|本期目录/Table of Contents|

[1]周利承,曹梦珂,郑晨露,等.接种丛枝菌根真菌对紫花苜蓿修复石油污染土壤的潜在作用[J].应用与环境生物学报,2020,26(05):1129-1134.[doi: 10.19675/j.cnki.1006-687x.2019.11029]
 ZHOU Licheng,CAO Mengke,ZHENG Chenlu,et al.The potential effect of Medicago sativa inoculated with arbuscular mycorrhizal fungi on remedying petroleum-contaminated soil[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1129-1134.[doi: 10.19675/j.cnki.1006-687x.2019.11029]
点击复制

接种丛枝菌根真菌对紫花苜蓿修复石油污染土壤的潜在作用()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1129-1134
栏目:
土壤与农业微生物应用专栏
出版日期:
2020-10-25

文章信息/Info

Title:
The potential effect of Medicago sativa inoculated with arbuscular mycorrhizal fungi on remedying petroleum-contaminated soil
作者:
周利承曹梦珂郑晨露成文会鲍鹏吴伊波
1宁波大学土木与环境工程学院 宁波 315211 2中国科学院宁波城市环境观测研究站 宁波 315800
Author(s):
ZHOU Licheng1 CAO Mengke1 ZHENG Chenlu1 CHENG Wenhui1 PAO Peng2 & WU Yibo1?
1 School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China 2 Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
关键词:
石油污染丛枝菌根真菌紫花苜蓿比根长球囊霉素相关土壤蛋白
Keywords:
petroleum-contaminated arbuscular mycorrhizal fungi Medicago sativa specific root length glomalin-related soil protein
DOI:
10.19675/j.cnki.1006-687x.2019.11029
摘要:
为了解接种丛枝菌根真菌(AMF)对紫花苜蓿(Medicago sativa)修复石油污染土壤的潜在作用,采用盆栽试验方法,研究2个石油浓度(1 500 mg/kg和15 000 mg/kg)污染下,接种摩西球囊霉(Glomus mosseae,G.m)对紫花苜蓿株高、生物量、根系形态、球囊霉素相关土壤蛋白(GRSP)和总石油烃(TPHs)去除率的影响. 结果显示:(1)紫花苜蓿生物量随着石油污染浓度的增加而减少,且根系生物量受到的抑制作用最为明显,而接种G.m使根系生物量的减少量降低,根冠比增加;在15 000 mg/kg石油浓度下,接种G.m使根长增加17.65%,比根长(SRL)增加29.72%;(2)接种G.m使土壤中TPHs去除率在2个石油污染浓度下分别提高14.09%和24.76%;(3)土壤中易提取GRSP(EE-GRSP)与总GRSP(T-GRSP)比值随石油浓度的增加而降低,在15 000 mg/kg石油浓度下,接种G.m使EE-GRSP含量显著降低,而T-GRSP含量显著增加;(4)相关性分析表明,植物根系SRL和菌根侵染率的增加有助于提高TPHs的去除率,同时提高土壤中T-GRSP含量. 本研究表明AMF-植物共生体有助于提高植物自身在石油污染土壤中的耐受性,以及根际土壤石油污染物的去除率,说明该技术在石油污染土壤修复工程中具有一定的应用潜力. (图6 表3 参52)
Abstract:
In order to evaluate the potential function of arbuscular mycorrhizal fungi (AMF)-Medicago sativa symbiosis in remediating petroleum-contaminated soils, we performed a pot-culture experiment to investigate the effects of inoculation with Glomus mosseae (G.m) on plant height, biomass, root morphology, glomalin-related soil protein (GRSP) contents, and removal rate of total petroleum hydrocarbons (TPHs) under the two petroleum contamination concentrations of 1 500 mg/kg and 15 000 mg/kg. The results demonstrated the following: (1) Plant biomass was decreased with increasing concentration of petroleum contamination, and root biomass was the most inhibited part; however, inoculating the soil with G.m decreased the reduction of root biomass and increased the root/shoot ratio. The root length and specific root length (SRL) of G.m-inoculated plants increased by 17.65% and 29.72% in 15 000 mg/kg soil. (2) Inoculation of soil with G.m increased the removal rate of TPHs using concentrations of 1 500 mg/kg and 15 000 mg/kg by 14.09% and 24.76%, respectively. (3) The value of easily extracted GRSP (EE-GRSP)/total GRSP (T-GRSP) decreased with increasing concentrations of TPHs. EE-GRSP was significantly lower, whereas T-GRSP was significantly higher, in 15 000 mg/kg G.m-inoculated soil. (4) SRL and mycorrhizal infection rate was positively related to the removal rate of TPHs. Moreover, T-GRSP was positively correlated with SRL. In conclusion, AMF-plant symbiosis played a positive role in improving the growth of plants and the removal rate of TPHs in petroleum-contaminated soil. Therefore, it is feasible to apply this green remediation technology to petroleum-contaminated soil cleanup projects.

