|本期目录/Table of Contents|

[1]叶如梦,田锴,胡海静,等.一株枯草芽孢杆菌对香蜂花的促生效果及关键代谢物积累的环境响应[J].应用与环境生物学报,2020,26(05):1035-1045.[doi: 10.19675/j.cnki.1006-687x.2019.12010]
 YE Rumeng,TIAN Kai,HU Haijing,et al.Prompting effects of an endophytic bacteria, Bacillus subtilis, on Melissa officinalis L. growth and response of its central secondary metabolic products to culturing conditions[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1035-1045.[doi: 10.19675/j.cnki.1006-687x.2019.12010]





Prompting effects of an endophytic bacteria, Bacillus subtilis, on Melissa officinalis L. growth and response of its central secondary metabolic products to culturing conditions
1南京大学生命科学学院 南京 210046 2南阳师范学院农业工程学院,河南省南水北调中线水源区生态安全重点实验室 南阳 473061 3河北环境工程学院 秦皇岛 066102
YE Rumeng1 TIAN Kai2 HU Haijing1 WAN Pengwei1 TAN Haixia3 TIAN Xingjun1 & LI Pengfu1?
1 School of Life Sciences, Nanjing University, Nanjing 210046, China 2 Key Laboratory of Ecological Security for Water Source Region of Mid-line Project of South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China 3 Hebei University of Environment Engineering, Qinhuangdao 066102, China
growth promoting effect rosemary acid soil nutrient Melissa officinalis endophyte
内生菌对植物的促生作用在生产实践中得到了广泛运用. 为探究植物内生菌对香料植物香蜂花(Melissa officinalis L.)生长和关键次生代谢物积累的影响及这种影响的栽培环境依赖性,利用一株内生枯草芽孢杆菌B117(Bacillus subtilis B117)灌根接种香蜂花,比较在不同土壤养分条件(较贫瘠组和营养组)下,B117对植株生长生理及总酚、总黄酮、迷迭香酸(RA)单位含量的影响. 结果显示,B117对香蜂花有显著促生作用,接菌生长30 d后较贫瘠组和营养组株高分别增加了60.80%、25.50%,60 d后分别增加了45.81%和21.90%. B117对香蜂花的作用受土壤养分影响,较贫瘠组在接菌30 d和60 d后地上部干重增加了261.50%和9.55%,根长分别增加了49.92%和70.96%. 接菌60 d后,较贫瘠组植株的超氧化物歧化酶(SOD)活性及营养组植株的过氧化物酶(POD)活性显著提升;营养组植株总酚、总黄酮、RA的单位含量及苯丙氨酸解氨酶(PAL)活性显著低于较贫瘠组. 接菌显著降低了营养组单位含量的总酚和RA,但对较贫瘠组无显著影响,即B117在增加植株生物量的基础上,并未显著降低较贫瘠组关键次生代谢物的积累. 综上所述,内生菌B117对香蜂花的作用依赖土壤营养条件,在适当贫瘠的土壤中接种B117既能增加香蜂花植株的生物量又能保障其核心代谢产物的产量. (图4 表3 参55 附图6)
Endophytic bacteria are widely used in plant cultivation. In this study, a potted experiment was conducted to investigate the influences of an endophytic bacteria strain, Bacillus subtilis B117, on the growth and secondary metabolite accumulation in an aromatic herb, Melissa officinalis L. B117 was administered to M. officinalis through an injured root-irrigation method. Plants were cultured in two contrasting conditions (oligotrophic soil and fertilized soil). Treatment effects were explored by investigating the variations in plant growth, physiological reactions, as well as the contents of secondary metabolites that were represented by total phenolic content, total flavonoids, and rosemary acid (RA). The inoculation of B117 had significant effects on plant growth, increasing the plant height in oligotrophic and fertilized soil by 60.80% and 25.50%, respectively, after 30 days and by 45.81% and 21.90%, respectively, after 60 days of inoculation. The effects of B117 on plants was influenced by soil nutrient conditions. In the oligotrophic environment, B117 increased the dry weight of aerial parts by 261.50% and 9.55% and increased the root length by 49.92% and 70.96% after 30 and 60 days inoculation, respectively. After 60 days, B117 significantly increased the activity of SOD in oligotrophic soil and the POD activity in fertilized soil. The total phenolic content, total flavonoids, phenylalanine ammonia-lyase (PAL) activity, and RA in plants were higher in the oligotrophic soil than in the fertilized environment. B117 significantly reduced the total phenolic content and RA in the fertilized group, whereas there was no effect observed in the oligotrophic environment. Consequently, B117 had profound growth-promotion effects on M. officinalis and did not reduce the accumulation of central secondary metabolites in the oligotrophic soil. In conclusion, the effect of B117 on M. officinalis depends on soil nutrient conditions. Inoculating B117 in moderately barren soil would increase the yield of M. officinalis biomass as well as its total metabolic products.


