|本期目录/Table of Contents|

[1]康岱,崔梦瑶,杨暖,等.电极电势调控对氨氧化脱氮与生物膜电活性的影响[J].应用与环境生物学报,2020,26(05):1268-1274.[doi: 10.19675/j.cnki.1006-687x.2019.11044]
 KANG Dai,CUI Mengyao,et al.Effects of electrode potential regulation on ammonium oxidation denitrification and electroactivity of biofilms[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1268-1274.[doi: 10.19675/j.cnki.1006-687x.2019.11044]
点击复制

电极电势调控对氨氧化脱氮与生物膜电活性的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1268-1274
栏目:
研究论文
出版日期:
2020-10-25

文章信息/Info

Title:
Effects of electrode potential regulation on ammonium oxidation denitrification and electroactivity of biofilms
作者:
康岱崔梦瑶杨暖丁祥李大平张礼霞占国强
1西华师范大学 南充 637009 2中国科学院成都生物研究所 成都 610041
Author(s):
KANG Dai1 2 CUI Mengyao2 YANG Nuan1 2 DING Xiang1? LI Daping2 ZHANG Lixia2 & ZHAN Guoqiang2?
1 China West Normal University, Nanchong 637009, China 2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
微生物电化学系统低C/N比含氮废水脱氮产碱微生物群落
Keywords:
microbial electrochemical system nitrogenous wastewater with low C/N ratio denitrification alkalinity production microbial community
DOI:
10.19675/j.cnki.1006-687x.2019.11044
摘要:
为解决低C/N值含氮废水在处理过程中碱度和碳源不足的问题,通过电极电势调控的方式干预氨氧化脱氮及生物膜电化学活性. 在处理碱度不足(1.0 g/L NaHCO3)的低C/N含氮废水时,外加正电势+0.3、+0.4、+0.6 V(vs Ag/AgCl),系统氨氧化率分别为54.59%、59.31%、37.97%,相较于不加电势体系(70.79%),最大降低了46.24%;外加负电势-0.6、-0.8、-1.0 V(vs Ag/AgCl)时,氨氧化率分别为93.41%、79.27%、83.23%,相较于不加电势时最大提高了31.95%;但总氮去除率在正负电势条件下均有提高,与对照组(9.38%)相比,最高总氮去除率为23.47%,达对照组的2.5倍. CV扫描结果显示,外加电势后工作电极生物膜在-0.25 V至-0.35 V范围出现还原峰,对照组无明显峰出现,且电流相较对照组更大,对比说明外加电势能够调控生物膜的电化学活性. 16S rRNA分析发现,对比未加电势,外加电极电势后电极生物膜中的放线菌门相对丰度减少,变形菌门和绿弯菌门相对丰度增加,Nitrosomonas sp.、Nitrosospira sp.、Bradyrhizobiaceae sp.及Rhodanobacter sp.等具有氨氧化和反硝化作用的菌属被同步富集. 本研究基于脱氮菌组成及其电化学活性,推测存在硝化/反硝化氮素转化的直接种间电子传递(DIET)途径,促进了低C/N值废水脱氮. (图6 参31)
Abstract:
To solve the problem of insufficient alkalinity and carbon source in the treatment of nitrogenous wastewater with a low C/N ratio, the electrode potential is set to regulate ammonia oxidation and the electrochemical activity of biofilm for nitrogen removal. With a positive potential of +0.3 V, +0.4 V, and +0.6 V (vs. Ag/AgCl) applied to the working electrode with 1.0 g/L NaHCO3, the removal efficiencies of ammonia decrease to 54.59%, 59.31%, and 37.97%, respectively, with the maximum decrease to 46.24% of the control group without applying a potential (70.79%). While, with the negative potentials of -0.6 V, -0.8 V, and -1.0 V (vs. Ag/AgCl), the removal efficiencies of ammonia increase to 93.41%, 79.27%, and 83.23%, respectively, with the maximum increase to 31.95% compared with the control group without applying a potential. However, the removal efficiency of total nitrogen is improved under both positive and negative potential conditions. The total nitrogen removal efficiency in the control experiment was only 9.38%, while the highest removal efficiencies of the negative potential group rose to 23.47%, which was 2.5 times as much as the control. Moreover, the cyclic voltammetry analysis results showed that the working electrode biofilm had a reduction peak in the range of -0.25 V to -0.35 V after applied potential. However, there was no obvious peak in the control experiment, and the current was larger than in the control group, indicating that applying potential could regulate the electrochemical activity of the biofilm. According to 16S rRNA analysis, the relative abundance of the Actinomycete phylum decreased in the group with applied potential compared with the control group. However, the phyla of Proteobacteria and Chloroforms increased, and the dominant bacteria such as Nitrosomonas sp., Nitrosospira sp., Bradyrhizobiaceae sp., and Rhodanobacter sp. with ammonia oxidation and denitrification activities were simultaneously enriched. Based on the microbial community and electrochemical activity of denitrification bacteria, it is speculated that there is a direct interspecific electron transfer (DIET) pathway for nitrogen conversion in the nitrification/denitrification process, which improves nitrogen removal in ammonia-containing wastewater with a low C/N ratio.