参考文献/References:

1 Wei L, Hu ZW, Dong L, Zhao WJ. A damage assessment model of oil spill accident combining historical data and satellite remote sensing information: a case study in Penglai 19-3 oil spill accident of China [J]. Mar Pollut Bull, 2015, 91 (1): 258-271
2 Faksness LG, Altin D, Nordtug T, Daling PS, Hansen BH. Chemical comparison and acute toxicity of water accommodated fraction (WAF) of source and field collected Macondo oils from the deepwater horizon spill [J]. Mar Pollut Bull, 2015, 91 (1): 222-229
3 Amund OO, Igiri CO. Biodegradation of petroleum hydrocarbons under tropical estuarine conditions [J]. World J Microb Biotechnol, 1990, 6 (3): 255-262
4 Mcgill WB, Rowell MJ, Westlake DWS. Biochemistry, ecology, and microbiology of petroleum components in soil [J]. Soil Biochem, 1981, 5: 229-296
5 朱林海, 丁金枝, 王健健, 王永吉, 来利明, 赵学春, 鲁洪斌, 赵春强, 郑元润. 石油污染对土壤-植物系统的生态效应[J]. 应用与环境生物学报, 2012, 18 (2): 320-330 [Zhu LH, Ding JZ, Wang JJ, Wang YJ, Lai LM, Zhao XC, Lu HB, Zhao CQ, Zheng YR. Ecological effects of oil pollution on soil-plant system [J]. Chin J Appl Environ Biol, 2012, 18 (2): 320-330]
6 杜亚鲁, 胡韬, 彭琳. 土壤石油污染的生物修复技术研究进展[J]. 环境科学与技术, 2017, 40 (S1): 133-138 [Du YL, Hu T, Peng L. Review of research on bioremediation techniques for oil-contaminated soil [J]. Environ Sci Technol, 2017, 40 (S1): 133-138]
7 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007: 1-464 [Liu RJ, Chen YL. Mycorrhizology [M]. Beijing: Science Press, 2007: 1-464]
8 Marx J. The roots of plant-microbe collaborations [J]. Science, 2004, 304 (5668): 234-236
9 Smith SE, Read D. Mycorrhizal Symbiosis [M]. 3rd ed. New York: Academic Press, 2008: 11-32
10 Aroca R, Porcel R, Ruiz-Lozano JM. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris, under drought, cold or salinity stresses [J]. New Phytol, 2007, 173 (4): 808-816
11 Van Der Heijden, MGA, Bardgett RD, Van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems [J]. Ecol Lett, 2008, 11 (3): 296-310
12 王敏强, 吴沛鸿, 沈益康, 宋垚彬, 吴爱平, 王艳红. 盐胁迫下接种丛枝菌根真菌对甜菜生长和氮磷吸收的影响[J]. 应用与环境生物学报, 2018, 24 (5): 960-966 [Wang MQ, Wu PH, Shen YK, Song YB, Wu AP, Wang YH. Effects of arbuscular mycorrhizal fungi on the growth and nitrogen and phosphorus acquisition of salt-stresses Stevia rebaudiana [J]. Chin J Appl Environ Biol, 2018, 24 (5): 960-966]