1 Alijaniha F, Naseri M, Afsharypuor S, Fallahi F, Noorbala A, Mosaddegh M, Faghihzadeh S, Sadrai S. Heart palpitation relief with Melissa officinalis leaf extract: double blind, randomized, placebo controlled trial of efficacy and safety [J]. J Ethnopharmacol, 2015, 164: 378-384
2 Kamdem JP, Adeniran A, Boligon AA, Klimaczewski CV, Elekofehinti OO, Hassan W, Ibrahim M, Waczuk EP, Meinerz DF, Athayde ML. Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: its potential role in neuroprotection [J]. Ind Crop Prod, 2013, 51: 26-34
3 Shinjyo N, Green J. Are sage, rosemary and lemon balm effective interventions in dementia? A narrative review of the clinical evidence [J]. Eur J Integr Med, 2017, 15: 83-96
4 Awad R, Muhammad A, Durst T, Trudeau VL, Arnason JT. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity [J]. Phytother Res, 2009, 23 (8): 1075
5 Jalali P, Moattari A, Mohammadi A, Ghazanfari N, Pourghanbari G. Melissa officinalis efficacy against human influenza virus (New H1N1) in comparison with oseltamivir [J]. Asian Pac J Trop Med, 2016, 6 (9): 714-717
6 Roh Y, Jee D, Rho C, Cho W, Kang S. Anti-angiogenic effect of ALS-L1023, an extract of Melissa officinalis L., on experimental choroidal neovascularization in mice [J]. Clin Exp Ophthalmol, 2016, 44 (1): 43-51
7 Weidner C, Rousseau M, Plauth A, Wowro SJ, Fischer C, Abdel-Aziz H, Sauer S. Melissa officinalis extract induces apoptosis and inhibits proliferation in colon cancer cells through formation of reactive oxygen species [J]. Phytomedicine, 2015, 22 (2): 262-270
8 Mimica-Dukic N, Bozin B, Sokovic M, Simin N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil [J]. J Agric Food Chem, 2004, 52 (9): 2485-2489
9 Scholey A, Gibbs A, Neale C, Perry N, Ossoukhova A, Bilog V, Kras M, Scholz C, Sass M, Buchwald-Werner S. Anti-stress effects of lemon balm-containing foods [J]. Nutrients, 2014, 6 (11): 4805-4821
10 Miraj S, Rafieian-Kopaei, Kiani S. Melissa officinalis L: a review study with an antioxidant prospective [J]. J Alter Complement Med, 2017, 22 (3): 385-394
11 Cao W, Hu C, Wu L, Xu L, Jiang W. Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice [J]. J Pharm Sci, 2016, 132 (2): 131-137
12 Adomako-Bonsu AG, Chan SL, Pratten M, Fry JR. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: importance of physico-chemical characteristics [J]. Toxicol in Vitro, 2017, 40: 248-255
13 Kantar Gok D, Hidisoglu E, Ocak GA, Er H, Acun AD, Yarg?coglu P. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: implication of oxidative stress and cholinergic impairment [J]. Neurochem Int, 2018, 118: 1-13
14 董娟娥, 张康健, 梁宗锁. 植物次生代谢与调控[M]. 咸阳: 西北农林科技大学出版社, 2009: 23-24, 36, 64 [Dong JE, Zhang KJ, Liang ZS. Plant Secondary Metabolism and Its Regulation[ M]. Xianyang: Northwest A&F University Press, 2009: 23-24, 36, 64]
15 Petersen M, Alfermann AW. Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei [J]. Hydroxyphenyl Reduct Rosmar Acid Synth, 1988, 43 (7-8): 501-504
