|本期目录/Table of Contents|

[1]冯琳琳,陈国涛,安雪姣,等.嗜热厌氧芽孢杆菌偶氮还原酶蛋白结构模拟分析及原核表达条件优化[J].应用与环境生物学报,2020,26(05):1251-1259.[doi: 10.19675/j.cnki.1006-687x.2019.10015]
 FENG Linlin,CHEN Guotao,AN Xuejiao,et al.Optimization of expression conditions and protein structure simulation analysis of azoreductase from Anoxybacillus sp.[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1251-1259.[doi: 10.19675/j.cnki.1006-687x.2019.10015]
点击复制

嗜热厌氧芽孢杆菌偶氮还原酶蛋白结构模拟分析及原核表达条件优化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1251-1259
栏目:
研究论文
出版日期:
2020-10-25

文章信息/Info

Title:
Optimization of expression conditions and protein structure simulation analysis of azoreductase from Anoxybacillus sp.
作者:
冯琳琳陈国涛安雪姣夏祥王园秀张庆华
江西农业大学生物科学与工程学院,江西省农业微生物资源开发与利用工程实验室 南昌 330045
Author(s):
FENG Linlin CHEN Guotao AN Xuejiao XIA Xiang WANG Yuanxiu & ZHANG Qinghua?
College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China
关键词:
嗜热厌氧芽孢杆菌偶氮还原酶原核表达条件优化蛋白质结构
Keywords:
Anoxybacillus sp. azoreductase gene expression conditional optimization protein purification
DOI:
10.19675/j.cnki.1006-687x.2019.10015
摘要:
嗜热厌氧芽孢杆菌PDR2(Anoxybacillus sp. PDR2)是一株极具潜力的偶氮染料降解菌,但目前对一种菌株中分离纯化两种具有不同催化活性的偶氮还原酶的相关研究还未见报道. 从具有降解偶氮染料活性的嗜热厌氧芽孢杆菌的全基因组序列中,获得两种偶氮还原酶基因,将其命名为FMN和AZO,两种蛋白不具亲缘关系,但蛋白结构均属于α/β型结构. 两种蛋白结构中的配体FMN可能为蛋白与底物结合提供电子和质子,且配体结构中异咯嗪环分子的关键原子N5分别与蛋白的Asn104和His75形成氢键,在稳定配体和蛋白活性可能起到重要作用,可作为研究蛋白与底物结合特异性的关键氨基酸. 此外,采用原核表达技术成功将两种基因在大肠杆菌Escherichia coli BL21(DE3)中表达. 优化两种重组菌的诱导表达条件,AZO重组菌最佳诱导条件为添加诱导剂时菌体量OD600为0.8、诱导剂IPTG浓度为0.2 mmol/L、诱导时间24 h及诱导温度16 ℃,此时胞内重组酶降解甲基红的比酶活达到15.65 U/mg;FMN重组菌最佳诱导条件为添加诱导剂时菌体量OD600为0.8、诱导剂IPTG浓度为0.4 mmol/L、诱导时间10 h及诱导温度20 ℃,此时胞内重组酶降解甲基红的比酶活达到18.66 U/mg. 本研究表明优化两种偶氮还原酶原核表达条件能够显著提高酶活性,结合其蛋白结构特性可为后续蛋白纯化及分析蛋白质与底物结合特异性提供理论基础. (图11 表1 参33)
Abstract:
Anoxybacillus sp. PDR2 is a high potential azo-dye-degrading bacteria; however, the investigation of the separation and purification of two azoreductases with different catalytic activity in the same strain has never been reported. In this study, two azoreductase genes were obtained from the whole genome sequence of the Anoxybacillus sp. PDR2 and named FMN and AZO. Both proteins have α/β type structures, although there is no relationship between the two. Through analysis, it was found that the ligand FMN in the two protein structures may provide electrons and protons for protein-to-substrate binding, and the key atom N5 of the heteroquine ring molecule in the ligand FMN structure formed hydrogen bonds with the proteins Asn104 and His75, respectively. These proteins may play an important role in stabilizing ligand and protein activity and can be used as key amino acids to study the specificity of protein-to-substrate binding. Furthermore, the use of prokaryotic expression technology successfully put these two genes in E. coli E., and they were expressed in E·coli BL21 (DE3). The optimum induction conditions for AZO recombinant bacteria are: the inducer isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration is 0.2 mmol/L, the induction time is 24 h, and the induction temperature is 16 ℃, at which time the intracellular recombinant enzyme activity of intracellular recombinase reduced methyl red reaches 15.65 U/mg. The best induction conditions for FMN recombinant bacteria are: the amount of bacterium OD600 is 0.8 when the inducer is added, the inducer IPTG concentration is 0.4 mmol/L, the induction time and temperature are 10 h and 20 ℃, at which time the intracellular recombinant enzyme activity of intracellular recombinase reduced methyl red reaches 18.66 U/mg. This study shows that optimizing the expression conditions of the two azoreductases?prokaryotic can significantly improve the enzyme activity, and the combination of the protein structure characteristics can provide a theoretical basis for subsequent protein purification and the analysis of protein-substrate binding specificity.?

