|本期目录/Table of Contents|

[1]陈玉真,王峰,吴志丹,等.林地转变为茶园对土壤固氮菌群落结构及多样性的影响[J].应用与环境生物学报,2020,26(05):1096-1106.[doi: 10.19675/j.cnki.1006-687x.2020.02019]
 CHEN Yuzhen,,et al.Effects of soil nitrogen-fixing bacteria community and diversity after converting forestland into tea garden[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1096-1106.[doi: 10.19675/j.cnki.1006-687x.2020.02019]
点击复制

林地转变为茶园对土壤固氮菌群落结构及多样性的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1096-1106
栏目:
土壤与农业微生物应用专栏
出版日期:
2020-10-25

文章信息/Info

Title:
Effects of soil nitrogen-fixing bacteria community and diversity after converting forestland into tea garden
作者:
陈玉真王峰吴志丹张文锦翁伯琦尤志明
1福建省农业科学院茶叶研究所 福安 350013 2福建茶树及乌龙茶加工科学观测站 福安 355015 3福建省红壤山地农业生态过程重点实验室 福州 350013
Author(s):
CHEN Yuzhen1 2 3 WANG Feng1 2 3 WU Zhidan1 2 3 ZHANG Wenjin1 2 WENG Boqi3 YOU Zhiming1 2 3?
1 Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China 2 Scientific Observing and Experimental Station of Tea Tree and Oolong Tea Processes in Fujian, Ministry of Agriculture, Fu’an 355015, China 3 Fujian Provincial Key Laboratory of Agro-Ecological Processes in Hilly Red Soil, Fuzhou 350013, China
关键词:
林地开垦高通量测序固氮菌群落结构多样性影响因子
Keywords:
reclamation of forestland high throughput sequencing soil nitrogen-fixing bacterial community structure diversity impact?factor
DOI:
10.19675/j.cnki.1006-687x.2020.02019
摘要:
固氮微生物作为土壤中重要的功能微生物群之一,其变化与土地利用方式密切相关. 以林地(WD,对照)、幼龄茶园(YT)、成龄茶园(AT)及高海拔茶园(WD)为研究对象,采用高通量测序技术,探究4种样地土壤固氮菌多样性及群落结构,并对土壤理化性质与固氮菌多样性和群落结构的关系进行相关性分析和冗余分析(RDA). 结果显示,与林地土壤相比,幼龄茶园固氮菌Alpha多样性有所降低,其中Shannon指数显著降低(P < 0.05),而林地、成龄茶园和高海拔茶园之间固氮菌Alpha多样性差异不显著(P > 0.05). 从4类样地土壤样品中共检测到固氮菌27个门49个纲93个目169个科337个属,其中变形菌门(Proteobacteria)和慢生根瘤菌属(Bradyrhizobium)是各样地土壤固氮菌的绝对优势菌群,其相对丰度分别为88.54%-90.17%和21.25%-61.57%. 结合Venn图和非度量多维尺度(NMDS)可看出,植茶年限明显影响土壤固氮菌微生物群落结构,林地和幼龄茶园土壤固氮微生物群落结构相似性较近,林地和成龄茶园固氮微生物落结构群落结构相似性较远. LEfSe分析表明,幼龄茶园土壤中差异物种数量最低,高海拔茶园土壤中差异物种数量最多. 相关分析和冗余分析结果表明,土壤有机质、铵态氮和速效磷是影响土壤固氮菌群落丰度和多样性的主要土壤因子,但土壤性质对土壤固氮微生物群落结构变化的解释度较低(分别仅为22.9%和42.0%). 本研究表明林地转变为茶园后,幼龄茶园固氮菌多样性明显降低,而成龄茶园土壤固氮菌多样性得以恢复,但土壤固氮菌群落结构发生明显变化,涵盖的土壤理化性质指标并不能完全解释固氮微生物群落的变异,还需结合更多因素进行进一步探讨. (图8 表2 参43)
Abstract:
Nitrogen-fixing bacteria are among the most important functional microorganisms in the soil, and changes in the soil nitrogen-fixing bacteria community and its diversity is usually related to land-use. We selected forestland (WD, CK), young tea garden (YT), mature tea garden (MT), and high elevation tea garden (HT) soils in Fujian province as study sites, and the diversity and structure of the nitrogen-fixing bacteria were then studied by high-throughput sequencing technology. Pearson’s correlation analysis and redundancy analysis (RDA) were used to examine the soil physicochemical factors driving the community structure and diversity of the soil nitrogen-fixing bacteria. The results showed that compared with the forestland, the soil nitrogen-fixing bacterial diversity in the young garden was remarkably reduced. Moreover, Simpson’s