16 Cappellari LDR, Chiappero J, Santoro MV, Giordano W, Banchio E. Inducing phenolic production and volatile organic compounds emission by inoculating Mentha piperita with plant growth-promoting rhizobacteria [J]. Sci Hortic-Amsterdam, 2017, 220: 193-198
17 Pistelli L, Tonelli M, Pellegrini E, Cotrozzi L, Pucciariello C, Trivellini A, Lorenzini G, Nali C. Accumulation of rosmarinic acid and behaviour of ROS processing systems in Melissa officinalis L. under heat stress [J]. Ind Crop Prod, 2019, 138: 111469
18 Zámboriné Németh ?, Radácsi P, Gosztola B, Rajhárt P, Szabó K. Influence of water supply and fluctuations on yield and quality of lemon balm (Melissa officinalis L.) [J]. Aust J Crop Sci, 2017, 11 (12): 1539-1546
19 Tonelli M, Pellegrini E, Angiolillo F, Petersen M, Nali C, Pistelli L, Lorenzini G. Ozone-elicited secondary metabolites in shoot cultures of Melissa officinalis L. [J]. Plant Cell Tiss Org, 2015, 120 (2): 617-629
20 Szabó K, Radácsi P, Rajhárt P, Ladányi M, Németh ?. Stress-induced changes of growth, yield and bioactive compounds in lemon balm cultivars [J]. Plant Physiol Biochem, 2017, 119: 170-177
21 Ziaková A, Brandsˇteterová E. Application of different preparation techniques for extraction of phenolic antioxidants from lemon balm (Melissa officinalis) before HPLC analysis [J]. J Liq Chromatogr R T, 2002, 25 (19): 3017-3032
22 Binello A, Cravotto G, Boffa L, Stevanato L, Bellumori M, Innocenti M, Mulinacci N. Efficient and selective green extraction of polyphenols from lemon balm [J]. CR Chim, 2017, 20 (9-10): 921-926
23 Alu Datt MH, Rababah T, Alhamad MN, Al-Tawaha AR, Al-Tawaha A, Gammoh S, Ereifej KI, Al-Karaki G, Hamasha HR, Tranchant CC, Kubow S. Herbal yield, nutritive composition, phenolic contents and antioxidant activity of purslane (Portulaca oleracea L.) grown in different soilless media in a closed system [J]. Ind Crop Prod, 2019, 141: 111746
24 Saha A, Basak BB, Gajbhiye NA, Kalariya KA, Manivel P. Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of Andrographis paniculata and soil health [J]. Ind Crop Prod, 2019, 140: 111607
25 Vessey J K. Plant growth promoting rhizobacteria as biofertilizers [J]. Plant Soil, 2003, 255 (2): 571-586
26 Chiappero J, Cappellari L D R, Sosa Alderete L G, Palermo T B, Banchio E. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content [J]. Ind Crop Prod, 2019, 139: 111553
27 Pagnani G, Pellegrini M, Galieni A, D Egidio S, Matteucci F, Ricci A, Stagnari F, Sergi M, Lo Sterzo C, Pisante M, Del Gallo M. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: an alternative fertilization strategy to improve plant growth and quality characteristics [J]. Ind Crop Prod, 2018, 123: 75-83
28 Bisht N, Tiwari S, Singh PC, Niranjan A, Singh Chauhan P. A multifaceted rhizobacterium Paenibacillus lentimorbus alleviates nutrient deficiency-induced stress in Cicer arietinum L. [J]. Microbiol Res, 2019, 223-225: 110-119