13 陈保冬, 孙玉清, 张莘, 伍松林. 菌根真菌重金属耐性机制研究进展[J]. 环境科学, 2015, 36 (3): 1123-1133 [Chen BD, Sun YQ, Zhang X, Wu SL. Underlying mechanisms of the heavy metal tolerance of mycorrhizal fungi [J]. Environ Sci, 2015, 36 (3): 1123-1133]
14 刘润进, 唐明, 陈应龙. 菌根真菌与植物抗逆性研究进展[J]. 菌物研究, 2017, 15 (1): 70-88 [Liu RJ, Tang M, Chen YL. Recent advances in the study of mycorrhizal fungi and stress resistance of plants [J]. J Fungal Res, 2017, 15 (1): 70-88]
15 钟思远, 张静, 褚国伟, 夏艳菊, 唐旭利. 沿海侵蚀台地不同恢复阶段土壤团聚体组成及其与丛枝菌根真菌的关系[J]. 生态环境学报, 2017, 26 (2): 219-226 [Zhong SY, Zhang J, Chu GW, Xia YJ, Tang XL. Soil aggregate composition and its relationship with arbuscular mycorrhizal fungi in different restoration stages on severely eroded lands [J]. Ecol Environ Sci, 2017, 26 (2): 219-226]
16 王建, 周紫燕, 凌婉婷. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报, 2016, 27 (2): 634-642 [Wang J, Zhou ZY, Ling WT. Distribution and environmental function of glomalin-related soil protein: a review [J]. Chin J Appl Environ Biol, 2016, 27 (2): 634-642]
17 李秋玲, 凌婉婷, 高彦征, 李福春, 熊巍. 丛枝菌根对有机污染土壤的修复作用及机理[J]. 应用生态学报, 2006, 17 (11): 2217-2221 [Li QL, Ling WT, Gao YZ, Li FC, Xiong W. Arbuscular mycorrhizal bioremediation and its mechanisms of organic pollutants contaminated soils [J]. Chin J Appl Environ Biol, 17 (11): 2217-2221]
18 王楚栋, 单明娟, 陆扣萍, 王海龙, 赵未央, 黄圣妍, 余樾, 吾尔开西?买木里, 秦华. 丛枝菌根真菌及猪炭对多氯联苯污染土壤的联合修复作用[J]. 环境科学学报, 2018, 38 (10): 4157-4164 [Wang CD, Shan MJ, Lu KP, Wang HL, Zhao WY, Huang SY, Yu Y, Wu EKX, Qin H. Combined remediation effects of arbuscular mycorrhizal fungi and dead pig biochar on PCBs contaminated soils [J]. Acta Sci Circumst, 2018, 38 (10): 4157-4164]
19 许秀强, 徐丽娟, 殷元元, 黄艺, 刘润进. 丛枝菌根真菌修复农药污染土壤的潜力分析[J]. 菌物学报, 28 (4): 616-621 [Xu XQ, Xu LJ, Yin YY, Huang Y, Liu RJ. Analysis of arbuscular fungi on remedying pesticide polluted soil [J]. Mycosystema, 2009, 28 (6): 1171-1177]
20 山宝琴, 刘亚峰, 付小康, 王彩琴, 薛婷. 丛枝菌根真菌-植物联合修复石油污染土壤研究进展[J]. 环境科学与技术, 2011, 34 (8): 61- 64 [Shan BQ, Liu YF, Fu XK. Review on AM fungi and plant bioremediation of petroleum- contaminated soil [J]. Environ Sci Technol, 2011, 34 (8): 61-64]
21 山宝琴, 屈萌萌, 李皎, 李超. 丛枝菌根真菌与植物共生修复陕北石油污染土壤[J]. 草业学报, 2016, 25 (7): 87-94 [Shan BQ, Qu MM, Li J, Li C. Bioremediation of petroleum contaminated soil by plants and arbuscular mycorrhizal fungi in Northern Shanxi. Acta Pratac Sin, 2016, 25 (7): 87-94]