参考文献/References:

1 Yan LL, Zhang SL, Hao GX, Zhang XL, Ren Y, Wen Y, Guo YH, Zhang Y. Simultaneous nitrification and denitrification by EPSs in aerobic granular sludge enhanced nitrogen removal of ammonium-nitrogen-rich wastewater [J]. Bioresour Technol, 2016, 202: 101-106
2 Kimura K, Nakamura M, Watanabe Y. Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration [J]. Water Res, 2002, 36 (7): 1758-1766
3 ZivEl, Michal C, Rittmann BE. Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor [J]. Water Res, 2009, 43 (1): 173-181
4 Zhang YH, Zhong FH, Xia SQ, Wang XJ, Li JX. Autohydrogeno-trophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor [J]. J Hazard Mater, 2009, 170 (1): 203-209
5 Lee KC, Rittmann BE. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water [J]. Water Res, 2002, 36 (8): 2040-2052
6 Daigger GT. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox [J]. Water Environ Res, 2014, 86 (3): 204-209
7 Star WRLVD, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, Van Loosdrecht MCM. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam [J]. Water Res, 2007, 41 (18): 4149-4163
8 Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science, 2012, 337 (6095): 686-690
9 Brillas E, Martinez-Huitle CA. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: an updated review [J]. Appl Catal B-Environ, 2015, 166: 603-643
10 Qu B, Fan B, Zhu SK, Zheng YL. Anaerobic ammonium oxidation with an anode as the electron acceptor [J]. Environ Microbiol Rep, 2014, 6 (1): 100-105
11 Vilajeliu-Pons A, Koch C, Balagurt MD, Colprim J, Harnisch F, Puing S. Microbial electricity driven anoxic ammonium removal [J]. Water Res, 2018, 130: 168-175
12 Tang JH, Chen SS, Huang LY, Zhong XJ, Yang GQ, Zhou SG. Acceleration of electroactive anammox (electroammox) start-up by switching acetate pre-acclimated biofilms to electroammox biofilms [J]. Bioresour Technol, 2017, 243: 1257-1261
13 Zhu TT, Zhang YB, Bu GH, Quan X, Liu YW. Producing nitrite from anodic ammonia oxidation to accelerate anammox in a bioelectrochemical system with a given anode potential [J]. Chem Eng J, 2016, 291: 184-191
14 Zhan GQ, Zhang LX, Tao Y, Wang YJ, Zhu XY, Li DP. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems [J]. Electrochim Acta, 2014, 135: 345-350
15 李建, 占国强, 王娟, 高平, 李大平. 生物电解池氨氧化脱氮产能[J]. 应用与环境生物学报, 2014, 20 (6): 1058-1062 [Li J, Zhan GQ, Wang J, Gao P, Li DP. Simultaneous production of energy from ammoxidation in microbial electrolysis cells [J]. Chin J Appl Environ Biol, 2014, 20 (6): 1058-1062]
16 Jiang Y, Liang P, Zhang CY, Bian YH, Sun XL, Zhang HL, Yang XF, Zhao F, Huang X. Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells [J]. Appl Energy, 2016, 165: 670-675
17 Li JB, Rui JP, Pei ZJ, Sun XR, Zhang SH, Yan ZY, Wang YP, Liu XF, Zheng T, Li XZ. Straw- and slurry-associated prokaryotic communities differ during co-fermentation of straw and swine manure [J]. Appl Microbiol Biotechnol, 2014, 98 (10): 4771-4780
18 Dyreborg S, Arvin E. Inhibition of nitrification by creosote-contaminated water [J]. Water Res, 1995, 29 (6): 1603-1606
19 Zhan GQ, Zhang LX, Li DP, Su WT, Tao Y, Qian JW. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell [J]. Bioresour Technol, 2012, 116: 271-277
20 Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Ham TH, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ Sci Technol, 2007, 41 (9): 3354-3360
21 Deng L, Ngo HH, Guo WS, Wang J, Zhang HW. Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater [J]. Chem Eng J, 2018, 338: 166-175
22 Busalmen JP, Esteve-Nunez A, Feliu JM. Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport [J]. Environ Sci Technol, 2008, 42 (7): 2445-2450
23 Dale OR, Tobias CR, Song BK. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary [J]. Environ Microbiol, 2009, 11 (5): 1194-1207
24 Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea [J]. J Bacteriol, 2003, 185 (9): 2759-2773
25 Mergaert J, Cnockaert MC, Swings J. Thermomonas fusca sp. Nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly (epsilon-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas [J]. Int J Syst Evol Microbiol, 2003, 53: 1961-1966
26 Green SJ, Prakash O, Jasrotia P, Overholt WA, Cardenas E, Hubbard D, Tiedje JM, Watson DB, Schadt CW, Brooks SC, Kostka JE. Denitrifying bacteria from the genus rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site [J]. Appl Environ Microbiol, 2012, 78 (4): 1039-1047
27 Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus [J]. Pedobiologia, 2011, 54 (5-6): 309-320
28 Jiang Y, Su M, Zhang Y, Zhan GQ, Tao Y, Li DP. Bioelectro-chemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate [J]. Int J Hydrogen Energy, 2013, 38 (8): 3497-3502
29 Liu FH, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Promoting direct interspecies electron transfer with activated carbon [J]. Energy Environ Sci, 2012, 5 (10): 8982
30 Summers ZM, Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria [J]. Science, 2010, 330 (6009): 1413-1415
31 Song YC, Joicy A, Jang SH. Direct interspecies electron transfer in bulk solution significantly contributes to bioelectrochemical nitrogen removal [J]. Int J Hydrogen Energy, 2019, 44 (4): 2180-2190

更新日期/Last Update: 2020-10-25