29 Kloepper JW, Lifshitz R, Zablotowicz RM. Free-living bacterial inocula for enhancing crop productivity [J]. Trends Biotechnol, 1989, 7 (2): 39-44
30 Gond SK, Bergen MS, Torres MS, White Jr JF. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize [J]. Microbiol Res, 2015, 172: 79-87
31 Gagné-Bourque F, Bertrand A, Claessens A, Aliferis K A, Jabaji S. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26 [J]. Front Plant Sci, 2016, 7: 1-16
32 Hashem A, Tabassum B, Fathi Abd Allah E. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress [J]. Saudi J Biol Sci, 2019, 26 (6): 1291-1297
33 周伟, 王文杰, 何兴元, 张波, 肖路, 王琼, 吕海亮, 魏晨辉. 哈尔滨城市绿地土壤肥力及其空间特征[J]. 林业科学, 2018, 54 (9): 9-17 [Zhou W, Wang WJ, He XY, Zhang B, Xiao L, Wang Q, Lü HL, Wei CH. Soil fertility and spatial variability of urban green land in Harbin. Sci Silv Sin, 2018, 54 (9): 9-17]
34 Hassan SE. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. [J]. J Adv Res, 2017, 8 (6): 687-695
35 白青云. 低氧胁迫和盐胁迫下发芽粟谷γ-氨基丁酸富集机理及抗氧化性研究[D]. 南京: 南京农业大学, 2009 [Bai QY. Studies on mechanism of y-aminobutyric acid accumulation and antioxidant activity in germinated foxtail millet under hypoxia stress and salt stress [D]. Nanjing: Nanjing Agricultural University, 2009]
36 张志良, 李小方, 瞿伟菁. 植物生理学实验指导[M]. 4版. 北京: 高等教育出版社, 2010: 125-126, 227-228 [Zhang ZL, Li XF, Qu WJ. Experimental Guidance of Plant Physiology [M]. 4th ed. Beijing: Higher Education Press, 2010: 125-126, 227-228]
37 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 74-76 [Gao JF. Experimental Guidance for Plant Physiology [M]. Beijing: Higher Education Press, 2006: 74-76]
38 丛峰松. 生物化学实验[M]. 2版. 上海: 上海交通大学出版社, 2012 [Cong FS. Biochemistry Experiment [M]. 2nd ed. Shanghai: Shanghai Jiaotong University Press, 2012: 169-170]
39 Chizzola R, Lohwasser U, Franz C. Biodiversity within Melissa officinalis: variability of bioactive compounds in a cultivated collection [J]. Molecules, 2018, 23 (2): 294
40 梁雪飞, 唐梦君, 吕立新, 赵翔宇, 戴传超. 三种丛枝菌根真菌对茅苍术的生长、生理及主要挥发油成分的影响[J]. 生态学杂志. 2018, 37 (6): 1871-1879 [Liang XF, Tang MJ, Lü LX, Zhao XY, Dai CC. Effects of three arbuscular mycorrhizal fungi (AMF) species on the growth, physiology, and major components of essential oil of Atractylodes lancea. Chin J Ecol, 2018, 37 (6): 1871-1879]
41 Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements [J]. Plant Physiol Biochem, 2014, 81: 16-25
42 Tahir HAS, Gu Q, Wu H, Raza W, Hanif A, Wu L, Colman MV, Gao X. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2 [J]. Front Microbiol, 2017, 8: 1-11
43 Xie S, Wu H, Zang H, Wu L, Zhu Q, Gao X. Plant Growth promotion by spermidine-producing Bacillus subtilis OKB105 [J]. Mol Plant Microbe Interact, 2014, 27 (7): 655-663
44 You C, Zhang C, Kong F, Feng C, Wang J. Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl-mancozeb on bacterial communities in tobacco rhizospheric soil [J]. Ecol Eng, 2016, 91: 119-125
