|本期目录/Table of Contents|

[1]曹红利,陆鲸冰,吴英杰,等.茶树7个褪黑素合成酶基因的鉴定及非生物胁迫响应[J].应用与环境生物学报,2020,26(05):1244-1250.[doi: 10.19675/j.cnki.1006-687x.2019.10012]
 CAO Hongli,LU Jingbing,WU Yingjie & YUE Chuan.Isolation?and?expression?analysis?of?melatonin?biosynthesis genes in tea plant?in response to abiotic stress[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1244-1250.[doi: 10.19675/j.cnki.1006-687x.2019.10012]
点击复制

茶树7个褪黑素合成酶基因的鉴定及非生物胁迫响应()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1244-1250
栏目:
研究论文
出版日期:
2020-10-25

文章信息/Info

Title:
Isolation?and?expression?analysis?of?melatonin?biosynthesis genes in tea plant?in response to abiotic stress
作者:
曹红利陆鲸冰吴英杰岳川
福建农林大学园艺学院/茶学福建省高校重点实验室 福州 350002
Author(s):
CAO Hongli LU Jingbing WU Yingjie & YUE Chuan?
College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
关键词:
茶树褪黑素基因克隆干旱胁迫盐胁迫
Keywords:
tea plant (Camellia sinensis) melatonin gene cloning drought stress salt stress
DOI:
10.19675/j.cnki.1006-687x.2019.10012
摘要:
褪黑素(MT)在植物生长发育及逆境胁迫响应中发挥重要功能,而茶树中MT合成途径中相关基因仍有待挖掘. 以‘福鼎大白’茶树品种为材料,采用RT-PCR技术克隆MT合成途径相关酶的编码基因:色氨酸脱羧酶(TDC)、色胺-5-羟化酶(T5H)、5-羟色胺-N-乙酰转移酶(SNAT)和N-乙酰基-5-羟色胺-甲基转移酶(ASMT),对它们的生物信息学特征进行分析,并研究它们在不同组织及非生物胁迫下的表达模式. 结果显示,共获得7个MT合成酶基因,即CsTDC1、CsTDC2、CsT5H1、CsSNAT1、CsSNAT2、CsASMT1和CsASMT2;蛋白质特征分析显示,MT合成途径相关酶的编码基因主要定位在叶绿体或胞质中,同时发现CsT5H1含有信号肽输出位点及2个跨膜结构域;进化树分析显示,MT合成酶相关的氨基酸序列主要与中华猕猴桃、欧洲大叶杨、胡桃等木本植物亲缘关系较近. 组织表达特异性分析显示,CsASMT1在根中表达量较高,其余基因在叶或茎中的表达量较高. 在盐和干旱胁迫处理下,这些基因的表达被显著抑制. 本研究表明茶树MT合成途径受逆境胁迫调控,结果可为后续研究MT在茶树生长发育及抗逆调控中的作用提供参考. (图4 表2 参32)
Abstract:
Melatonin (MT) is important for plant growth, development regulation, and stress response. However, the relevant genes involved in the MT biosynthesis pathway in the tea plant remain to be explored. In this study, the MT biosynthesis genes, including those for tryptophan decarboxylase (TDC), tryptophan hydroxylase (T5H), serotonin-N-acetyltransferase (SNAT), and 5-serotonin-N-acetyltransferase (ASMT) were cloned from the tea plant of the ‘Fudingdabai’ cultivar using RT-PCR technology. The sequence characteristics were analyzed using various bioinformatics tools. The expression patterns of the tested genes in tissues and in stress conditions were detected using quantitative real-time RT-PCR (qRT-PCR). Seven genes were isolated and named as CsTDC1, CsTDC2, CsT5H1, CsSNAT1, CsSNAT2, CsASMT1, and CsASMT2, respectively. Protein sequence analysis showed that these proteins are mainly localized on the chloroplast and or cytoplasm. CsT5H1 was predicted to have a transit signal peptide and two transmembrane domains. Phylogenetic tree analysis showed that these genes were closely related to that of Actinidiachinensis, Populustrichocarpa, and Juglansregia. The qRT-PCR analysis indicated that CsASMT1 was predominantly expressed in roots, whereas the rest of the genes had high expression levels in leaves or stems. Additionally, their trans abundance was repressed in response to salt stress and drought treatments. These results revealed that the MT biosynthesis pathway was regulated by stress stimuli, and provided a fundamental clue for further studies on MT’s role in the tea plant’s growth, development, and stress response.

