|本期目录/Table of Contents|

[1]张彬,邓佳,陈杨武,等.游离氨对硝化过程的影响与定量表征[J].应用与环境生物学报,2020,26(05):1260-1267.[doi: 10.19675/j.cnki.1006-687x.2019.11004]
 ZHANG Bin,DENG Jia,et al.Effect and quantitative characterization of free ammonia on nitrification process[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1260-1267.[doi: 10.19675/j.cnki.1006-687x.2019.11004]
点击复制

游离氨对硝化过程的影响与定量表征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1260-1267
栏目:
研究论文
出版日期:
2020-10-25

文章信息/Info

Title:
Effect and quantitative characterization of free ammonia on nitrification process
作者:
张彬邓佳陈杨武孟丹谭周亮
1西华大学土木建筑与环境学院 成都 610039 2西华大学食品与生物工程学院 成都 610039 3中国科学院环境与应用微生物重点实验室 成都 610041 4四川省环境微生物重点实验室 成都 610041 5西南交通大学地球科学与环境工程学院 成都 610039
Author(s):
ZHANG Bin1 2 DENG Jia1 Chen Yangwu3 4 MENG Dan5 & TAN Zhouliang3 4?
1 School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, China 2 School of Food and Biotechnology of Xihua University, Chengdu 610039, China 3 Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 4 Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 5 School of Earth Sciences and Environmental Engineering of Southwest Jiaotong University, Chengdu 610039, China
关键词:
游离氨硝化细菌比氨氧化速率比硝氮积累速率抑制动力学
Keywords:
free ammonia nitrifying bacteria special ammonia oxidizing rate special nitrate accumulating rate inhibition kinetics
DOI:
10.19675/j.cnki.1006-687x.2019.11004
摘要:
游离氨(FA)是影响微生物脱氮效果的关键因素之一,其浓度取决于NH4+-N浓度、pH值以及温度. 为探究不同NH4+-N浓度、pH和温度条件下FA对整个硝化过程的影响,从NH4+-N浓度、pH值、温度3个方面分别考察硝化污泥在不同FA(2.9-170.2 mg/L)胁迫下,硝化菌群的比氨氧化速率(SAOR)、比NO3--N积累速率(SNaAR)、NO2--N积累率(NiAR)、代谢活性ATP响应情况,并建立底物抑制动力学模型. 结果显示,不同NH4+-N浓度、pH、温度,SAOR、SNaAR、比ATP水平(SATP)受到抑制时对应的初始FA浓度不同,说明这3个影响因素对FA影响不同. 皮尔森相关分析结果表明,SATP与SAOR、SNaAR密切相关,总体相关系数r大于0.8. Haldane抑制动力学模型适合描述FA对硝化细菌活性的抑制影响,NH4+-N浓度和pH的抑制常数分别为41.869、61.833 mg/L(氨氧化菌)和5.511、21.670 mg/L(亚硝酸盐氧化菌),其相关系数R2均大于0.92. 本研究表明在NH4+-N浓度、pH、温度不同单因素条件下,FA对硝化细菌的抑制作用大小顺序为NH4+-N浓度>pH>温度;因此,在描述硝化细菌受FA抑制程度时指明NH4+-N浓度、pH、温度条件是有必要的;该结果可为不同因子作用下FA对硝化过程的抑制影响提供参考依据. (图3 表7 参40 附图1)
Abstract:
Free ammonia (FA) is one of the key factors affecting nitrogen removal in biological denitrification systems, and the concentration of FA depends on the comprehensive function of NH4+-N, pH, and temperature. This paper explored the effects of FA on the nitrification process under different NH4+-N concentrations, pH, and temperature conditions, respectively. In this paper, the specific ammonia-oxidizing rate (SAOR), the specific nitrate accumulating rate (SNaAR), the nitrite-accumulating ratio, and the ATP content of nitrifying bacteria under different FA concentrations (2.9-170.2 mg/L), which are influenced by NH4+-N concentration, pH value, and temperature respectively were investigated. Meanwhile, the substrate inhibition kinetics models were established. When ammonia concentration, pH, or temperature plays the role of the main driving factor, the initial FA concentrations corresponding to the inhibition effects on SAOR and SNaAR of nitrifying microorganisms were different, indicating that these three factors had varied effects on FA. A Pearson’s correlation analysis showed that the SATP level was closely related to SAOR, SNaAR (correlation coefficient R > 0.8). The Haldane inhibition kinetic model was suitable for describing the inhibitory effects of FA on the activity of nitrifying bacteria (R2 > 0.92). The inhibition constants of NH4+-N concentration and pH were 41.869 mg/L, 61.833 mg/L for ammonia-oxidizing bacteria, and 5.511 mg/L, 21.670 mg/L for nitrite-oxidizing bacteria, respectively. Concerning NH4+-N, pH, and temperature, the order of inhibition effects of FA on nitrifying microorganisms was NH4+-N concentration > pH > temperature. Therefore, it is necessary to specify the conditions of NH4+-N concentrations, pH, and temperature when describing the extent to which nitrifying bacteria are inhibited by FA.