45 Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants [J]. Plant Soil, 2005, 272 (1-2): 201-209
46 Liang B, Li C, Ma C, Wei Z, Wang Q, Huang D, Chen Q, Li C, Ma F. Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis [J]. Plant Physiol Biochem, 2017, 119: 346-359
47 Allard-Massicotte R, Tessier L, Lecuyer F, Lakshmanan V, Lucier JF, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors [J]. MBio, 2016, 7 (6): 1-10
48 刘文英. 植物逆境与基因[M]. 北京: 北京理工大学出版社, 2015: 12, 29-31 [Liu WY. Plant Adversity and Genes [M]. Beijing: Beijing Institute of Technology Press, 2015: 12, 29-31]
49 Jayaraj J, Yi H, Liang GH, Muthukrishnan S, Velazhahan R. Foliar application of Bacillus subtilis AUBS1 reduces sheath blight and triggers defense mechanisms in rice [J]. J Plant Dis Protect, 2004, 111 (2): 115-125
50 Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3 [J]. Biol Control, 2013, 65 (1): 109-117
51 Engel R, Szabó K, Abrankó L, Rendes K, Füzy A, Takács T. Effect of arbuscular mycorrhizal fungi on the growth and polyphenol profile of marjoram, lemon balm, and marigold [J]. J Agric Food Chem, 2016, 64 (19): 3733-3742
52 Nicholson RL, Hammerschmidt R. Phenolic-compounds and their role in disease resistance [J]. Annu Rev Phytopathol, 1992, 30: 369-389
53 Ma Y, Wang P, Wang M, Sun M, Gu Z, Yang R. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress [J]. Food Chem, 2019, 270: 593-601
54 Feumba DR, Panyoo AE, Rani PA, Metsatedem TQ, Mbofung FCM. Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings [J]. Food Chem, 2020, 302: 125308
55 Ponder A, Hallmann E. The effects of organic and conventional farm management and harvest time on the polyphenol content in different raspberry cultivars [J]. Food Chem, 2019, 301: 125295


 GAO Chen,HUANG Shufen,HU Li,et al.Diversity and plant growth promotion of endophytic bacteria isolated from $Oryza nivara$[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):33.[doi:10.19675/j.cnki.1006-687x.2017.04029]
 HUANG Shufen,CHANG Huayu,GU Licheng,et al.Diversity of endophyte isolated from Ocimum basilicum L. and its biological function[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):96.[doi:10.19675/j.cnki.1006-687x.2019.04060]
[3]曾立,程万里,余豪,等.多粘类芽孢杆菌KM2501-1发酵液对番茄根结线虫的防治效果[J].应用与环境生物学报,2020,26(05):1046.[doi: 10.19675/j.cnki.1006-687x.2020.03003]
 ZENG Li,CHENG Wanli,YU Hao,et al.Controlling efficiency of Paenibacillus polymyxa KM2501-1 fermentation liquid against tomato root-knot nematode[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1046.[doi: 10.19675/j.cnki.1006-687x.2020.03003]
[4]曾立 程万里 余豪 陈珍 黄典 翟义乐 吴仁锋 张吉斌**.多粘类芽胞杆菌KM2501-1发酵液对番茄根结线虫的防治效果[J].应用与环境生物学报,2021,27(01):1.[doi:10.19675/j.cnki.1006-687x.2020.03003]
 ZENG Li,CHENG Wanli,YU Hao,et al.Controlling efficiency of Paenibacillus polymyxa KM2501-1 fermentation liquid against tomato root-knot nematode[J].Chinese Journal of Applied & Environmental Biology,2021,27(05):1.[doi:10.19675/j.cnki.1006-687x.2020.03003]

更新日期/Last Update: 2020-10-25