|本期目录/Table of Contents|

[1]杨早,朱单,陈槐,等.季节冻融对泥炭沼泽碳排放的影响研究进展[J].应用与环境生物学报,2020,26(05):1290-1298.[doi: 10.19675/j.cnki.1006-687x.2019.10038]
 YANG Zao,ZHU Dan,et al.Research advances in the influence of seasonal freeze-thaw on carbon emissions from peatlands[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1290-1298.[doi: 10.19675/j.cnki.1006-687x.2019.10038]
点击复制

季节冻融对泥炭沼泽碳排放的影响研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1290-1298
栏目:
综述
出版日期:
2020-10-25

文章信息/Info

Title:
Research advances in the influence of seasonal freeze-thaw on carbon emissions from peatlands
作者:
杨早朱单陈槐刘建亮何奕忻刘欣蔚
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
YANG Zao1 2 ZHU Dan1? CHEN Huai1 LIU Jianliang1 HE Yixin1 & LIU Xinwei1
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
季节冻融泥炭沼泽碳排放二氧化碳甲烷青藏高原
Keywords:
seasonal freeze-thaw peatlands carbon emission carbon dioxide methane Qinghai-Tibet Plateau
DOI:
10.19675/j.cnki.1006-687x.2019.10038
摘要:
泥炭沼泽是至关重要的陆地碳库,同时对气候变化极其敏感,其碳动态受到全球范围的广泛关注. 季节冻融作为重要的地表过程,对泥炭沼泽碳库构成最集中和强烈的干扰. 大量野外监测与室内冻融模拟研究显示,泥炭沼泽在季节冻融期间出现碳排放高峰,这与土壤水热条件及生物学过程发生剧烈变化紧密相关,相关程度受到冻结期与冻融交替期长短、日冻融循环频次和强度等的影响. 冻结和融化过程中,土壤水分向相变界面附近运移,泥炭土的导热率增大,引起热通量的变化;季节冻融会改变泥炭土微生物活性、群落结构和部分微生物生物量,进而影响微生物作用的碳排放;季节冻融会破坏土壤结构,对土壤团聚体稳定性造成影响,进而影响团聚体有机碳的释放;季节冻融中冻融交替过程会增加溶解性有机碳(DOC)含量,降低微生物量碳(MBC)含量,并显著影响活性有机碳含量,从而影响泥炭碳排放. 目前,大量机理研究能够对部分野外监测结果作出解释,但仍然存在一定的局限性,已有研究存在注重现象而忽略机制、实验参数缺乏原位性、不同冻融模式下的研究不足等问题. 另外,鉴于高海拔泥炭沼泽在区域碳平衡中的关键作用,以及高海拔条件下季节冻融过程的特殊性,季节冻融对高海拔泥炭沼泽碳排放的影响值得深入研究. (图1 表1 参117)
Abstract:
As a significant terrestrial carbon pool that is extremely sensitive to climate change, peatlands, with their potential for carbon emission, play an important role in Earth’s climatic system. Seasonal freeze-thaw, as a critical surface process, constitutes the most concentrated and strongest influence on the carbon pool of peatlands. Many data sets from outdoor field monitors, as well as indoor incubation research, show that the emission peak from the carbon pool happens during the freeze-thaw period. First, the dramatic variations of both hydrological and thermal factors during this period are thought to be responsible for the variations in carbon emissions. The degree of correlation is affected by the length of the freeze-thaw cycles, as well as the frequency and intensity of the daily freeze-thaw cycles. During freezing and thawing, the soil water moves to the phase interface. This movement, along with an increase in the thermal conductivity of the peat, results in a change of heat flux. Second, the seasonal freeze-thaw cycle changes the microbial activity, community structure, and some microbial quantity, and then affects the carbon emission of the microbial population. In the end, the seasonal freeze-thaw cycle destroys the soil structure, affects the stability of soil aggregates, and then affects the release of organic carbon (OC) from aggregates. Freeze-thaw cycles increase dissolved organic carbon (DOC) content, reduce microbial biomass carbon (MBC) content, and significantly affect active organic carbon content. Therefore, freeze-thaw cycles affect peat carbon emissions. Many mechanism studies explain some of the field monitoring results, but there are limitations, such as inconsistent test conditions and insufficient research under different freeze-thaw modes. The researchers have tended to pay attention to the phenomenon but ignore the mechanism. In addition, because of the key role of high-altitude peatlands in regional carbon balance and the special seasonal freeze-thaw process under such conditions, the influence of seasonal freeze-thaw cycles on carbon emissions of high-altitude peatlands requires further study.