参考文献/References:

1 Peng YZ, Zhu GB. Biological nitrogen removal with nitrification and denitrification via nitrite pathway [J]. Appl Microbiol Biotechnol, 2006, 73 (1): 15-26
2 孙洪伟, 于雪, 李维维, 祁国平, 马娟, 吕心涛, 吕慧. 游离氨抑制Nitrobacter活性动力学试验[J]. 化工学报, 2018, 69 (10): 4386-4393 [Sun HW, Yu X, Li WW, Qi GP, Ma J, Lv XT, Lv H. Inhibitory kinetics of free ammonia on Nitrobacter [J]. CIESC J, 2018, 69 (10): 4386-4393]
3 郑平, 冯孝善. 硝化作用的生化原理[J]. 微生物学通报, 1999 (3): 215-217 [Zhen P, Feng SX. Biochemical principle of nitrification [J]. Microbiol Chin, 1999 (3): 215-217]
4 闫志英, 廖银章, 李旭东, 刘晓风, 袁月祥, 宋丽. 新型废水生物脱氮的微生物学研究进展[J]. 应用与环境生物学报, 2006, 12 (2): 292-296 [Yan ZY, Liao YZ, Li XD, Liu XF, Yuan YX, Song L. Progress in research of biological removal of nitrogen [J]. Chin J Appl Environ Biol, 2006, 12 (2): 292-296]
5 王淑莹, 孙洪伟, 杨庆, 彭永臻. 传统生物脱氮反硝化过程的生化机理及动力学[J]. 应用与环境生物学报, 2008, 14 (5): 732-736 [Wang SY, Sun HW, Yang Q, Peng YZ. Biochemical reaction machanism and kinetics of denitrification [J]. Chin J Appl Environ Biol, 2008, 14 (5): 732-736]
6 Astals S, Peces M, Batstone DJ, Jensen PD, Tait S. Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems [J]. Water Res, 2018, 143: 127-135
7 Park S, Bae W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid [J]. Process Biochem, 2009, 44 (6): 631-640
8 Vadivelu VM, Keller J, Yuan Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter [J]. Water Sci Technol, 2007, 56 (7): 89-97
9 Wang DB, Huang YX, Xu XX, Liu XR, Yang Q, Li XM. Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge [J]. Bioresour Technol, 2019, 275: 163-171
10 Wu L, Peng YZ, Ma Y, Liu X, Li LY, Wang SY. The short-term effects of temperature and free ammonia on ammonium oxidization in granular and floccular nitrifying system [J]. Chin J Chem Eng, 2012, 20 (5): 1016-1023
11 Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG. Inhibition of nitrification by ammonia and nitrous-acid [J]. J Water Pollut Control Federat, 1976, 48 (5): 835-852
12 张亮, 张树军, 彭永臻. 污水处理中游离氨对硝化作用抑制影响研究[J]. 哈尔滨工业大学学报, 2012, 44 (2): 75-79 [Zhang L, Zhang SJ, Peng YZ. Review of study on the effects of free ammonia inhibitions on nitrifying bacteria in wastewater treatment [J]. J harbin inst technol, 2012, 44 (2): 75-79]
13 Paton M, Gonzalez-Cabaleiro R, Rodriguez J. Activity corrections are required for accurate anaerobic digestion modelling [J]. Water Sci Technol, 2018, 77 (8): 2057-2067
14 Solon K, Flores-Alsina X, Mbarnba CK, Volcke EIP, Tait S, Batstone D, Gernaey KV, Jeppsson U. Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion [J]. Water Res, 2015, 70: 235-245
15 Ma B, Yang L, Wang QL, Yuan ZG, Wang YY, Peng YZ. Inactivation and adaptation of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria when exposed to free nitrous acid [J]. Bioresour Technol, 2017, 245: 1266-1270
16 Zahedi S, Icaran P, Yuan Z, Pijuan M. Enhancing sludge biodegradability through free nitrous acid pre-treatment at low exposure time [J]. Chem Eng J, 2017, 321: 139-145
17 Qian WT, Peng YZ, Li XY, Zhang Q, Ma B. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition [J]. Bioresour Technol, 2017, 243: 1247-1250
18 Xia Y, Wen XH, Zhang B, Yang YF. Diversity and assembly patterns of activated sludge microbial communities: a review [J]. Biotechnol Adv, 2018, 36 (4): 1038-1047
19 Andrews JF. A mathematical model for continuous culture of microorganisms utilizing inhibitory substrates [J]. Biotechnol Bioeng, 1968, 10 (6): 707-723
20 Van Hulle SWH, Volcke EIP, Teruel JL, Donckels B, van Loosdrecht MCM, Vanrolleghem PA. Influence of temperature and pH on the kinetics of the Sharon nitritation process [J]. J Chem Technol Biotechnol, 2007, 82 (5): 471-480
21 李芸, 熊向阳, 李军, 陈刚, 张美雪, 张彦灼, 姚远, 李强. 膜生物反应器处理晚期垃圾渗滤液亚硝化性能及其抑制动力学分析[J]. 中国环境科学, 2016, 36 (2): 419-427 [Li Y, Xiong XY, Li J, Chen G, Zhang MX, Zhang YZ, Yao Y, Li Q. Performance of nitritation process in membrane bioreactor for old landfill leachate and analysis of inhibition kinetics [J]. Chin Environ Sci, 2016, 36 (2): 419-427]