参考文献/References:

1 郑洁. 生物法对偶氮染料废水脱色的研究[J]. 科技创新与应用, 2018, (32): 64-65 [Zheng J. A study of wastewater decolorization of azo dyes by biological method [J]. Technol Inno Appl, 2018 (32): 64-65]
2 孔春雷, 孙晓蕾, 周豪, 马桥, 张旭旺, 沈娥, 周集体, 曲媛媛. 菌株Acinetobacter sp. C-2对酸性红GR的脱色研究[J]. 环境科学与技术, 2013, 36 (3): 83-88 [Kong CL, Sun XL, Zhou H, Ma Q, Zhang XW, Shen E, Zhou JT, Qu YY. Biodecolorization of acid red GR by a newly isolated strain Acinetobacter sp. C-2 [J]. Environ Sci Technol, 2013, 36 (3): 83-88]
3 甘国娟, 田红灯, 潘永龙, Asit Mazumder, 潘响亮, 梁岩. 一株新的高效偶氮染料脱色菌Paenibacillus dendritiformis GGJ7及其脱色作用[J]. 应用与环境生物学报, 2018, 24 (3): 563-569 [Gan GJ, Tian HD, Pan YL, Asit M, Pan XL, Liang Y. A new efficient azo dye-decolorizing bacterium Paenibacillus dendritiformis GGJ7 and its decolorization process [J]. Chin J Appl Environ Biol, 2018, 24 (3): 563-569]
4 Mohamed SM, Mohamed KM, Samah AM, Neama AS, Mahmoud N. Bioremediation of red azo dye from aqueous solutions by a Spergillus niger strain isolated from textile wastewater [J]. J Environ Chem Eng, 2017, 5 (1): 547-554
5 Saraswathi VS, Neethu K, Bhaskara KV, Santhakumar K. Biofilm inhibition formation of clinical strains of Pseudomonas aeruginosa mutans, photocatalytic activity of azo dye and GC-MS analysis of leaves of Lagerstroemia speciosa [J]. J Photochem Photobiol B, 2017 (169): 148-160
6 Zimmermann T, Kulla HG, Leisinger T. Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46 [J]. Eur J Biochem, 1982, 129 (1): 197-203
7 Suzuki Y, Yoda T, Ruhul A, Sugiura W. Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil [J]. J Biol Chem, 2001, 276 (12): 9059-9065
8 Chen HZ, Wang RF, Cerniglia CE. Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis [J]. Protein Expr Purif, 2003, 34 (2): 302-310
9 Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh H. Crystal structure and functional characterization of Yeast YLR011wp, an enzyme with NAD (P) H-FMN and Ferric Iron reductase activities [J]. J Biol Chem, 2004, 279 (33): 34890-34897
10 Liu ZJ, Chen HZ, Shaw N, L. Hopper S, Chen L, Chen S, E. Cerniglia C, Wang BCh. Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis [J]. Arch Biochem Biophys, 2007, 463 (1): 68-77
11 胡景华, 朱向东, 孔令保, 赖芬菊, 刘好桔, 陈浪, 张庆华. 一株嗜热偶氮染料脱色菌的分离鉴定及其脱色特性[J]. 环境工程学报, 2016, 10 (8): 4563-4568 [Hu JH, Zhu XD, Kong LB, Lai FJ, Liu HJ, Chen L, Zhang QH. Isolation and identification of a thermophilic azo dye decolorization bacterium and investigation of its decolorization characteristics [J]. Chin J Environ Eng, 2016, 10 (8): 4563-4568]
12 王国泽, 唐仁勇, 左福元, 郭秀兰, 陈康, 毛景欣. 瘤胃细菌DNA提取方法的研究与优化[J]. 黑龙江畜牧兽医, 2016 (16): 125-128 [Wang GZ, Tang RY, Zuo FY, Guo XL, Chen K, Mao JX. Study and optimization of DNA extraction method for rumen bacteria [J]. Heilongjiang Xumu Shouyi, 2016 (16): 125-128]
13 苏畅. 奥纳达希瓦氏菌重组表达偶氮还原酶及mtrA基因敲除研究[D]. 厦门: 厦门大学, 2017 [Su C. Recombinant expression of azoreductase and gene-knockout of mtrA on Shewanella oneidensis MR-1 [D]. Xiamen: Xiamen University, 2017]
14 Sigrid D, Sonja S, Rosemarie TE, Ilian J, Gübitz. Characterization of a thermostable NADPH: FMN oxidoreductase from the Mesophilic Bacterium Bacillus subtilis [J]. Biochemistry, 2006, 45 (23): 7083-7091
15 柳广飞. 偶氮还原酶AZR的结构模型与功能研究[D]. 大连: 大连理工大学, 2009 [Liu GF. Structure model and function of azoreductase AZR [D]. Dalian: Dalian University of Technology, 2009]