参考文献/References:

1 Gorham E. Northern Peatlands - Role in the carbon-cycle and probable responses to climatic warming [J]. Ecol Appl, 1991, 1: 182-195
2 Turunen J, Tomppo E, Tolonen K, Reinikainen A. Estimating carbon accumulation rates of undrained mires in Finland - application to boreal and subarctic regions [J]. Holocene, 2002, 12: 69-80
3 Yu R, Kampschreur MJ, van Loosdrecht MCM, Chandran K. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia [J]. Environ Sci Technol, 2010, 44: 1313-1319
4 Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland [J]. Global Change Biol, 2007, 13: 397-411
5 Turetsky MR, Wieder RK, Vitt DH, Evans RJ, Scott KD. The disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes [J]. Global Change Biol, 2007, 13: 1922-1934
6 Hergoualc’h K, Verchot LV. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review [J]. Global Biogeochem Cy, 2011, 25: 2009GB003718
7 Girkin NT, Turner BL, Ostle N, Sjogersten S. Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat [J]. Soil Biol Biochem, 2018, 127: 280-285
8 Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S. The amount of carbon released from peat and forest fires in Indonesia during 1997 [J]. Nature, 2002, 420: 61-65
9 Hirota M, Tang YH, Hu QW, Kato T, Hirata S, Mo WH, Cao GM, Mariko S. The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai-Tibetan Plateau [J]. Atmos Environ, 2005, 39: 5255-5259
10 Chen H, Yao SP, Wu N, Wang FY, Luo P, Tian JQ, Gao YH, Sun G. Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications [J]. J Geophys Res-Atmos, 2008, 113: 2006JD008072
11 Kato T, Yamada K, Tang YH, Yoshida N, Wada E. Stable carbon isotopic evidence of methane consumption and production in three alpine ecosystems on the Qinghai-Tibetan Plateau [J]. Atmos Environ, 2013, 77: 338-347
12 Roulet NT. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: Prospects and significance for Canada [J]. Wetlands, 2000, 20: 605-615
13 Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila ES, Roulet N. Peatlands in the Earth’s 21st century climate system [J]. Environ Rev, 2011, 19: 371-396
14 IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Geneva, Switzerland: IPCC, 2014
15 Yang MX, Nelson FE, Shiklomanov NI, Guo DL, Wan GN. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research [J]. Earth-Sci Rev, 2010, 103: 31-44
16 Schadel C, Bader MKF, Schuur EAG, Biasi C, Bracho R, Capek P, De Baets S, Diakova K, Ernakovich J, Estop-Aragones C, Graham DE, Hartley IP, Iversen CM, Kane ES, Knoblauch C, Lupascu M, Martikainen PJ, Natali SM, Norby RJ, O’Donnell JA, Chowdhury TR, Santruckova H, Shaver G, Sloan VL, Treat CC, Turetsky MR, Waldrop MP, Wickland KP. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils [J]. Nat Clim Change, 2016, 6: 950-953
17 Schuur EAG, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE. Climate change and the permafrost carbon feedback [J]. Nature, 2015, 520: 171-179
18 Zhang T, Armstrong RL. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing [J]. Geophys Res Lett, 2001, 28: 763-766
19 Henry HAL. Climate change and soil freezing dynamics: historical trends and projected changes [J]. Climatic Change, 2008, 87: 421-434
