1 韩天富. 转基因和非转基因大豆生产体系除草成本和生产效益的估算[J]. 作物杂志, 2008 (2): 1-3 [Han TF. Estimation of weeding costs and production benefits of GM and non-GM soybean production systems [J]. Crops, 2008 (2): 1-3] 2 Heap I, Duke SO. Overview of glyphosate-resistant weeds worldwide [J]. Pest Manage Sci, 2018, 74 (5): 1040-1049 3 Lederer B, Boger P. Recombinant p-hydroxyphenylpyruvate dioxygenase of high activity [J]. Z Naturforsch C, 2005, 60 (50): 549-556 4 王园园, 王敏, 相世刚, 刘琪, 强胜, 宋小玲. 全球抗除草剂转基因作物转化事件分析[J]. 农业生物技术学报, 2018, 26 (1): 167-175 [Wang YY, Wang M, Xiang SG, Liu Q, Qiang S, Song XL. Analysis of transformation events of global herbicide-resistant transgenic crops [J]. Chin J Agric Biotechol, 2018, 26 (1): 167-175] 5 Ahrens H, Lange G, Muller T, Rosinger C, Willms L, van Almsick A. 4-Hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners: solutions for modern and sustainable agriculture [J]. Angew Chem Int Edit, 2013, 52 (36): 9388-9398 6 Zhao N, Zuo L, Li W, Guo W, Liu W, Wang J. Publisher correction: greenhouse and field evaluation of isoxaflutole for weed control in maize in China [J]. Sci Rep, 2017, 7 (1): 16519 7 Mitchell G, Bartlett DW, Fraser TE, Hawkes TR, Holt DC, Townson JK, Wichert RA. Mesotrione: a new selective herbicide for use in maize [J]. Pest Manage Sci, 2001, 57 (2): 120-128 8 Grossmann K, Ehrhardt T. On the mechanism of action and selectivity of the corn herbicide topramezone: a new inhibitor of 4‐hydroxyphenylpyruvate dioxygenase [J]. Pest Manage Sci, 2007, 63 (5): 429-439 9 Ahrens H, Lange G, Muller T, Rosinger C, Willms L, Van Almsick A. 4-Hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners: solutions for modern and sustainable agriculture [J]. Angew Chem Int Edit, 2013, 52 (36): 9388-9398 10 Gitsopoulos TK, Melidis V, Evgenidis G. Response of maize (Zea mays L.) to post-emergence applications of topramezone [J]. Crop Prot, 2010, 29 (10): 1091-1093 11 Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria [J]. Appl Environ Microbiol, 1982, 44 (4): 992-993 12 Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells [J]. Nucleic Acids Res, 1988, 16 (3): 1215 13 Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes [J]. Appl Environ Microbiol, 2008, 74: 2461-2470 14 Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies [J] Int J Syst Evol Microbiol, 2017, 67: 613-1617 15 Saitou N. The neighbor-joining method: a new method for reconstructing phylogenetic tree [J]. Mol Biol Evol, 1987, 4: 406-425 16 Yao SG, Chen L, Yang Z, Yao L, Zhu JC, Qiu JG, Wang GX He J. The properties of 5-methyltetrahydrofolate dehydrogenase (MetF1) and its role in the tetrahydrofolate (THF)-dependent dicamba demethylation system in Rhizorhabdus dicambivorans Ndbn-20 [J]. J Bacteriol, 2019, 201 (17): e00096-19 17 Wang DW, Lin HY, Cao RJ, Yang SG, Chen Q.; Hao GF, Yang WC, Yang GF. Synthesis and herbicidal evaluation of triketone- containing quinazoline-2, 4-diones [J]. J Agric Food Chem, 2014, 62 (49): 11786-11796 18 Arias-Barrau E, Olivera ER, Luengo JM., Fernández C, Galán B, García JL, Díaz E, Minambres B. