Biology,2001,7(05):408.
[2]刘士华,高信芬,涂卫国,等.白水河国家级自然保护区植物群落α多样性的海拔梯度变化[J].应用与环境生物学报,2008,14(03):303.
 LIU Shihua,et al..α Diversity of Communities and Their Changes Along Altitude Gradient in the Baishuihe National Nature Reserve at Longmen Mountain, Sichuan[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):303.
[3]黄文娟,刘菊秀,唐旭利,等.鼎湖山5种森林土壤的无机氮和有效磷含量[J].应用与环境生物学报,2009,15(04):441.[doi:10.3724/SP.J.1145.2009.00441]
 HUANG Wenjuan,LIU Juxiu,TANG Xuli,et al.Inorganic Nitrogen and Available Phosphorus Concentrations in the Soils of Five Forests at Dinghushan, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):441.[doi:10.3724/SP.J.1145.2009.00441]
[4]拉琼,张文驹,欧朗,等.珠穆朗玛峰绒布沟西藏沙棘生境类型及海拔梯度下表型变异[J].应用与环境生物学报,2010,16(02):173.[doi:10.3724/SP.J.1145.2010.00173]
 LA Qiong,ZHANG Wenju,OU Lang,et al.Habitat Types and Phenotypic Variation of Hippophae tibetana along an Altitudinal Gradient in the Rongbu Valley of Mt. Everest, Tibet, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):173.[doi:10.3724/SP.J.1145.2010.00173]
[5]徐波,王金牛,郭海霞,等.青藏高原东缘野生暗紫贝母形态特征对高山环境的适应[J].应用与环境生物学报,2014,20(06):955.[doi:10.3724/SP.J.1145.2014.04045]
 XU Bo,WANG Jinniu,GUO Haixia,et al.Morphological adaptation of wild Fritillaria unibracteata to alpine conditions in the eastern Qinghai-Tibet Plateau[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):955.[doi:10.3724/SP.J.1145.2014.04045]
[6]杨福春,郭炳桥,孙俊,等.武夷山不同海拔黄山松根系生物量季节变化特征[J].应用与环境生物学报,2017,23(06):1117.[doi:10.3724/SP.J.1145.2016.12049]
 YANG Fuchun,,et al.Seasonal variation in the root biomass of Pinus hwangshanensis along an altitudinal gradient in Wuyi mountain[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):1117.[doi:10.3724/SP.J.1145.2016.12049]
[7]柳鑫,杨丰,张明均,等.贵州韭菜坪山区不同海拔草地群落植物多样性和生产力[J].应用与环境生物学报,2018,24(02):207.[doi:10.19675/j.cnki.1006-687x.2017.04022]
 LIU Xin,YANG Feng,ZHANG Mingjun,et al.Plant diversity and productivity of grassland communities at different altitudes of Jiucaiping Mountain, Guizhou[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):207.[doi:10.19675/j.cnki.1006-687x.2017.04022]
[8]王晓胡,寇涌苹,赵文强,等.贡嘎山森林土壤氨氧化微生物数量在海拔梯度的空间分异特征[J].应用与环境生物学报,2019,25(02):275.[doi:10.19675/j.cnki.1006-687x.2018.05045]
 WANG Xiaohu,KOU Yongping,et al.Spatial heterogeneity of ammonia-oxidizing microorganisms along the elevation gradient in the forest soil of Mount Gongga[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):275.[doi:10.19675/j.cnki.1006-687x.2018.05045]
[9]自海云 姜永雷 程小毛 王鸿东 黄晓霞**.千家寨不同海拔野生古茶树根际土壤微生物胞外酶活性特征[J].应用与环境生物学报,2021,27(01):1.[doi:10.19675/j.cnki.1006-687x.2020.03046]
 ZI Haiyun,JIANG YongLei,CHEN Xiaomao,et al.Microbial extracellular enzyme activity in rhizosphere soil of ancient wild tea tree at different altitudes in Qianjiazhai Reserve*[J].Chinese Journal of Applied & Environmental Biology,2021,27(05):1.[doi:10.19675/j.cnki.1006-687x.2020.03046]

更新日期/Last Update: 2020-10-25