indices significantly decreased (P < 0.05), compared to the forestland. A total of 27 phyla, 49 classes, 93 orders, 169 families, and 337 genera of nitrogen-fixing bacteria were detected from the soil samples. Proteobacteria was the dominant phylum, and Bradyrhizobium was the dominant genus in all soil samples; the relative abundances were 88.54%-90.17% and 21.25%-61.57%, respectively. The results of the Venn diagram and non-metric multidimensional scaling analysis (NMDS) showed that the tea plantation age played a vital role in driving changes in the soil nitrogen-fixing bacteria community structure. The nitrogen-fixing bacteria communities in forestland and the young tea garden had a similar composition, whereas the nitrogen-fixing bacteria communities in the forestland and mature tea garden were different. Results from the linear discriminant analysis effect size pipeline (LEfSe) analysis showed that the number of distinct indicator species was the highest in high elevation tea garden soil and the lowest in young tea garden soil. The results of Pearson’s correlation analysis and redundancy analysis (RDA) showed that soil organic matter, NH4+-N, and available phosphorus were the main factors affecting the abundance and diversity of the soil nitrogen-fixing bacteria community, but the cumulative explanation of the first two axes was only 22.9% and 42.0% of the environmental variables. In conclusion, the soil nitrogen-fixing bacterial diversity was significantly reduced in the change from forest to tea garden, then the soil bacterial diversity improved as the tea plantation age increased. However, the nitrogen-fixing bacteria communities varied remarkably. The studied environmental variables could not fully explain the variation in the nitrogen-fixing microbial communities, and further investigation into the effect of converting forest into tea garden on soil nitrogen-fixing bacteria should examine more factors.

参考文献/References:

1 赵欣然, 赵琼, 王巍巍, 杨丹, 郑琳琳, 艾桂艳, 曾德慧. 氮添加及凋落物管理对樟子松人工林土壤理化性质的影响[J]. 生态学杂志, 2016, 35 (10): 2699-2706 [Zhao XR, Zhao Q, Wang WW, Yang D, Zheng LL, Ai GY, Zeng DH. Effect of nitrogen addition and litter manipulation on soil physicochemical properties of a Pinus sylvestris var. mongolica plantation [J]. Chin J Ecol, 2016, 35 (10): 2699-2706]
2 Cheng XL, Yang YH, Li M, Zhang QF. The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China [J]. Plant Soil, 2013, 366 (1-2): 415-424
3 Song XZ, Li Q, Gu HH. Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations [J]. Plant and Soil, 2017, 410 (1-2): 207-215
4 Jetten MSM. The microbial nitrogen cycle [J]. Environ Microbiol, 2008, 10 (11): 2903-2909
5 Yang SH, Chen WH, Wang ET, Chen WF, Yan J, Han XZ, Tian CF, Sui XH, Singh RP, Jiang GM, Chen WX. Rhizobial biogeography and inoculation application to soybean in four regions across China [J]. J Appl Microbiol, 2018, 125 (3): 853-866
