|本期目录/Table of Contents|

[1]刘斌,杨洲,刘军委,等.定向进化提高磺酰脲类除草剂脱毒酯酶SulE的活性[J].应用与环境生物学报,2020,26(05):1075-1080.[doi: 10.19675/j.cnki.1006-687x.2019.12034]
 LIU Bin,YANG Zhou,LIU Junwei,et al.Improvement of enzyme activity of sulfonylurea herbicide-detoxifying esterase SulE by directed evolution[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1075-1080.[doi: 10.19675/j.cnki.1006-687x.2019.12034]
点击复制

定向进化提高磺酰脲类除草剂脱毒酯酶SulE的活性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1075-1080
栏目:
土壤与农业微生物应用专栏
出版日期:
2020-10-25

文章信息/Info

Title:
Improvement of enzyme activity of sulfonylurea herbicide-detoxifying esterase SulE by directed evolution
作者:
刘斌杨洲刘军委陈乐彭乾何健
南京农业大学生命科学学院,农业部农业环境微生物工程重点开放实验室 南京 210095
Author(s):
LIU Bin YANG Zhou LIU Junwei CHEN Le PENG Qian & HE Jian?
Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
磺酰脲类除草剂酯酶SulE定向进化酶活性同源建模
Keywords:
sulfonylurea herbicide esterase SulE directed evoluction enzyme activity homology modeling
DOI:
10.19675/j.cnki.1006-687x.2019.12034
摘要:
磺酰脲除草剂脱毒酯酶SulE对噻磺隆活性极高,但对其他磺酰脲类除草剂活性很低,这限制了在磺酰脲除草剂残留污染生物修复和抗磺酰脲除草剂作物培育中的应用价值. 利用Escherichia coli DH10B (ilvG+)对甲磺隆的敏感性为筛选标记,从sulE基因随机突变库中筛选获得了一个酶活性显著提高的突变体mSulE. 与野生型相比,突变体mSulE对甲磺隆、甲嘧磺隆、苯磺隆和胺苯磺隆的比酶活分别提高了8.29、8.61、1.50和4.04倍. 测序结果表明,突变体mSulE氨基酸序列发生了2处替换,分别为Y81T和S178N. 三维结构模拟表明,2个突变位点都在酶活性中心附近,突变体mSulE酶活提高的原因可能是Y81突变为T增加了催化口袋的面积,以及S178突变为N增加了氨基酸残基之间的氢键作用力. 综上所述,突变体mSulE对大部分磺酰脲除草剂的活性要高于野生型,在磺酰脲除草剂残留污染生物修复和抗除草剂转基因工程中具有很好的应用前景. (图6 表1 参30)
Abstract:
Esterase SulE detoxifies a variety of sulfonylurea herbicides with a methyl or ethyl ester. SulE shows high activity against thifensulfuron-methyl; however, SulE shows low activity against many chemically stable and persistent sulfonylureas, such as metsulfuron-methyl, sulfometuron-methyl, and ethametsulfuron-methyl, which limit its application. In order to improve the enzyme activity of SulE, the sulE gene was subjected to random mutation through error-prone PCR, followed by an efficient screening protocol based on the sensitivity of the host Escherichia coli DH10B (ilvG+) to metsulfuron-methyl. A mutant, mSulE, with improved activity was screened from the mutation library. The specific activities of mSulE for metsulfuron-methyl, sulfometuron-methyl, tribenuron-methyl, and ethametsulfuron-methyl increased by 8.29-, 8.61-, 1.50-, and 4.04-fold, respectively, in comparison with the wild type SulE. Sequence analysis revealed that mSulE contains two amino acid substitutions (Y81T and S178N). Molecular modeling suggested that the activity improvement of mSulE is due to the substitution of Y81 by T and S178 by N, leading to an increase in catalytic pocket area and in hydrogen bonding between amino acids. This study provides a theoretical basis for the elucidation of the structure and function of SulE. In addition, the study provides an improved degradation/detoxification gene for the elimination of sulfonylurea residue and herbicide-resistant transgenic engineering.