16 Cao XH, Di MX, Wang J. Expansion of the active site of the azoreductase from Shewanella oneidensis MR-1 [J]. J Mol GraphModell, 2017, 78 (17): 213-220
17 Nakanishi M, Yatome C, Ishida N, Kitade Y. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase [J]. J Biol Chem, 2001, 276 (49): 46394-46399
18 ITO K, Nakanishi M, Lee WC, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M. Crystal structure of azoreductase AzoR from Escherichia coli [J]. Proc Jpn Acad Ser B, 2005, 81 (6): 225-228
19 Morrison J. M, John GH. The non-enzymatic reduction of azo dyes by flavin and nicotinamide cofactors under varying conditions [J]. Anaerobe, 2013, (23): 87-96
20 Bürger S, Stolz A. Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases [J]. Appl Microbiol Biotechnol, 2010, 87 (6): 2067-2076
21 Ball J, Reis RAG, Agniswamy J, Weber IT, Gadda G. Steric hindrance controls pyridine nucleotide specificity of a flavin-dependent NADH: quinone oxidoreductase [J]. Protein Sci, 2019, 28: 167-175
22 Yu J, Ogata D, Gai ZQ, Taguchi S, Tanaka I, Ooi T, Yao M. Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism [J]. Acta Crystallogr Sect D: Biol Crystallogr, 2014, 70 (5): 553-564
23 Feng J, Kweon O, Xu H, Cerniglia CE, Chen H. Probing the NADH- and Methyl Red-binding site of a FMN-dependent azoreductase (AzoA) from Enterococcus faecalis [J]. Arch Biochem Biophys, 2010, 520 (2): 99-107
24 Murataliev MB, Feyereisen R. Functional interactions in cytochrome P450BM3. evidence that NADP(H) binding controls redox potentials of the flavin cofactors [J]. Biochemistry, 2000, 39 (41): 12699-12707
25 Rakhi A, Jeffrey BB, Stephen KB, Subramanyam S. Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal [J]. Acta Crystallogr Sect D: Biol Crystallogr, 2006, 62 (4): 383-391
26 Ito K, Nakanishi M, Lee WC, Zhi Y, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M. Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis [J]. J Biol Chem, 2008, 283 (20): 13889-13896
27 Ryan A, Laurieri N, Westwood I, Wang CJ, Lowe E, Sim E. A novel mechanism for azoreduction [J]. J Med Biosci Online, 2010, 400 (1): 24-37
28 Chazarreta-Cifre L, Martiarena L, de Mendoza D, Altabe SG. Role of ferredoxin and flavodoxins in Bacillus subtilis fatty acid desaturation [J]. J Bacteriol, 2011, 193 (16): 4043-4048
29 廖锡豪, 陈明祥, 谢万勇, 韩双艳, 林影. 低温诱导对毕赤酵母表达重组外源蛋白的影响[J]. 中国酿造, 2013, 32 (2): 9-12 [Liao XH, Chen MX, Xie WY, Han SY, Lin Y. Influence of low inducing temperature on foreign protein production in recombinant Pichia pastoris [J]. Chin Brew, 2013, 32 (2): 9-12]
30 Maryam E, Mohammad AA, Sedigheh A. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata [J]. Int J Biol Macromol, 2016, 85: 111-116
31 许超, 黄桂媛, 王巧贞, 卢明倩, 张荣灿, 廖威, 张云开, 黄庶识. 褐藻胶裂解酶的基因克隆及表达条件优化[J]. 中国酿造, 2017, 36 (12): 120-125 [Xu C, Huang GY, Wang QZ, Lu MQ, Zhang RC, Liao W, Zhang YK, Huang SS. Conditions optimization of gene cloning and expression of alginate lyase [J]. Chin Brew, 2017, 36 (12): 120-125]
32 Kumar H, Nguyen QT, Binda C, Mattevi A, Fraaije MW. Isolation and characterization of a thermostable F420: NADPH oxidoreductase from Thermobifida fusca [J]. J Biol Chem, 2017, 292 (24): 10123-10130
33 Chang JS, Lin CY. Decolorization kinetics of a recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodococcus sp. [J]. Biotechnol Lett, 2001, 23 (8): 631-636

更新日期/Last Update: 2020-10-25