6 Deslippe JR, Egger KN. Molecular diversity of nifH genes from bacteria associated with high arctic dwarf shrubs [J]. Microbial Ecol, 2006, 51 (4): 516-525
7 Poly F, Ranjard L, Nazaret S, Gourbiere F, Monrozier JL. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties [J]. Appl Environ Microbiol, 2001, 67 (5): 2255-2262
8 Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil [J]. Res Microbiol, 2001, 152: 95-103
9 周燕, 刘彩霞, 徐秋芳, 梁辰飞, 陈俊辉, 秦华, 李永春. 毛竹入侵森林对固氮微生物群落结构和丰度的影响[J]. 植物营养与肥料学报, 2018, 24 (4): 1047-1057 [ZhouY, Liu CX, Xu QF, Liang CF, Chen JH, Qin H, Li YC. Effects of moso bamboo invasion on nitrogen-fixing microbial community structure and abundance in forest [J]. J Plant Nutr Fertil, 2018, 24 (4): 1047-1057]
10 张坤, 包维楷, 杨兵, 胡斌. 林下植被对土壤微生物群落组成与结构的影响[J]. 应用与环境生物学, 2017, 23 (6): 1178-1184 [Zhang K, Bao WK, Yang B, Hu B. The effects of understory vegetation on soil microbial community composition and structure [J]. Chin J Appl Environ Biol, 2017, 23 (6): 1178-1184]
11 楚海燕, 李若南, 李靖雯, 钟兆全, 刘小飞, 李一清. 中亚热带森林转换对土壤微生物群落结构的影响[J]. 应用与环境生物学报, 2019, 25 (1): 23-28 [Chu HY, Li RA, Li JW, Zhong ZQ, Liu XF, Li YQ. Effects of forest conversion on soil microbial community structure [J]. Chin J Appl Environ Biol, 2019, 25 (1): 23-28]
12 沈秋兰, 何冬华, 徐秋芳, 程敏, 毛新伟, 李永春, 陈俊辉. 阔叶林改种毛竹(Phyllostachys pubescens)后土壤固氮细菌nifH基因多样性的变化[J]. 植物营养与肥料学报, 2016, 22 (3): 687-696 [Shen QL, He DH, Xu QF, Cheng M, Mao WX, Li YC, Chen JH. Variation of nifH gene diversity of soil nitrogen-fixing bacteria in Moso bamboo (Phyllostachys pubescens) plantation converted from broadleaf forest [J]. J Plant Nutr Fertil, 2016, 22 (3): 687-696]
13 崔静雅, 颜明娟, 吴晓荣, 王慎强, 倪康, 蔡祖聪, 张金波, 程谊. 林地改为茶园对土壤净硝化速率及N2O排放的影响[J]. 土壤, 2017, 49 (4): 738-744 [Cui JY, Yan MJ, Wu XR, Wang SQ, Ni K, Cai ZC, Zhang JB, Chen Y. Effects of woodland transforming into tea garden on soil net nitrification rate and N2O emission [J]. Soils, 2017, 49 (4): 738-744]
14 陈玉真, 王峰, 吴志丹, 江福英, 张文锦, 翁伯琦, 罗旭辉, 尤志明. 林地转变为茶园对土壤团聚体及渗透性能的影响[J]. 水土保持学报, 2018, 32 (5): 134-139 [Chen YZ, Wang F, Wu ZD, Jiang FY, Zhang WJ, Weng BQ, Luo XH, You ZM. Effects of conversion from forestland into tea garden on soil aggregate and infiltration capability [J]. J Soil Water Conserv, 2018, 32 (5): 134-139]
15 Schmidt PA, Bálint M, Greshake B, Bandow C, R?mbke J, Schmitt I. Illumina metabarcoding of a soil fungal community [J]. Soil Biol Biochem, 2013, 65: 128-132
16 Guo M, Gong Z, Miao R, Su D, Li XJ, Jia CY, Zhuang J. The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure [J]. Ecol Eng, 2017, 99: 22-30
17 陈玉真, 王峰, 吴志丹, 江福英, 张文锦, 翁伯琦, 罗旭辉, 尤志明. 林地转变为茶园对土壤细菌群落结构与多样性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48 (4): 97-106 [Chen YZ, Wang F, Wu ZD, Jiang FY, Zhang WJ, Weng BQ, Luo XH, You ZM. Effects of soil bacterial community and diversity after forestland converted into tea garden [J]. J N A&F Univ (Nat Sci Ed), 2020, 48 (4): 97-106]
18 秦红灵, 袁红朝, 张慧, 朱亦君, 吴敏娜, 魏文学. 红壤坡地利用方式对土壤细菌群落结构的影响[J]. 土壤学报, 2011, 48 (3): 594-602 [Qin HL, Yuan HZ, Zhang H, Zhu YJ, Wu MN, Wei WX. Soil bacteria community structure in upland red soil in relation to land use pattern [J]. Acta Pedol Sin, 2011, 48 (3): 594-602]