22 唐鹏, 于德爽, 陈光辉, 张培玉, 王晓霞, 吕廷廷, 黄硕, 刘诚诚. 厌氧氨氧化颗粒污泥快速培养及其抑制动力学[J]. 环境科学, 2019, 40 (9): 4152-4159 [Tang P, Yu DS, Chen GH, Zhang PY, Wang XX, Lv TT, Huang S, Liu CC. Rapid cultivation of anaerobic ammonium oxidation granular sludge and inhibition kinetics of granular sludge [J]. Environ Sci, 2019, 40 (9): 4152-4159]
23 王朝朝, 张凯, 闫立娜, 张炜, 唐峰兵, 李思敏. 膜生物反应器Anammox的快速启动及其抑制动力学[J]. 中国给水排水, 2017, 33 (17): 19-25 [Wang ZZ, Zhang K, Yan LN, Zhang W, Tang FB, Li SM. Rapid start-up and inhibition kinetic characteriatics of Anammox in a membrane bioreactor [J]. Chin Water Wastewater, 2017, 33 (17): 19-25]
24 Lopez-Fiuza J, Buys B, Mosquera-Corral A, Omil F, Mendez R. Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory [J]. Enzyme Microbiol Technol, 2002, 31 (7): 976-985
25 Surmacz Gorska J, Gernaey K, Demuynck C, Vanrolleghem P, Verstraete W. Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements [J]. Water Res, 1996, 30 (5): 1228-1236
26 Hill DT, Barth CL. Dynamic-model for simulation of animal waste digestion [J]. J Water Pollut Control Federat, 1977, 49 (10): 2129-2143
27 Chen MX, Chen YW, Dong ShiY, Lan SH, Zhou HZ, Tan ZL, Li XD. Mixed nitrifying bacteria culture under different temperature dropping strategies: nitrification performance, activity, and community [J]. Chemosphere, 2018, 195: 800-809
28 Chen MX, Fan R, Zou WH, Zhou HZ, Tan ZL, Li XD. Bioaug-mentation for treatment of full-scale diethylene glycol monobutyl ether (DGBE) wastewater by Serratia sp. BDG-2 [J]. J Hazard Mater, 2016, 309: 20-26
29 Chen YW, Wang C, Dong SY, Jiang L, Shi Y, Li XD, Zou WT, Tan ZL. Microbial community assembly in detergent wastewater treatment bioreactors: Influent rather than inoculum source plays a more important role [J]. Bioresour Technol, 2019, 287:
30 国家环保局. 水和废水监测分析方法[M]. 第3版. 北京: 中国环境出版社, 1997: 252-272 [National Environmental Protection Agency. Water and Wastewater Monitoring and Analysis Methods [M]. 3rd ed. Beijing: China Environmental Publishing House, 1997, 252-272]
31 兰书焕. 不同胁迫下硝化菌底物降解过程动态响应研究[D]. 成都: 西南交通大学, 2016 [Lan SH. Study on dynamic response of substrate degradation process of autotrophic nitrifiers under different stress [D]. ChengDu: Southwest Jiaotong University, 2016]
32 Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng WJ. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants [J]. Water Res, 2011, 45 (15): 4672-4682
33 Wang QL, Duan HR, Wei W, Ni BJ, Laloo A, Yuan ZG. Achieving stable mainstream nitrogen removal via the nitrite pathway by sludge treatment using free ammonia [J]. Environ Sci Technol, 2017, 51 (17): 9800-9807
34 吕心涛. 游离氨(FA)和游离亚硝酸(FNA)对亚硝酸盐氧化菌(NOB)活性的影响试验研究[D]. 兰州: 兰州交通大学, 2017 [Lü XT. Research on the effect of free ammonia (FA) and free nitrous acid (FNA) on the nitrite-oxidizing bacteria (NOB) activity [D]. Lanzhou: Lanzhou Jiaotong University, 2017]
35 韩晓宇, 张树军, 甘一萍, 王洪臣, 彭永臻. 以FA与FNA为控制因子的短程硝化启动与维持[J]. 环境科学, 2009, 30 (3): 809-814 [Han XY, Zhang SJ, Gan YP, Wang HC, Peng YZ. Start up and maintain of nitritation by the inhibition of FA and FNA [J]. Environ Sci, 2009, 30 (3): 809-814]
36 季民, 刘灵婕, 翟洪艳, 刘京, 苏晓. 高浓度游离氨冲击负荷对生物硝化的影响机制[J]. 环境科学, 2017, 38 (1): 260-268 [Ji M, Liu LJ, Qu HY, Liu J, Su X. Mechanism for effects of high free ammonia loadings on biological nitrification [J]. Environ Sci, 2017, 38 (1): 260-268]
37 Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts [J]. Environ Pollut, 1998, 102: 717-726
38 Tobin RS, Ryan JF, Afghan BK. Improved method for determination of adenosine-triphosphate in environmental samples [J]. Water Res, 1978, 12 (100): 783-792
39 Tiquia SM, Wan JHC, Tam NFY. Dynamics of yard trimmings composting as determined by dehydrogenase activity, ATP content, arginine ammonification, and nitrification potential [J]. Process Biochem, 2002, 37 (10): 1057-1065
40 Sibag M, Kim HS. Evaluating the performance of activated sludge ammonia oxidizing bacteria in a lab-scale alternating hypoxic/oxic membrane bioreactor [J]. Chem Eng J, 2014, 255: 670-676