20 Mellander PE, Lofvenius MO, Laudon H. Climate change impact on snow and soil temperature in boreal Scots pine stands [J]. Climatic Change, 2007, 85: 179-193
21 李林, 王振宇, 汪青春, 朱西德. 青海季节冻土退化的成因及其对气候变化的响应[J]. 地理研究, 2008 (1): 162-170 [Li L, Wang ZY, Wang QC, Zhu XD. The causes of seasonal permafrost degradation and its response to climate change in Qinghai [J]. Geogr Res, 2008 (1): 162-170]
22 汪青春, 李林, 李栋梁, 秦宁生, 王振宇, 朱西德, 时兴合. 青海高原多年冻土对气候增暖的响应[J]. 高原气象, 2005 (5): 708-713 [Wang QC, Li L, Li DL, Qin NS, Wang ZY, Zhu XD, Shi XH. Response of Qinghai Plateau permafrost to climate warming [J]. Plat Meteorol, 2005 (5): 708-713]
23 王澄海, 董文杰, 韦志刚. 青藏高原季节性冻土年际变化的异常特征[J]. 地理学报, 2001 (5): 522-530 [Wang CH, Dong WJ, Wei ZG. The abnormal characteristics of seasonal permafrost interannual changes on the Qinghai-Tibet Plateau [J]. Acta Geogr Sin, 2001 (5): 522-530]
24 高荣, 董文杰, 韦志刚. 青藏高原季节性冻土的时空分布特征[J]. 冰川冻土, 2008 (5): 740-744 [Gao R, Dong WJ, Wei ZG. Spatial and temporal distribution of seasonal permafrost on the Qinghai-Tibet Plateau [J]. J Glaciol Geocryol, 2008 (5): 740-744]
25 杜军, 建军, 洪健昌, 路红亚, 陈定梅. 1961-2010年西藏季节性冻土对气候变化的响应[J]. 冰川冻土, 2012, 34: 512-521 [Du J, Jian J, Hong JC, Lu HY, Chen DM. Response of temporary frozen soil in Tibet to climate change from 1961 to 2010 [J]. J Glaciol Geocryol, 2012, 34: 512-521]
26 陈博, 李建平. 近50年来中国季节性冻土与短时冻土的时空变化特征[J]. 大气科学, 2008 (3): 432-443 [Chen B, Li JP. Temporal and spatial variation characteristics of seasonal frozen soil and short-term frozen soil in China in recent 50 years [J]. Chin J Atmos Sci, 2008 (3): 432-443]
27 宋长春, 王毅勇, 王跃思, 赵志春. 季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J]. 环境科学, 2005 (4): 7-12 [Song CC, Wang YY, Wang YS, Zhao ZC. Emission dynamics of CO2, CH4 and N2O from marshes during seasonal freezing-thawing period [J]. Environ Sci, 2005 (4): 7-12]
28 金会军, 吴杰, 程国栋, 中野智子, 孙广友. 青藏高原湿地CH4排放评估[J]. 科学通报, 1999 (16): 1758-1762 [Jin HJ, Wu J, Cheng GD, Zhong YZZ, Sun GY. Assessment of CH4 emissions from wetlands on the Qinghai-Tibet Plateau [J]. Chin Sci Bull, 1999 (16): 1758-1762]
29 Chen H, Yang G, Peng CH, Zhang Y, Zhu D, Zhu QA, Hu J, Wang M, Zhan W, Zhu EX, Bai ZZ, Li W, Wu N, Wang YF, Gao YH, Tian JQ, Kang XM, Zhao XQ, Wu JH. The carbon stock of alpine peatlands on the Qinghai-Tibetan Plateau during the Holocene and their future fate [J]. Quatern Sci Rev, 2014, 95: 151-158
30 Yang WY, Song CC, Zhang JB. Dynamics of methane emissions from a freshwater marsh of northeast China [J]. Sci Total Environ, 2006, 371: 286-292
31 Tokida T, Mizoguchi M, Miyazaki T, Kagemoto A, Nagata O, Hatano, R. Episodic release of methane bubbles from peatland during spring thaw [J]. Chemosphere, 2007, 70: 165-171
32 Wang XW, Song CC, Wang JY, Miao YQ, Mao R, Song YY. Carbon release from Sphagnum peat during thawing in a montane area in China [J]. Atmos Environ, 2013, 75: 77-82
33 王洋, 刘景双, 王国平, 周旺明. 冻融作用与土壤理化效应的关系研究[J]. 地理与地理信息科学, 2007 (2): 91-96 [Wang Y, Liu JS, Wang GP, Zhou WM. Study on the relationship between freezing and thawing and soil physical and chemical effects [J]. Geogr Geo-inform Sci, 2007 (2): 91-96]
34 Wickland KP, Striegl RG, Mast MA, Clow DW. Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998 [J]. Global Biogeochem Cy, 2001, 15: 321-335