19 Yao H, Gao Y, Nicol GW,Campbell CD, Prosser JI, Zhang LM, Han WY, Singh BK. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils [J]. Appl Environ Microb, 2011, 77 (13): 4618-4625
20 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 1999 [Lu RK. Analytical Method of Soil Agricultural Chemistry [M]. Beijing: China Agricultural Science and Technology Press, 1999]
21 Deslippe JR, Egger KN. Molecular diversity of nifH genes from bacteria associated with high arctic dwarf shrubs [J]. Microbial Ecol, 2006, 51(4): 516-525
22 Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam FY, Zhou HW. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina Tags [J]. AEM, 2012, 78 (23): 8264
23 Zou YK, Zhang JN, Yang DL, Chen XR, Zhao JN, Xiu WM, Lai X, Li G. Effects of different land use patterns on nifH genetic diversity of soil nitrogen-fixing microbial communities in Leymus chinensis steppe [J]. Acta Ecol Sin, 2011, 31 (3): 150-156
24 Santoscaton IR, Caton TM, Schneegurt MA. Nitrogen-fixation activity and the abundance and taxonomy of nifH genes in agricultural, pristine, and urban prairie stream sediments chronically exposed to different levels of nitrogen loading [J]. Arch Microbiol, 2018, 200(4): 623-633
25 Collavino MM, Tripp HJ, FrankI IE, Vidoz ML, Calderoli PA, Donato M, Zehr JP, Aguilar OM. nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2-fixing community dynamics: N2-fixing communities in agricultural soils [J]. Environ Microbiol, 2014, 16 (10): 3211-3223
26 Yelenik SG, Stock WD, Richardson DM. Functional group identity does not predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem function [J]. Biol Invasions, 2007, 9 (2):117-125
27 Yan P, Wu LQ, Wang DH,Fu JY, Shen C, Li X, Zhang LP, Zhang L, Fan LC, Han WY. Soil acidification in Chinese tea plantations [J].Sci Total Environ, 715: 13693
28 Li SY, Wu X Xue H, Gu BJ, Cheng H, Zeng JM., Peng C H, Ge Y, Chang J. Quantifying carbon storage for tea plantations in China [J]. Agric Ecosyst Environ, 2011, 141: 390-398
29 Li YC, Li Z, Li ZW, Jiang YH, Weng BQ, Lin WX. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrose-quencing approach [J].J Appl Microbiol, 2016, 121: 787-799
30 Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert [J]. Appl Environ Microb, 2004, 70 (2): 973-983
31 李君剑, 杜宏宇, 刘菊, 严俊霞, 李洪建. 关帝山不同海拔土壤碳矿化和微生物特征[J]. 中国环境科学, 2018, 38 (5): 213-219 [Li J J, Du H Y, Liu J, Yan JX, Li HJ. Soil organic mineralization and microbial characteristics along an altitudinal gradient in Guandi Mountain [J]. Chin Environ Sci, 2018, 38 (5): 213-219]
32 齐丹卉, 郭辉军, 崔景云, 盛才余. 云南澜沧景迈古茶园生态系统植物多样性评价[J]. 生物多样性, 2005, 13 (3): 221-231 [Qi DH, Guo HJ, Cui JY, Sheng CY. Plant biodiversity assessment of the ancient tea garden ecosystem in Jingmai of Lancang, Yunnan [J]. Biodiv Sci, 2005, 13 (3): 221-231]