22 练建军, 杨梅, 叶天然, 陈波, 王诗生, 周凡杰. 根瘤菌对紫花苜蓿修复钼污染土壤的强化作用研究[J]. 环境科学学报, 2019, 39 (5): 1639-1644 [Lian JJ, Yang M, Ye TR, Chen B, Wang SS, Zhou FJ. Rhizobia strengthening phytoremediation of molybdenum- contaminated soil by alfalfa [J]. Acta Sci Circumst, 2019, 39 (5): 1639-1644]
23 徐艳, 史高琦, 王曙光, 杨建强. 紫花苜蓿对石油污染土壤的修复响应[J]. 环境科学与技术, 2018, 41 (S2): 25-28 [Xu Y, Shi GQ, Wang SG, Yang JQ. Remediation effect of alfalfa on oil contaminated soil [J]. Environ Sci Technol, 2018, 41 (S2): 25-28]
24 岳冰冰, 李鑫, 任芳菲, 孟凡娟, 孙广玉. 石油污染对紫花苜蓿部分生理指标的影响[J]. 草业科学, 2011, 28 (2): 236-240 [Yue BB, Li X, Ren FF, Meng FJ, Sun GY. Effects of petroleum contamination on some of physiological indexes of alfalfa [J]. Acta Pratac Sin, 2011, 28 (2): 236-240]
25 王丽萍, 朱新萍, 董双快, 姚美思, 李典鹏, 贾宏涛. 苏丹草与紫花苜蓿对新疆原油污染土壤的响应[J]. 环境工程, 2016, 34 (11): 145-149 [Wang LP, Zhu XP, Dong SK, Yao MS, Li DP, Jia HT. Response of Sorghum sudanense and Medicago sativa growing on soil contaminated with crude oil in Xinjiang [J]. Environ Engin, 2016, 34 (11): 145-149 ]
26 杨婷, 林先贵, 胡君利, 张晶, 吕佳珑, 王俊华, 李恒桢. 丛枝菌根真菌对紫花苜蓿与黑麦草修复多环芳烃污染土壤的影响[J]. 生态与农村环境学报, 2009, 25 (4): 72-76 [Yang T, Lin XG, Hu JL, Zhang J, Lv JL, Wang JH, Li HZ. Effects of arbuscular mycorrhizal fungi on phytoremediation of PAHs contaminated soil by Medicago sativa and Lolium muhiflorum [J]. J Ecol Rural Environ, 2009, 25 (4): 72-76]
27 Koske RE, Gemma JN. A modified procedure for staining roots to detect VA mycorrhizas [J]. Mycol Res, 1989, 92 (4): 486-505
28 Mcgonigles TP, Millers MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi [J]. New Phytol, 1990, 115: 492-501
29 Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD. Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level? [J]. New Phytol, 2013, 201 (2): 505-517
30 许雄飞, 丁庆云, 张绣影, 谭菊. 快速溶剂萃取红外分光光度法测定土壤中石油类[J]. 中国环境监测, 2008, 24 (3): 1002-1006 [Xu XF. Ding QY, Zhang XY, Tan J. Determination the petroleum class in soil in accelerated solvent extraction by infrared spectrophotometric method [J]. Environ Monit in Chin, 2008, 24 (3): 1002-1006]
31 Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi [J]. Plant Soil, 1998, 198 (1): 97-107
32 Janos DP, Garamszegi S, Beltran B. Glomalin extraction and measurement [J]. Soil Biol Biochem, 2008, 40 (3): 728-739
33 谢小林, 许朋阳, 朱红惠, 姚青. 球囊霉素相关土壤蛋白的提取条件[J]. 菌物学报, 2011, 30 (1): 92-99 [Xie XL, Xu PY, Zhu HH, Yao Q. The relationships between glomalin-related soil protein and root morphology [J]. Mycosystema, 2011, 30 (1): 92-99]