参考文献/References:

1 宛晓春, 夏涛. 茶树次生代谢[M]. 北京: 科学出版社, 2015: 1-2 [Wan XC, Xia T. Secondary Metabolism of Tea Plant [M]. Beijing: Science Press, 2015: 1-2]
2 姜超强, 祖朝龙. 褪黑素与植物抗逆性研究进展[J]. 生物技术通报, 2015, 31 (4): 47-55 [Jiang CQ, Zu CL. Advances in melatonin and its roles in abiotic stress resistance in plants [J]. Biotechnol Bull, 2015, 31 (4): 47-55]
3 Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions [J]. Acta Biochim Pol, 2007, 54 (1): 1-9
4 Hardeland R. Melatonin in plants-diversity of levels and multiplicity of functions [J]. Front Plant Sci, 2016, 7: 198
5 Zhang N, Sun QQ, Zhang HJ, Cao YY, Weeda S, Ren SX, Guo YD. Roles of melatonin in abiotic stress resistance in plants [J]. J Exp Bot, 2015, 66 (3): 647-656
6 Byeon Y, Lee HY, Hwang OJ, Lee HJ, Lee K, Back K. Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment [J]. J Pineal Res, 2015, 58 (4): 470-478
7 Byeon Y, Lee HY, Back K. Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa) [J]. J Pineal Res, 2016, 61 (2): 198-207
8 Zuo BX, Zheng XD, He PL, Wang L, Lei Q, Feng C, Zhou JZ, Li QT, Han ZH, Kong J. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants [J]. J Pineal Res, 2014, 57 (4): 408-417
9 Kang K, Lee K, Park S, Kim YS, Back K. Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings [J]. J Pineal Res, 2010, 49 (2): 176-182
10 Choi GH, Lee HY, Back K. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants [J]. J Pineal Res, 2017, 63 (1): doi 10.1111/jpi. 12412
11 Wang L, Zhao Y, Reiter RJ, He CJ, Liu GS, Lei Q, Zuo BX, Zheng XD, Li QT, Kong J. Changes in melatonin levels in transgenic ‘Micro-Tom’ tomato overexpressing ovine AANAT and ovine HIOMT genes [J]. J Pineal Res, 2014, 56 (2): 134-142
12 Marta B, Szafranska K, Posmyk MM. Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress [J]. Front Plant Sci, 2016, 7: 575
13 Zhao HB, Su T, Huo LQ, Wei HB, Jiang Y, Xu LF, Ma FW. Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case [J]. J Pineal Res, 2015, 59 (2): 255-266
14 Li XN, Tan DX, Jiang D, Liu FL. Melatonin enhances cold tolerance in drought primed wild type and abscisic acid-deficient mutant barley [J]. J Pineal Res, 2016, 61 (3): 328-339
15 Shi HT, Reiter RJ, Tan DX, Chan ZL. INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis [J]. J Pineal Res, 2015, 58 (1): 26-33
16 Li X, Wei JP, Scott ER, Liu JW, Guo S, Li Y, Zhang L, Han WY. Exogenous melatonin alleviates cold stress by promoting antioxidant defense and redox homeostasis in Camellia sinensis L. [J]. Molecules, 2018, 23 (1): 165
17 Li JH, Yang YQ, Sun K, Chen Y, Chen X, Li XH. Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze) [J]. Molecules, 2019, 24 (9): 1826
18 Di TM, Zhao L, Chen HM, Qian WJ, Wang PQ, Zhang XF, Xia T. Transcriptomic and metabolic insights into the distinctive effects of exogenous melatonin and gibberellin on terpenoid synthesis and plant hormone signal transduction pathway in Camellia sinensis [J]. J Agric Food Chem, 2019, 67 (16): 4689-4699
19 Yue C, Cao HL, Chen D, Lin HZ, Wang Z, Hu J, Yang GY, Guo YQ, Ye NX, Hao XY. Comparative transcriptome study of hairy and hairless tea plant (Camellia sinensis) shoots [J]. J Plant Physiol, 2018, 229: 41-52
20 Xia EH, Li FD, Tong W, Li PH, Wu Q, Zhao HJ, Ge RH, Li RP, Li YY, Zhang ZZ, Wei CL, Wan XC. Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant [J]. Plant Biotechnol J, 2019, 17 (10): 1938-1953
21 Hao XY, Horvath DP, Chao WS, Yang YJ, Wang XC, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze) [J]. Int J Mol Sci, 2014, 15 (12): 22155-22172
22 岳川, 曹红利, 王赞, 林宏政, 叶乃兴. 茶树RING-finger型E3泛素连接酶基因CsSDIR的克隆与表达[J]. 应用与环境生物学报, 2018, 24 (6): 1375-1381 [Yue C, Cao HL, Wang Z, Lin HZ, Ye NX. Cloning and expression of RING-finger E3 ubiquitin ligase CsSDIR gene in tea plant (Camellia sinensis) [J]. Chin J Appl Environ Biol, 2018, 24 (6): 1375-1381]
23 王蕊, 杨小龙, 须晖, 李天来. 高等植物褪黑素的合成和代谢研究进展[J].植物生理学报, 2016, 52 (5): 615-627 [ Wang R, Yang XL, Xu H, Li TL. Research progress of melatonin biosynthesis and metabolism in higher plants [J]. Plant Physiol J, 2016, 52 (5): 615-627]
24 Arnao MB, Hernandez-Ruiz J. Functions of melatonin in plants: a review [J]. J Pineal Res, 2015, 59: 133-150
25 Arnao MB, Hernandez-Ruiz J. Melatonin: plant growth regulator and/or biostimulator during stress [J]. Trends Plant Sci, 2014, 19 (12): 789-797
26 巩彪, 史庆华. 园艺作物褪黑素的研究进展[J]. 中国农业科学, 2017, 50 (12): 2326-2337 [Gong B, Shi QH. Review of melatonin in horticultural crops [J]. Sci Agric Sin, 2017, 50 (12): 2326-2337]
27 Korkmaz A, Deger O, Cuci Y. Profi ling the melatonin content in organs of the pepper plant during different growth stages [J]. Sci Hortic, 2014, 172: 242-247
28 魏吉鹏. 褪黑素对温度胁迫下茶树生理代谢的影响[D]. 北京: 中国农业科学院, 2019 [Wei JP. Effects of melatonin on physiological metabolism of tea plants under temperature stress [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019]
29 Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes [J]. J Pineal Res, 2013, 54 (2): 127-138
30 Park S, Byeon Y, Back K. Transcriptional suppression of tryptamine 5-hydroxylase, a terminal serotonin biosynthetic gene, induces melatonin biosynthesis in rice (Oryza sativa L.) [J]. J Pineal Res, 2013, 55 (2): 131-137
31 Yin LH, Wang P, Li MJ, Ke XW, Li CY, Liang D, Wu S, Ma XL, Li C, Zou YJ, Ma FW. Exogenous melatonin improves Malus resistance to Marssonina apple blotch [J]. J Pineal Res, 2013, 54 (4): 426-434
32 Meng JF, Xu TF, Wang ZZ, Fang YL, Xi ZM, Zhang ZW. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology [J]. J Pineal Res, 2014, 57 (2): 200-212