35 Song CC, Xu XF, Sun XX, Tian HQ, Sun L, Miao YQ, Wang XW, Guo YD. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region [J]. Environ Res Lett, 2012, 7 (3): 034009
36 王晓龙, 张寒, 姚志生, 郑循华, 张社奇. 季节性冻结高寒泥炭湿地非生长季甲烷排放特征初探[J]. 气候与环境研究, 2016, 21: 282-292 [Wang XL, Zhang H, Yao ZS, Zheng XH, Zhang SQ. Preliminary study on methane emission characteristics of seasonal frozen alpine peat wetlands in non-growing season [J]. Clim Environ Res, 2016, 21: 282-292]
37 Song CC, Wang YS, Wang YY, Zhao ZC. Emission of CO2, CH4 and N2O from freshwater marsh during freeze-thaw period in Northeast of China [J]. Atmos Environ, 2016, 40: 6879-6885
38 Sharma S, Szele Z, Schilling R, Munch JC, Schloter M. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil [J]. Appl Environ Microb, 2006, 72: 2148-2154
39 Dise NB. Methane Emission from Minnesota Peatlands - Spatial and seasonal variability [J]. Global Biogeochem Cy, 1993, 7: 123-142
40 Lafleur PM, Roulet NT, Admiral SW. Annual cycle of CO2 exchange at a bog peatland [J]. J Geophys Res-Atmos, 2001, 106: 3071-3081
41 杨梅学, 姚檀栋, Nozomu H, Fujii H. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 2006 (16): 1974-1976 [Yang MX, Yao CD, Nozomu H, Fujii H. Diurnal freezing-thawing cycle of topsoil in Qinghai-Tibet Plateau [J]. Chin Sci Bull, 2006 (16): 1974-1976]
42 郑秀清, 樊贵盛. 冻融土壤水热迁移数值模型的建立及仿真分析[J]. 系统仿真学报, 2001 (3): 308-311 [Zheng XQ, Fan GS. Establishment and simulation analysis of the numerical model of water and heat transfer in freezing-thawing soil [J]. J Sys Simul, 2001 (3): 308-311]
43 王晓龙. 若尔盖高寒泥炭湿地甲烷排放特征研究[D]. 西安: 西北农林科技大学, 2015 [Wang XL. Study on methane emission characteristics of ruoergai alpine peat wetland [D]. Xi’an: Northwest A&F University, 2015]
44 王晓巍. 北方季节性冻土的冻融规律分析及水文特性模拟[D]. 哈尔滨: 东北农业大学, 2010 [Wang XW. Analysis of freezing-thawing law of seasonal frozen soil in north China and simulation of hydrological characteristics [D]. Haerbin: Northeast Agricultural University, 2010]
45 周幼吾, 郭东信, 程国栋. 中国冻土[M]. 北京: 科学出版社, 2000 [Zhou YW, Guo DX, Chen GD. Geocryology in China [M]. Beijing: Science Press, 2000]
46 沈彦, 杜林峰, 沈文雅. 泥炭在水土保持中的应用[J]. 亚热带水土保持, 2013, 25: 48-49+52 [Shen Y, Du LF, Shen WY. Application of peat in soil and water conservation [J]. Subtrop Soil Water Conserv, 2013, 25: 48-49+52]
47 邓仑昆, 旷枭雄, 杨果林, 龚铖, 段君义. 泥炭土物理力学特性参数数理统计分析[J]. 人民长江, 2018, 49: 260-263 [Deng LK, Kuang XX, Yang GL, Gong C, Duan JY. Mathematical statistical analysis of physical and mechanical properties of peat soil [J]. Yangtze River, 2018, 49: 260-263]
48 张则有. 泥炭资源开发与利用[M]. 长春: 吉林科技出版社, 2000 [Zhang ZY. Development and utilization of peat resources [M]. Changchun: Jilin Science and Technology Press, 2000]
49 胡国杰, 赵林, 李韧, 吴通华, 庞强强, 吴晓东, 乔永平, 史健宗. 青藏高原多年冻土区土壤冻融期间水热运移特征分析[J]. 土壤, 2014, 46:355-360 [Hu GJ, Zhao L, Li R, Wu TH, Pang QQ, Wu XD, Qiao YP, Shi JZ. Analysis on characteristics of water and heat migration during freezing-thawing of soil in permafrost area of Qinghai-Tibet Plateau [J]. Soil, 2014, 46: 355-360]
50 王子龙, 付强, 姜秋香, 李天霄, 王晓巍. 季节性冻土区不同时期土壤剖面水分空间变异特征研究[J]. 地理科学, 2010, 30: 772-776 [Wang ZL, Fu Q, Jiang QX, Li TX, Wang XW. Study on water spatial variation characteristics of soil profile in different periods in seasonal frozen soil area [J]. Geogr Sci, 2010, 30: 772-776]