34 石丽芳, 李法云, 王艳杰, 陈佳勃. 不同生物质炭对辽河油田石油污染土壤总烃及各组分修复效果研究[J]. 生态环境学报, 2019, 28 (1): 199-206 [Shi LF, Li FY, Wang YJ, Chen JB. Removal of total petroleum hydrocarbons and specific components by various biochars in petroleum contaminated soil from Liaohe Oilfield [J]. Ecol Environ Sci, 28 (1): 199-206]
35 孔凡美. 丛枝菌根菌与玉米联合修复芘污染土壤的效应及其机理[D]. 泰安: 山东农业大学, 2008: 1-122 [Kong FM. Effects and mechinesms of pyrene contaminated soil remediation with abuscular mycorrhizal fungus and corn integrated systems [D]. Taian: Shangdong Agricultural University, 2008: 1-122]
36 何翊, 魏薇, 吴海. 菌剂-菌根联合修复石油污染土壤的实验研究[J]. 土壤, 2004, 36 (6): 675-677 [He Y, Wei W, Wu H. Microbe and mycorrhizal bioremediation of oil-contaminated soil [J]. Soil, 2004, 36 (6): 675-677]
37 Debiane D, Garcon G, Verdin A, Fontaine J, Durand R, Grandmougin-Ferjani A, Shirali P, Sahraoui ALH. In vitro evaluation of the oxidative stress and genotoxic potentials of anthracene on mycorrhizal chicory roots [J]. Environ Exp Bot, 2008, 64 (2): 120-127
38 宗炯, 朱雪竹, 凌婉婷, 阙弘. 多环芳烃污染对丛枝菌根真菌生物学性状的影响. 农业环境科学学报, 2014, 33 (2): 305-312 [Zong J, Zhu XZ, Ling WT, Que H. Effects of polycyclic aromatic hydrocarbons on biological characteristics of arbuscular mycorrhizal fungi [J]. J Agro-Environ Sci, 2014, 33 (2): 305-312]
39 王丽萍, 郭光霞, 华素兰, 张玮玮. 丛枝菌根真菌-植物对石油污染土壤修复实验研究[J]. 中国矿业大学学报, 2009, 38 (1): 91-95 [Wang LP, Guo GX, Hua SL, Zhang WW. Bioremediation of petroleum contaminated soil with arbuscular mycorrhizal fungi and plant [J]. J Chin Univ Min Technol, 2009, 38 (1): 91-95]
40 刘世亮, 骆永明, 丁克强, 李华, 吴龙华, 邢维芹, 宋静, 曹志洪. 苯并[a]芘污染土壤的丛枝菌根真菌强化植物修复作用研究[J]. 土壤学报, 2004, 41 (3): 336-342 [Liu SL, Luo YM, Ding KQ, Li H, Wu LH, Xing WQ, Song J, Cao ZH. Enhanced phytoremediation of benzo [a] pyrene contaminated soil with arbuscular mycorrhizal fungi [J]. Acta Pedol Sin, 2004, 41 (3): 336-342]
41 张中峰, 张金池, 黄玉清, 郭晓平, 杨慧, 邓艳. 水分胁迫和接种菌根真菌对青冈栎根系形态的影响[J]. 生态学杂志, 2015, 34 (5): 1198-120 [Zhang ZF, Zhang JC, Huang YQ, Guo XP, YangH, Deng Y. Effects of water stress and mycorrhizal fungi on root morphology of Cyclobalanopsis glauca seedlings [J]. Chin J Ecol, 2015, 34 (5): 1198-120]
42 毕银丽, 王瑾, 冯颜博, 余海洋, 秦亚非, 于淼. 菌根对干旱区采煤沉陷地紫穗槐根系修复的影响[J]. 煤炭学报, 2014, 39 (8): 1758-1764 [Bi YL, Wang J, Feng YB, Yu HY, Qin YF, Yu M. Effect of arbuscular mycorrhiza on root self-repairing action of Amorpha fruticosa L. in coal mining subsidence land in arid areas [J]. J Chin Coal Soc, 2014, 39 (8): 1758-1764]