33 贾雨雷, 林标声, 廖真, 汪丽芳, 黄在兴, 宋昭昭, 梅兰, 林占熺. 典型生境巨菌草根内生固氮菌的群落多样性[J]. 微生物学报, 2020, 60 (1): 148-160 [Jia YL, Lin BS, Liao Z, Wang L F, Huang ZX, Song ZZ, Mei L, Lin ZX. Diversity of endophytic nitrogen-fixing bacteria community in the roots of Pennisetum sp. of typical habitats [J]. Acta Microbiol Sin, 2020, 60 (1): 148-160]
34 梁月明, 苏以荣, 何寻阳, 陈香碧. 岩性对喀斯特灌丛土壤固氮菌与丛枝菌根真菌群落结构及丰度的影响[J]. 环境科学, 2017, 38 (3): 1253-1261 [Liang YM, Su YR, He XY, Cheng XB. Effects of lithology on the abundance and composition of soil nitrogen-fixing bacteria and arbuscular mycorrhizal fungal communities in karst shrub ecosystem [J]. Environ Sci, 2017, 38 (3): 1253-1261]
35 Juraeva D, George E, Davranov K, Ruppel S. Detection and quantification of the nifH gene in shoot and root of cucumber plants [J]. Can J Microbiol, 2006, 52 (8): 731-739
36 何冬华, 陈俊辉, 徐秋芳, 沈秋兰, 李永春, 毛新伟, 程敏. 集约经营对毛竹林土壤固氮细菌群落结构和丰度的影响[J]. 应用生态学报, 2015, 26 (10): 52-59 [He DH, Chen JH, Xu QF, Shen QL, Li YC, Mao WX, Cheng M.Effects of intensive management on abundance and composition of soil N2-fixing bacteria in Phyllostachys heterocycla stands [J]. Chin J Appl Ecol, 2015, 26 (10): 52-59 ]
37 Wander MM, Hedrick DS, Kaufman D, Traina SJ, Stinner BR, Kehrmeyer SR, White DC. The functional significance of the microbial biomass in organic and conventionally managed soils [J]. Plant Soil, 1995, 170 (1): 87-97
38 Calderoli PA, Collavino MM, Kraemer FB, Morrás HJM, Aguilar OM. Analysis of nifH‐RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N2‐fixing community depending on depth and agriculturaluse of soil [J]. MicrobiologyOpen, 2017, 6 (5): e00502
39 Teng QH, Sun B, Fu XR, Li SP, Cui ZL, Cao H. Analysis of nifH gene diversity in red soil amended with manure in Jiangxi, South China [J]. J Microbiol, 2009, 47 (2): 135-141
40 蔡树美, 徐四新, 张翰林,张德闪, 吕卫光, 顾富家, 诸海焘. 滩涂土壤固氮菌群落与环境因子的典范对应分析[J]. 土壤, 2017, 49 (6):1159-1196 [Cai SM, Xu SX, Zhang HL, Zhang DS, Lü WG, Gu FJ, Zhu HT. Canonical correspondence analysis of relationship between characteristics of nitrogen-fixing microbes community and environmental factors in mudflat soil [J]. Soils, 2017, 49 (6): 1159-1196]
41 Herold N, Sch?ning I, Gutknecht J, Fabian A. Soil property and management effects on grassland microbial communities across a latitudinal gradient in Germany [J]. App Soil Ecol, 2014, 73: 41-50
42 Zhang XM, Liu W, Schloter M, Zhang GH, Chen QS, Huang JH, Li LH, Elser JJ, Han XG. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes [J]. PLoS ONE, 2013, 8 (10): e76500
43 Liang YM, Pan FJ, He XY, Chen YB, Su YR. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region [J]. Environ Sci Pollut R, 2016, 23 (18): 18482-18491

相似文献/References:

[1]赵彤,蒋跃利,闫浩,等.土壤氨化过程中微生物作用研究进展[J].应用与环境生物学报,2014,20(02):315.[doi:10.3724/SP.J.1145.2014.00315]
 ZHAO Tong,JIANG Yueli,YAN Hao,et al.Research advances on microbial function in soil ammonifying process[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):315.[doi:10.3724/SP.J.1145.2014.00315]