51 Yun HB, Wu QB, Zhuang QL, Chen AP, Yu T, Lyu Z, Yang YZ, Jin HJ, Liu GJ, Qu Y, Liu LC. Consumption of atmospheric methane by the Qinghai-Tibet Plateau alpine steppe ecosystem [J]. Cryosphere, 2018, 12: 2803-2819
52 Xie SB, Qu JJ, Lai YM, Zhou ZW, Xu XT. Effects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau [J]. J Mt Sci-Engl, 2015, 12: 999-1009
53 郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36: 1282-1287+1294 [Zheng X, Ma W, Bing H. Experimental study and mechanism analysis on the influence of freezing-thawing cycle on soil structure [J]. Rock Soil Mech, 2015, 36: 1282-1287+1294]
54 马维伟, 王辉, 王修华, 王元峰, 赵赫然. 甘南尕海不同湿地类型土壤物理特性及其水源涵养功能[J]. 水土保持学报, 2012, 26: 194-198+220 [Ma WW, Wang H, Wang XH, Wang YF, Zhao HR. Soil physical characteristics and water conservation function of different wetland types in gannan gahai [J]. J Soil Water Conserv, 2012, 26: 194-198+220]
55 张海欧, 解建仓, 南海鹏, 韩霁昌, 汪妮, 张扬, 王欢元. 冻融交替对复配土壤团粒结构和有机质的交互作用[J]. 水土保持学报, 2016, 30: 273-278 [Zhang HO, Xie JC, Nan HP, Han QC, Wang N, Zhang Y, Wang HY. Interaction of freezing-thawing alternation on aggregate structure and organic matter of compound soil [J]. J Soil Water Conserv, 2016, 30: 273-278]
56 Lehrsch GA, Sojka RE, Carter DL, Jolley PM. Freezing effects on aggregate stability affected by texture, mineralogy, and organic-matter [J]. Soil Sci Soc Am J, 1991, 55: 1401-1406
57 Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soil aggregate stability [J]. Catena, 2003, 52: 1-8
58 王风, 韩晓增, 李良皓, 张克强. 冻融过程对黑土水稳性团聚体含量影响[J]. 冰川冻土, 2009, 31: 915-919 [Wang F, Han XZ, Li LH, Zhang KQ. The effect of freezing-thawing on the content of stabilized aggregates in black soil water [J]. J Glaciol Geocryol, 2009, 31: 915-919]
59 Bajracharya RM, Lal R, Hall GF. Temporal variation in properties of an uncropped, ploughed Miamian soil in relation to seasonal erodibility [J]. Hydrol Process, 1998, 12: 1021-1030
60 Li GY, Fan HM. Effect of freeze-thaw on water stability of aggregates in a black soil of northeast China [J]. Pedosphere, 2014, 24: 285-290
61 Wang M, Meng SJ, Sun YQ, Fu HQ. Shear strength of frozen clay under freezing-thawing cycles using triaxial tests [J]. Earthq Eng Eng Vib, 2018, 17: 761-769
62 范昊明, 李贵圆, 周丽丽, 武敏. 冻融作用对草甸土物理力学性质的影响[J]. 沈阳农业大学学报, 2011, 42: 114-117 [Fan HM, Li GY, Zhou LL, Wu Min. Effects of freeze-thaw action on the physical and mechanical properties of meadow soil [J]. J Shenyang Aricultural University, 2011, 42: 114-117]
63 Andersen R, Chapman SJ, Artz RRE. Microbial communities in natural and disturbed peatlands: a review [J]. Soil Biol Biochem, 2013, 57: 979-994
64 Morales SE, Mouser PJ, Ward N, Hudman SP, Gotelli NJ, Ross DS, Lewis TA. Comparison of bacterial communities in New England Sphagnum bogs using Terminal Restriction Fragment Length Polymorphism(T-RFLP) [J]. Microb Ecol, 2006, 52: 34-44
65 Panikov NS, Dedysh SN. Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics [J]. Global Biogeochem Cy, 2000, 14: 1071-1080
66 Sawicka JE, Robador A, Hubert C, Jorgensen BB, Bruchert V. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat [J]. ISME J, 2010, 4: 585-594