43 Rosier CL, Hoye AT, Rillig MC. Glomalin-related soil protein: assessment of current detection and quantification tools [J]. Soil Biol Biochem, 2006, 38: 2205-2211
44 Rillig MC. Arbuscular mycorrhizae and terrestrial ecosystem processes [J]. Ecol Lett, 2004, 7: 740-754
45 白雪梅, 王甲敏, 陈开芳, 武云, 王宣婷, 山宝琴. 接种AM真菌对利用冰草降解土壤石油污染的效果研究[J]. 延安大学学报(自然科学版), 2017, 36 (4): 34-37 [Bai XM, Wang JM, Chen KF, Wu Y, Wang XT, Shan BQ. The effect of using Agropyron cristatum inoculated AM fungi to degrade petroleum pollution in soil [J]. J Yanan Univ (Nat Sci Ed), 2017, 36 (4): 34-37]
46 Aranda E, Scervino JM, Godoy P, Reina R, Ocampo JA, Wittich RM, Romera IG. Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions [J]. Environ Pollut, 2013, 181: 182-189
47 Marcela A, Eduardo T. Enzymatic activation of alkanes: constraints and prospective [J]. Appl Catal A Gen, 2004, 272 (1-2): 1-13
48 Gramss G, Voigt KD, Kirsche B. Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils [J]. Biodegradation, 1999, 10 (1): 51-62
49 肖敏, 高彦征, 凌婉婷, 程兆霞, 曾跃春. 菲、芘污染土壤中丛枝菌根真菌对土壤酶活性的影响[J]. 中国环境科学, 2009, 29 (6): 668-672 [Xiao M, Gao YZ, Ling WT, Cheng ZX, Zeng YC. Effects of arbuscular mycorrhizal fungi on enzymes activity in soils contaminated by phenanthrene and pyrene [J]. Chin Environ Sci, 2009, 29 (6): 668-672]
50 Rajtor M, Piotrowska SZ. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants [J]. Chemosphere, 2016, 162: 105-116
51 Gao Y, Zong J, Que H, Zhou Z, Xiao M, Chen S. Inoculation with arbuscular mycorrhizal fungi increases glomalin-related soil protein content and PAH removal in soils planted with Medicago sativa L. [J]. Soil Biol Biochem, 2018, 115: 148-151
52 吴蔓莉, 袁婧, 李炜, 时艺馨, 王玺. 石油污染土壤的微生物修复及土壤微生物活性变化[J]. 应用与环境生物学报, 2016, 22 (5): 878-883 [Wu ML, Yuan J, Li W, Shi YX, Wang X. Bioremediation of petroleum contaminated soil and activity of hydrocarbon degrading bacteria [J]. Chin J Appl Environ Biol, 2016, 22 (5): 878-883]

相似文献/References:

[1]梁昌聪,肖艳萍,赵之伟.云南会泽废弃铅锌矿区植物丛枝菌根和深色有隔内生真菌研究[J].应用与环境生物学报,2007,13(06):811.
 LIANG Changcong,et al..Arbuscular Mycorrhiza and Dark Septate Endophytes in an Abandoned Lead-Zinc Mine in Huize, Yunnan, China[J].Chinese Journal of Applied & Environmental Biology,2007,13(05):811.
[2]王树和 王昶 王晓娟 金樑.根瘤菌、丛枝菌根(AM)真菌与宿主植物共生的分子机理*[J].应用与环境生物学报,2008,14(05):721.