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida [J]. J Bacteriol, 2004, 186 (15): 5062-5077 19 Sparnins VL, Chapman PJ. Catabolism of L-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria [J]. J Bacteriol, 1976, 127 (1): 362-366 20 Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ, Shen ABT, Li JC. Comparative genome analysis of Vibrio vulnificus, a marine pathogen [J]. Gent Res, 2003, 13 (12): 2577-2587 21 Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen [J]. Nature, 2000, 406 (6799): 959 22 Steinert M, Flügel M, Schuppler M, Helbig JH, Supriyono A, Proksch P, Lück PC. The Lly Protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila [J]. FEMS Microbiol Lett, 2001, 203 (1): 41-47 23 Rüetschi U, Odelh?g B, Lindsted S, Barros‐S?derling J, Persson B, J?rnvall H. Characterization of 4-hydroxyphenylpyruvate dioxygenase: primary structure of the Pseudomonas enzyme [J]. Eur J Biochem, 1992, 205 (2): 459-466 24 Denoya CD, Skinner DD, Morgenstern MR. A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli [J]. J Bacteriol, 1994, 176 (17): 5312-5319 25 黄彦, 夏冰洁, 崔中利. 硝磺草酮抗性菌株的筛选及抗性基因的克隆表达[J]. 微生物学通报, 2015, 42 (10): 1895-1902 [Huang Y, Xia BJ, Cui ZL. Isolation of mesotrione-resistant strain and cloning and expression of HPPD [J]. Microbiol China, 2015, 42 (10): 1895-1902] 26 Liu B, Peng Q, Sheng MY, Ni HY, Xiao X, Tao Q, He Q, He J. Isolation and characterization of a topramezone-resistant 4-hydroxyphenylpyruvate dioxygenase (HPPD) from Sphingobium sp. TPM-19 [J]. J Agric Food Chem, 2020, 68 (4): 1022-1029 27 Liang Y, Minami H, Sato F. Isolation of herbicide-resistant 4-hydroxyphenylpyruvate dioxygenase from cultured Coptis japonica cells [J]. Biosci Biotechnol Biochem, 2008, 72 (11): 3058-3062 28 Lee CM, Yeo YS, Lee JH, Kim SJ, Kim JB, Han NS, Koo BS, Yoon SH. Identification of a novel 4-hydroxyphenylpyruvate dioxygenase from the soil metagenome [J]. Biochem Biophys Res Commun, 2008, 370 (2): 322-326 29 Dreesen R, Capt A, Oberdoerfer R, Coats I, Pallett KE. Characterization and safety evaluation of HPPD W336, a modified 4-hydroxyphenylpyruvate dioxygenase protein, and the impact of its expression on plant metabolism in herbicide-tolerant MST-FG?72-2 soybean [J]. Regul Toxicol Pharm, 2018, 97: 170-185 30 Hawkes TR, Langford MP, Viner R, Blain RE, Callaghan FM, Mackay EA, Hogg BV, Singh S, Dale RP. Characterization of 4-hydroxyphenylpyruvate dioxygenases, inhibition by herbicides and engineering for herbicide tolerance in crops [J]. Pestic Biochem Phys, 2019, 156: 9-28 31 Fu Y, Sun YN, Yi KH, Li MQ, Cao HF, Li JZ, Ye F. Combination of virtual screening protocol by in silico toward the discovery of novel 4-hydroxyphenylpyruvate dioxygenase inhibitors [J]. Front Chem, 2018, 6 (6): 1-15 32 Schindler CEM, Hollenbach E, Mietzner T, Schleifer K, Zacharias M. Free energy calculations elucidate substrate binding, gating mechanism, and tolerance‐promoting mutations in herbicide target 4-hydroxyphenylpyruvate dioxygenase [J]. Protein Sci, 2019, 28 (6): 1048-1058 33 Sharma B, Ranganathan SV, Belfort G. Weaker N-terminal interactions for the protective over the causative Aβ peptide dimer Mutants [J]. ACS Chem Neurosci, 2018, 9 (6): 1247-1253 34 Fritze IM, Linden L, Freigang J, Auerbach G, Huber R, Steinbacher S. The crystal structures of Zea mays and Arabidopsis 4-hydroxyphenylpyruvate dioxygenase [J]. Plant Physiol, 2004, 134 (4): 1388-1400 35 Yang C, Pflugrath JW, Camper DL, Foster ML, Pernich DJ, Walsh TA. Structural basis for herbicidal inhibitor selectivity revealed by comparison of crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases [J]. Biochemistry, 2004, 43 (32): 10414-10423
[1]彭乾 刘斌 刘军委 盛梦瑶 史砚 何健 贺芹**.苯吡唑草酮抗性菌株的筛选及抗性HPPD基因的克隆表达[J].应用与环境生物学报,2021,27(01):1.[doi:10.19675/j.cnki.1006-687x.2020.02036]
PENG Qian,LIU Bin,Liu Junwei,et al.Isolation of topramezone-resistant strain and cloning and expression of its HPPD[J].Chinese Journal of Applied & Environmental Biology,2021,27(05):1.[doi:10.19675/j.cnki.1006-687x.2020.02036]