相似文献/References:

[1]何晓红,杨暖,陶勇,等.高浓度氨氮废水短程硝化及氨氧化菌群分析[J].应用与环境生物学报,2013,19(02):313.[doi:10.3724/SP.J.1145.2013.00313]
 HE Xiaohong,YANG Nuan,TAO Yong,et al.Shortcut Nitrification of High Ammonia Concentration Wastewater and Ammonia-oxidizing Bacterial Community[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):313.[doi:10.3724/SP.J.1145.2013.00313]
[2]张浩,方扬,靳艳玲,等.耐高氨氮浮萍的筛选及优势品种的生长特性[J].应用与环境生物学报,2014,20(01):63.[doi:10.3724/SP.J.1145.2014.00063]
 ZHANG Hao,FANG Yang,JIN Yanling,et al.Screening for high ammonia tolerant duckweed and growth characteristics of dominant species[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):63.[doi:10.3724/SP.J.1145.2014.00063]
[3]李晓亮,张良,张培玉,等.北极海洋沉积物低温硝化细菌的筛选、多样性与生长特性[J].应用与环境生物学报,2017,23(2):294.[doi: 10.3724/SP.J.1145.2016.04004]
 LI Xiaoliang,ZHANG Liang,et al.Screening, biodiversity, and growth characteristics of cold-adapted nitrobacteria isolated from Arctic Ocean sediments[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):294.[doi: 10.3724/SP.J.1145.2016.04004]
[4]张军,周丹丹,吴敏,等.生物炭对土壤硝化反硝化微生物群落的影响研究进展?[J].应用与环境生物学报,2018,24(05):993.[doi:10.19675/j.cnki.1006-687x.2017.11001]
 ZHANG?Jun,ZHOU?Dandan**,WU?Min,et al.Advances in the study of the effects of biochar on soil nitrifying and denitrifying microbial communities[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):993.[doi:10.19675/j.cnki.1006-687x.2017.11001]
[5]张彬 邓佳 陈杨武 孟丹 谭周亮**.游离亚硝酸对硝化过程的影响[J].应用与环境生物学报,2021,27(05):1.[doi:10.19675/j.cnki.1006-687x.2020.10019]
 ZHANG Bin,DENG Jia,et al.Effect of free nitrous acid on nitrification process[J].Chinese Journal of Applied & Environmental Biology,2021,27(05):1.[doi:10.19675/j.cnki.1006-687x.2020.10019]

更新日期/Last Update: 2020-10-25