[2]许 颖** 马德胜 宋文枫 魏小芳.16S rDNA高通量测序技术分析油藏微生物多样性?[J].应用与环境生物学报,2016,22(03):409.[doi:10.3724/SP.J.1145.2015.09003]
 XU Ying**,MA Desheng,SONG Wenfeng & WEI Xiaofang.16S rDNA-assisted high-throughput sequencing analysis of microbial diversity in oil reservoirs*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):409.[doi:10.3724/SP.J.1145.2015.09003]
[3]孟会生,洪坚平,王向英,等.磷细菌肥对采煤塌陷区复垦土壤 放线菌群落的影响*[J].应用与环境生物学报,2016,22(05):911.[doi:10.3724/SP.J.1145.2016.03043]
 MENG Huisheng,HONG Jianping**,WANG Xiangying & LI Li.Effect of phosphobacteria fertilizer on soil actinomycetes community in mining subsidence area*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):911.[doi:10.3724/SP.J.1145.2016.03043]
[4]宋永亭,胡婧,吴晓玲,等.室温条件下油藏采出液微生物群落结构稳定性[J].应用与环境生物学报,2017,23(03):495.[doi:2016.07026]
 SONG Yongting,HU Jing,WU Xiaoling,et al.Stability of microbial community structure in reservoir water samples at room temperature[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):495.[doi:2016.07026]
[5]何永果,晋蕾,李果,等.基于高通量测序技术研究成年大熊猫肠道菌群[J].应用与环境生物学报,2017,23(05):771.[doi:10.3724/SP.J.1145.2016.05023]
 HE Yongguo,JIN Lei,LI Guo,et al.Gut microbiome of adult giant pandas based on high-throughput sequencing technology[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):771.[doi:10.3724/SP.J.1145.2016.05023]
[6]宋永亭.不同配气条件下微生物驱油生长代谢规律[J].应用与环境生物学报,2017,23(06):974.[doi:10.3724/SP.J.1145.2016.12036]
 SONG Yongting**.Regulation of microbial growth and metabolism and oil displacement under different gas distribution conditions[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):974.[doi:10.3724/SP.J.1145.2016.12036]
[7]徐江兵,王艳玲,罗小三,等.纳米氧化锌对堆肥过程中细菌群落演替的影响[J].应用与环境生物学报,2017,23(06):1166.[doi:10.3724/SP.J.1145.2017.04025]
 XU Jiangbing,WANG Yanling,et al.Influence of zinc oxide nanoparticles on the succession of bacterial communities during the composting process[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):1166.[doi:10.3724/SP.J.1145.2017.04025]
[8]顾磊,许科伟,汤玉平,等.基于高通量测序技术研究玉北油田上方微生物多样性[J].应用与环境生物学报,2017,23(2):276.[doi:10.3724/SP.J.1145.2016.09027]
 GU Lei,XU Kewei,et al.Microbial diversity in Yubei Oil field determined by high-throughput sequencing[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):276.[doi:10.3724/SP.J.1145.2016.09027]
[9]杨永,张学军,李寐华,等.微生物肥料对设施长期连作哈密瓜根际土壤真菌群落结构的影响[J].应用与环境生物学报,2018,24(01):68.[doi:10.19675/j.cnki.1006-687x.2017.03014]
 YANG Yong,ZHANG Xuejun,LI Meihua,et al.Effects of microbiological fertilizer on rhizosphere soil fungus communities under long-term continuous cropping of protected Hami melon[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):68.[doi:10.19675/j.cnki.1006-687x.2017.03014]
[10]任海伟,刘菲菲,李梦玉,等.玉米秸秆和白菜废弃物在不同贮存条件下的微生物群落[J].应用与环境生物学报,2018,24(02):281.[doi:10.19675/j.cnki.1006-687x.2017.05035]
 REN Haiwei,LIU Feifei,LI Mengyu,et al.Microbial community of maize straw and cabbage waste under different storage conditions[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):281.[doi:10.19675/j.cnki.1006-687x.2017.05035]

更新日期/Last Update: 2020-10-25