[3]龙良鲲,姚青,艾云灿,等.丛枝菌根真菌Gigaspora margarita孢子伴生菌群效应分析[J].应用与环境生物学报,2008,14(06):798.[doi:10.3724/SP.J.1145.2008.00798]
 LONG Liangkun,YAO Qing,et al.Community Effects of Microbes Associated with Arbuscular Mycorrhizal Fugus Gigaspora margarita Spores[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):798.[doi:10.3724/SP.J.1145.2008.00798]
[4]朱林海,丁金枝,王健健,等.石油污染对土壤–植物系统的生态效应[J].应用与环境生物学报,2012,18(02):320.[doi:10.3724/SP.J.1145.2012.00320]
 ZHU Linhai,DING Jinzhi,WANG Jianjian,et al.Ecological Effects of Oil Pollution on Soil - Plant System[J].Chinese Journal of Applied & Environmental Biology,2012,18(05):320.[doi:10.3724/SP.J.1145.2012.00320]
[5]王志勇,方治伟,江雪飞,等.空心莲子草入侵对土壤AM真菌生物量和群落结构的影响——以湖北省典型区域为例[J].应用与环境生物学报,2013,19(01):105.[doi:10.3724/SP.J.1145.2013.00105]
 WANG Zhiyong,FANG Zhiwei,JIANG Xuefei,et al.Effect of Alligator Weed Invasion on Soil Arbuscular Mycorrhizal Fungal Biomass and Community Structure of Representative Regions in Hubei, China[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):105.[doi:10.3724/SP.J.1145.2013.00105]
[6]余丽,蒋文天,杨旭,等.生物菌剂对海上溢油的降解[J].应用与环境生物学报,2013,19(02):330.[doi:10.3724/SP.J.1145.2013.00330]
 YU Li,JIANG Wentian,YANG Xu,et al.Degradation Effect of a Bioagent on Marine Oil Leakage[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):330.[doi:10.3724/SP.J.1145.2013.00330]
[7]林先贵,胡君利,戴珏,等.丛枝菌根真菌群落结构与多样性研究方法概述及实例比较[J].应用与环境生物学报,2017,23(2):343.[doi:10.3724/SP.J.1145.2016.04008]
 LIN Xiangui**,HU Junli,DAI Jue,et al.Overview and comparison of research methods for determining the community structure and diversity of arbuscular mycorrhizal fungi[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):343.[doi:10.3724/SP.J.1145.2016.04008]
[8]单明娟,秦华,陈俊辉,等.两种间作体系对丛枝菌根真菌侵染及多氯联苯去除的影响[J].应用与环境生物学报,2018,24(03):470.[doi:10.19675/j.cnki.1006-687x.2017.07001]
 SHAN Mingjuan,QIN Hua,et al.Effects of two different intercropping systems on arbuscular mycorrhizal fungal colonization and polychlorinated biphenyl (PCB) dissipation[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):470.[doi:10.19675/j.cnki.1006-687x.2017.07001]
[9]侯劭炜,胡君利,吴福勇,等.丛枝菌根真菌的抑病功能及其应用[J].应用与环境生物学报,2018,24(05):941.[doi:10.19675/j.cnki.1006-687x.2017.12018]
 HOU Shaowei,HU Junli,et al.The function and potential application of disease suppression by arbuscular mycorrhizal fungi[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):941.[doi:10.19675/j.cnki.1006-687x.2017.12018]
[10]孔维宝,陈冬,杨树玲,等.油橄榄与丛枝菌根真菌的共生效应研究进展[J].应用与环境生物学报,2019,25(03):750.[doi:10.19675/j.cnki.1006-687x.201807015]
 KONG Weibao**,CHEN Dong,YANG Shuling,et al.Recent progress in research on the symbiotic relationship between olive (Olea europaea L.) and arbuscular mycorrhizal fungi[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):750.[doi:10.19675/j.cnki.1006-687x.201807015]

更新日期/Last Update: 2020-10-25