相似文献/References:

[1]黄安平,韩宝瑜,包小村.茶刺蛾危害后茶树挥发性有机化合物释放变化[J].应用与环境生物学报,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
 HUANG Anping,HAN Baoyu,BAO Xiaocun.Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):819.[doi:10.3724/SP.J.1145.2011.00819]
[2]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
 WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):480.[doi:10.3724/SP.J.1145.2015.09019]
[3]常斐斐,曹曦跃,彭婕,等.褪黑素诱导拟南芥抗芸薹根肿菌[J].应用与环境生物学报,2018,24(01):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]
 CHANG Feifei,CAO Xiyue,PENG Jie,et al.Induced resistance to $Plasmodiophora brassicae$ in $Arabidopsis$ by melatonin*[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):75.[doi:10.19675/j.cnki.1006-687x.2017.03033]
[4]孙平,章国营,向萍,等.茶树中莽草酸途径DHD/SDH基因的表达调控[J].应用与环境生物学报,2018,24(02):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
 SUN Ping,ZHANG Guoying,XIANG Ping,et al.Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
[5]王海斌,陈晓婷,丁力,等.不同树龄茶树根际土壤细菌多样性的T-RFLP分析[J].应用与环境生物学报,2018,24(04):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
 WANG Haibin,**,CHEN Xiaoting,et al.Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
[6]郭玉琼,黄道斌,常笑君,等.铁观音茶树体胚发生及其内源激素变化[J].应用与环境生物学报,2018,24(04):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
 GUO Yuqiong,HUANG Daobin,CHANG Xiaojun,et al.Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
[7]郭玉琼,王仲,朱晨,等.茶树CSD1基因及其启动子克隆与低温胁迫下的表达[J].应用与环境生物学报,2018,24(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
 GUO Yuqiong,WANG Zhong,ZHU Chen,et al.Cloning and expression of the copper/zinc-superoxide dismutase 1 gene and its promoter under low temperature stress in Camellia sinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
[8]王海斌,陈晓婷,丁力,等.福建省安溪县茶园土壤酸化对茶树产量及品质的影响[J].应用与环境生物学报,2018,24(06):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
 WANG Haibin,et al..Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian Province[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
[9]岳川,曹红利,王赞,等.茶树RING-finger型E3泛素连接酶基因CsSDIR的克隆与表达[J].应用与环境生物学报,2018,24(06):1375.[doi:10.19675/j.cnki.1006-687x.2018.09010]
 YUE Chuan,et al..Cloning and expression of RING-finger E3 ubiquitin ligase CsSDIR1 gene in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1375.[doi:10.19675/j.cnki.1006-687x.2018.09010]
[10]郑世仲,江胜滔,陈美霞,等.茶树Ankyrin基因启动子的克隆及其5′UTR内含子功能[J].应用与环境生物学报,2019,25(06):1381.[doi:10.19675/j.cnki.1006-687x.2019.05011]
 ZHENG Shizhong,JIANG Shengtao,et al.Isolation of the Ankyrin gene promoter from tea plant (Camellia sinensis L.) and a subsequent analysis of the function of its 5′UTR intron[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1381.[doi:10.19675/j.cnki.1006-687x.2019.05011]

更新日期/Last Update: 2020-10-25