参考文献/References:

1 Hay JV. Chemistry of sulfonylurea herbicides [J]. Pest Manage Sci, 1990, 29 (3): 247-261
2 吴春先, 聂果, 高立明, 王广成, 陈丙坤, 许艳秋, 李婷. 磺酰脲类除草剂的微生物降解研究进展[J]. 农药科学与管理, 2014, 35 (9): 11-18 [Wu CX, Nie G, Gao LM, Wang GC, Chen BK, Xu YQ, Li T. Research progress on the microbial degradation of sulfonylurea herbicides [J]. Pestic Sci Admin, 2014, 35 (9): 11-18]
3 Brown HM. Mode of action, crop selectivity and soil relations of the sulfonylurea herbicides [J]. Pest Manage Sci, 2010, 29 (3): 263-281
4 王新, 孙诗雨, 张惠文. 微生物降解磺酰脲类除草剂的研究进展[J]. 生态学杂志, 2018, 37 (11): 3449-3457 [Wang X, Sun SY, Zhang HW. Advances in the research on microbial degradation of sulfonylurea herbicides [J]. Chin J Ecol, 2018, 37 (11): 3449-3457]
5 Blair AM, Martin TD. A review of the activity, fate and mode of action of sulfonylurea herbicides [J]. Pest Manage Sci, 2010, 22 (3): 195-219
6 李影, 付颖, 叶非. 微生物降解磺酰脲类除草剂的研究进展[J]. 农药科学与管理, 2013, 34 (2): 19-23 [Li Y, Fu Y, Ye F. Research progress on bioremediation of sulfonylurea herbicides [J]. Pestic Sci Admi, 2013, 34 (2): 19-23]
7 Giovanna B, Alessandra DA, Anna A, Ester M, Elisabetta Z, Marco N, Anna V, Claudia S. Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions [J]. J Environ Sci Health B, 2003, 38 (6): 737-746
8 Corminboeuf C, Carnal F, Weber J, Chovelon JM, Chermette H. Photodegradation of sulfonylurea molecules: analytical and theoretical DFT studies [J]. J Phys Chem A 2003, 107 (47): 10032-10038
9 Brown HM, Joshi MM, Van AT, Carski TH, Dulka JJ, Patrick MC, Reiser RW, Livingston RS, Doughty J. Degradation of thifensulfuron methyl in soil: role of microbial carboxyesterase activity [J]. J Agric Food Chem, 1997, 45 (3): 955-961
10 Hang BJ, Hong Q, Xie XT, Huang X, Wang CH, He J, Li SP. SulE, a sulfonylurea herbicide de-esterification esterase from Hansschlegelia zhihuaiae S113 [J]. Appl Environ Microbiol, 2012, 78 (6): 1962-1968
11 Zhao W, Wang C, Xu L, Zhao C, Liang H, Qiu L. Biodegradation of nicosulfuron by a novel Alcaligenes faecalis strain ZWS11 [J]. J Environ Sci, 2015, 35 (9): 151-162
12 Zhou S, Song J, Dong W, Mu Y, Zhang Q, Fan Z, Wang Y, Kong D, Zhou Y, Jiang X. Nicosulfuron biodegradation by a novel cold-adapted strain Oceanisphaera psychrotolerans LAM-WHM-ZC [J]. J Agri Food Chem, 2017, 65 (47): 10243-10249
13 Omer CA, Lenstra R, Litle PJ, Dean C, Tepperman JM, Leto KJ, Romesser JA, O’keefe DP. Genes for two herbicide-inducible cytochromes P-450 from Streptomyces griseolus [J]. J Bacteriol, 1990, 172 (6): 3335-3345
14 Ruan Z, Shan Z, Jiang S, Lei S, Yi Z, Wang Y, Chao C, Zhao B. Isolation and characterization of a novel cinosulfuron degrading Kurthia sp. from a methanogenic microbial consortium [J]. Bioresour Technol, 2013, 147 (9): 477-483
15 Peng X, Huang J, Liu C, Xiang Z, Zhou J, Zhong G. Biodegradation of bensulphuron-methyl by a novel Penicillium pinophilum strain BP-H-02 [J]. J Hazard Mater, 2012, 213 (3): 216-221