67 Schimel JP, Clein JS. Microbial response to freeze-thaw cycles in tundra and taiga soils [J]. Soil Biol Biochem, 1996, 28: 1061-1066
68 Mikan CJ, Schimel JP, Doyle AP. Temperature controls of microbial respiration in arctic tundra soils above and below freezing [J]. Soil Biol Biochem, 2002, 34: 1785-1795
69 Skogland T, Lomeland S, Goksoyr J. Respiratory Burst after Freezing and Thawing of Soil - Experiments with Soil Bacteria [J]. Soil Biol Biochem, 1988, 20: 851-856
70 Jefferies RL, Walker NA, Edwards KA, Dainty J. Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils [J]. Soil Biol Biochem, 2010, 42: 129-135
71 Feng XJ, Nielsen LL, Simpson MJ. Responses of soil organic matter and microorganisms to freeze-thaw cycles [J]. Soil Biol Biochem, 2007, 39: 2027-2037
72 Yergeau E, Kowalchuk GA. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency [J]. Environ Microb, 2008, 10: 2223-2235
73 Mannisto MK, Tiirola M, Haggblom MM. Effect of Freeze-Thaw Cycles on Bacterial Communities of Arctic Tundra Soil [J]. Microb Ecol, 2009, 58: 621-631
74 Monteux S, Weedon JT, Blume-Werry G, Gavazov K, Jassey VEJ, Johansson M, Keuper F, Olid C, Dorrepaal E. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration [J]. Isme Jl, 2018, 12: 2129-2141
75 Ren JS, Song CC, Hou AX, Song YY, Zhu XY, Cagle GA. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China [J]. Sci Total Environ, 2018, 625: 782-791
76 Koponen HT, Jaakkola T, Keinanen-Toivola MM, Kaipainen S, Tuomainen J, Servomaa K, Martikainen PJ. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles [J]. Soil Biol Biochem, 2006, 38: 1861-1871
77 杨万勤, 王开运. 土壤酶研究动态与展望[J]. 应用与环境生物学报, 2008, 8 (5): 564-570 [Yang WQ, Wang KY. Advances on soil enzymology [J]. Chin J Appl Environ Biol, 2008, 8 (5): 564-570]
78 Vallejo VE, Roldan F, Dick RP. Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia [J]. Biol Fert Soils, 2010, 46: 577-587
79 Chen J, Luo YQ, Garcia-Palacios P, Cao JJ, Dacal M, Zhou XH, Li JW, Xia JY, Niu SL, Yang HY, Shelton S, Guo W, van Groenigen KJ. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration [J]. Global Change Biol, 2018, 24: 4816-4826
80 Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N. Export of organic carbon from peat soils [J]. Nature, 2001, 412: 785-785
81 Dunn C, Freeman, C. The role of molecular weight in the enzyme-inhibiting effect of phenolics: the significance in peatland carbon sequestration [J]. Ecol Eng, 2018, 114: 162-166
82 Blagodatskaya E, Blagodatsky S, Khomyakov N, Myachina O, Kuzyakov Y. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro [J]. Sci Re-UK, 2016, 6: 22240
83 Kuttim M, Hofsommer ML, Robroek BJM, Signarbieux C, Jassey VEJ, Laine AM, Lamentowicz M, Buttler A, Ilomets M, Mills RTE. Freeze-thaw cycles simultaneously decrease peatland photosynthetic carbon uptake and ecosystem respiration [J]. Boreal Environ Res, 2017, 22: 267-276
84 Wang JY, Song CC, Hou AX, Miao YQ, Yang GS, Zhang J. Effects of freezing-thawing cycle on peatland active organic carbon fractions and enzyme activities in the Da Xing’anling Mountains, Northeast China [J]. Environ Earth Sci, 2014, 72: 1853-1860
85 Post WM, Kwon KC. Soil carbon sequestration and land-use change: processes and potential [J]. Global Change Biol, 2000, 6: 317-327
86 王娇月, 宋长春, 王宪伟, 王丽丽. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33: 442-452 [Wang JY, Song CC, Wang XW, Wang LL. Research progress on the effects of freezing-thawing on soil organic carbon pool and microorganisms [J]. J Glaciol Geocryol, 2011, 33: 442-452]
87 Evans CD, Monteith DT, Cooper DM. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts [J]. Environ Pollut, 2005, 137: 55-71
88 Foster A, Jones DL, Cooper EJ, Roberts P. Freeze-thaw cycles have minimal effect on the mineralisation of low molecular weight, dissolved organic carbon in Arctic soils [J]. Polar Biol, 2016, 39: 2387-2401
89 Pokrovsky OS, Karlsson J, Giesler R. Freeze-thaw cycles of Arctic thaw ponds remove colloidal metals and generate low-molecular-weight organic matter [J]. Biogeochemistry, 2018, 137: 321-336
90 郝瑞军, 李忠佩, 车玉萍. 冻融交替对水稻土水溶性有机碳含量及有机碳矿化的影响[J]. 土壤通报, 2007 (6): 1052-1057 [Hao RJ, Li ZP, Che YP. Effects of freeze-thaw alternation on water-soluble organic carbon content and organic carbon mineralization in rice soil [J]. Chin J Soil Sci, 2007 (6): 1052-1057]
91 周旺明, 王金达, 刘景双, 秦胜金, 王洋. 冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J]. 生态与农村环境学报, 2008 (3): 1-6 [Zhou WM, Wang JD, Liu JS, Qin SJ, Wang Y. Effects of freezing-thawing on soluble carbon, nitrogen and nitrogen mineralization in wetland soil [J]. J Ecol Rural Environ, 2008 (3): 1-6]
92 Tan B, Wu FZ, Yang WQ, Wang A, Yang YL. Soil biochemical dynamics at three elevations during the soil thawing period, Eastern Tibetan Plateau: nutrient availabilities, microbial properties and enzyme activities [J]. Afr J Microbiol Res, 2012, 6: 4712-4721
93 Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils [J]. Soil Biol Biochem, 2002, 34: 1495-1505
94 Yu XF, Zhang YX, Zhao HM, Lu XG, Wang GP. Freeze-thaw effects on sorption/desorption of dissolved organic carbon in wetland soils [J]. Chin Geogr Sci, 2010, 20: 209-217
95 Jenkinson DS, Ladd JN. Microbial biomass in soil: measurement and turnover soil [C]//Paul EA, Ladd JM. Soil Biochemistry. New York: Marcel Dekker, 1981: 415-471
96 张超凡, 盛连喜, 宫超, 何春光, 张晶. 冻融作用对我国东北湿地土壤碳排放与土壤微生物的影响[J]. 生态学杂志, 2018, 37: 304-311 [Zhang CF, Sheng LX, Gong C, He CG, Zhang J. Effects of freezing-thawing on soil carbon emission and soil microorganisms in wetlands in northeast China [J]. Chin J Ecol, 2018, 37: 304-311]
97 McGuire AD, Macdonald RW, Schuur EAG, Harden JW, Kuhry P, Hayes DJ, Christensen TR, Heimann M. The carbon budget of the northern cryosphere region [J]. Curr Opin Env Sust, 2010, 2: 231-236
98 Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest [J]. Biogeochemistry, 2001, 56: 191-213
99 Bechmann ME, Kleinman PJA, Sharpley AN, Saporito LS. Freeze-thaw effects on phosphorus loss in runoff froin manured and catch-cropped soils [J]. J Environ Qual, 2005, 34: 2301-2309
100 王洋, 刘景双, 王全英. 冻融作用对土壤团聚体及有机碳组分的影响[J]. 生态环境学报, 2013, 22: 1269-1274 [Wang Y, Liu JS, Wang QY. Effects of freezing-thawing on soil aggregates and organic carbon components [J]. Ecol Environ, 2013, 22: 1269-1274]