16 Wang L, Zhang X, Li Y. Degradation of nicosulfuron by a novel isolated bacterial strain Klebsiella sp. Y1: condition optimization, kinetics and degradation pathway [J]. Water Sci Technol, 2016, 73 (12): 2896-2903
17 O’Keefe, DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, Odell JT. Plant expression of a bacterial cytochrome-p450 that catalyzes activation of a sulfonylurea pro-herbicide [J]. Plant Physiol, 1994, 105 (2): 473-482
18 褚翠伟, 阮志勇, 姚利, 何健, 蒋建东, 朱启黎. 除草剂的微生物降解研究进展[J]. 生物资源, 2018, 40 (2): 93-100 [Chu CW, Ruan ZY, Yao L, He J, Jiang JD, Zhu QL. Research progress of microbial degradation of herbicides [J]. Biotic Resour, 2018, 40 (2): 93-100]
19 杨锦, 冯红, 万民远, 焦惠科, 张晓露, 张义正. 短小芽孢杆菌碱性蛋白酶基因的随机突变[J]. 应用与环境生物学报, 2010, 16 (1): 96-99 [Yang J, Feng H, Wan MY, Jiao HK, Zhang XL, Zang YZ. Random mutation of alkaline protease gene in Bacillus pumilus [J]. Chin J Appl Environ Biol, 2010, 16 (1): 96-99]
20 Brandenberg OF, Chen K, Arnold FH. Directed evolution of a cytochrome P450 carbene transferase for selective functionalization of cyclic compounds [J]. J Am Chem Soc, 2019, 141 (22): 8989-8995
21 Liu B, Peng Q, Sheng MY, Hu SH, Qian M, Fan B, He J. Directed evolution of sulfonylurea esterase and characterization of a variant with improved activity [J]. J Agric Food Chem, 2018, 67 (3): 836-843
22 张敏恒. 磺酰脲类除草剂的发展现状、市场与未来趋势[J]. 农药, 2010, 49 (4): 235-240 [Zheng MH. The development situation, market and trend of sulfonylurea herbicides [J]. Agrochemicals, 2010, 49 (4): 235-240]
23 Sofo A, Scopa A, Dumontet S, Mazzatura A, Pasquale V. Toxic effects of four sulphonylureas herbicides on soil microbial biomass [J]. J Environ Sci Health-part B, 2012, 47 (7): 653-659
24 苏怡丹, 伍宁丰, 刘国安. 蛋白质定向进化技术的研究进展[J]. 生物技术通报, 2009 (11): 43-47 [Su YD, Wu NF, Liu GA. Research on directed evolution of protein [J]. Biotechnol Bull, 2009 (11): 43-47]
25 Tan Y, Zhang Y, Han Y. Directed evolution of an α 1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method [J]. Sci Adv, 2019, 5 (10): eaaw8451
26 Atsumi S, Liao J C. Directed evolution of methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli [J]. Appl Environ Microbiol, 2008, 74 (24): 7802-7808
27 Dele Osibanjo T, Li Q, Zhang X. Growth-coupled evolution of phosphoketolase to improve L-glutamate production by corynebacterium glutamicum [J]. Appl Microbiol Biotechnol, 2019, 103 (20): 8413-8425
28 Bourne PC, Isupov MN, Littlechild JA. The atomic resolution structure of a novel bacterial esterase [J]. Structure, 2000, 8 (2), 143-151
29 Gagné D, French RL, Narayanan C. Perturbation of the conformational dynamics of an active-site loop alters enzyme activity [J]. Structure, 2015, 23 (12): 2256-2266
30 Nestl BM, Hauer B. Engineering of flexible loops in enzymes [J]. ACS Catal, 2014, 4 (9): 3201-3211

更新日期/Last Update: 2020-10-25