101 Raudina TV, Loiko SV, Lim A, Manasypov RM, Shirokova LS, Istigechev GI, Kuzmina DM, Kulizhsky SP, Vorobyev SN, Pokrovsky OS. Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland [J]. Sci Total Environ, 2018, 634: 1004-1023
102 张则有, 王荣力, 王质安, 李茂斌. 泥炭在农业上的开发技术与应用[J]. 腐植酸, 2001 (S1): 50-55 [Zhang ZY, Wang RL, Wang ZA, Li MB. Development technology and application of peat in agriculture [J]. Humic acid, 2001 (S1): 50-55]
103 Gao YH, Zeng XY, Xie QY, Ma XX. Release of Carbon and Nitrogen from Alpine Soils During Thawing Periods in the Eastern Qinghai-Tibet Plateau[J]. Water Air Soil Poll, 2015, 226 (7): 209
104 Iii FSC, Matson PA Mooney HA. Principles of Terrestrial Ecosystem Ecology [M]. Berlin: Springer-Verlag, 2011
105 Fitzhugh RD, Driscoll CT, Groffman PM, Tierney GL, Fahey TJ, Hardy JP. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem [J]. Biogeochemistry, 2001, 56 (2): 215-238
106 Groffman PM, Hardy JP, Driscoll CT, Fahey TJ. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest [J]. Global Change Biol, 2006, 12 (9): 1748-1760
107 Sachs T, Wille C, Boike J, Kutzbach L. Environmental controls on ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta, Siberia [J]. Global Change Biol, 2010, 16 (11): 3096-3110
108 van Bochove E, Prevost D, Pelletier F. Effects of freeze–thaw and soil structure on nitrous oxide produced in a clay soil [J]. Soil Sci So Am J, 2000, 64 (5): 1638-1643
109 Brooks PD, Schmidt SK, Williams MW. Winter production of CO2 and N2O from Alpine tundra: Environmental controls and relationship to inter-system C and N fluxes [J]. Oecologia, 1997, 110: 403-413
110 Elberling B, Brandt KK. Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling [J]. Soil Biol Biochem, 2003, 35: 263-272
111 Bubier J, Crill P, Mosedale A. Net ecosystem CO2 exchange measured by autochambers during the snow-covered season at a temperate peatland [J]. Hydrol Process, 2002, 16: 3667-3682
112 Kurganova IN, Yermolaev AM, de Gerenyu VOL, Larionova AA, Kuzyakov Y, Keller T, Lange S. Carbon balance in the soils of abandoned lands in Moscow region [J]. Eurasian Soil Sci, 2007, 40: 51-58
113 王宪伟, 李秀珍, 吕久俊, 孙菊, 李宗梅, 吴志丰. 冻融作用对大兴安岭湿地泥炭分解排放二氧化碳的影响[J]. 土壤通报, 2010, 41: 970-975 [Wang XW, Li XZ, Lv JJ, Sun J, Li ZM, Wu ZF. Effect of freezing-thawing on carbon dioxide emission from peat decomposition in greater hinggan mountains wetland [J]. Chin J Soil Sci, 2010, 41: 970-975]
114 Prieme A, Christensen S. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils [J]. Soil Biol Biochem, 2001, 33: 2083-2091
115 Tveit A, Schwacke R, Svenning MM, Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms[J]. ISME J, 2013, 7: 299-311
116 杨淑华, 吴通华, 李韧, 朱小凡, 王蔚华, 余文君, 秦艳慧, 郝君明. 青藏高原近地表土壤冻融状况的时空变化特征[J]. 高原气象, 2018, 37: 43-53 [Yang SH, Wu TH, Li R, Zhu XF, Wang WH, Yu WJ, Qin YH, Hao JM. Spatiotemporal variation characteristics of freezing-thawing status of near-surface soil in Qinghai-Tibet Plateau [J]. Plat Meteorol, 2018, 37: 43-53]
117 王娇月. 冻融作用对大兴安岭多年冻土区泥炭地土壤有机碳的影响研究[D]. 长春: 中国科学院研究生院(东北地理与农业生态研究所), 2014 [Wang JY. Effects of freezing-thawing on soil organic carbon in peatlands in the greater hinggan mountains permafrost area [D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2014]

更新日期/Last Update: 2020-10-25