|本期目录/Table of Contents|

[1]黄家庆,赖永翔,翁伯琦,等.花生壳生物炭对镉污染菜园土壤细菌群落结构的影响[J].应用与环境生物学报,2020,26(05):1115-1128.[doi: 10.19675/j.cnki.1006-687x.2019.10005]
 HUANG Jiaqing,LAI Yongxiang,et al.Effect of peanut shell biochar on the bacterial community structure in cadmium-containing vegetable soil[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1115-1128.[doi: 10.19675/j.cnki.1006-687x.2019.10005]
点击复制

花生壳生物炭对镉污染菜园土壤细菌群落结构的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1115-1128
栏目:
土壤与农业微生物应用专栏
出版日期:
2020-10-25

文章信息/Info

Title:
Effect of peanut shell biochar on the bacterial community structure in cadmium-containing vegetable soil
作者:
黄家庆赖永翔翁伯琦叶菁刘岑薇王义祥
1福建省农业科学院农业生态研究所 福州 350013 2福建省红壤山地农业生态过程重点实验室 福州 350013
Author(s):
HUANG Jiaqing1 2 LAI Yongxiang1 2 WENG Boqi1 2 YE Jing1 2 LIU Cengwei1 2 & WANG Yixiang1 2?
1 Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China 2 Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
关键词:
花生壳生物炭重金属镉细菌群落结构菜园土壤土壤酶活性
Keywords:
peanut shell biochar cadmium bacterial community structure vegetable soil soil enzyme activity
DOI:
10.19675/j.cnki.1006-687x.2019.10005
摘要:
为进一步了解不同镉污染水平下生物炭对土壤镉钝化和环境效应,利用盆栽试验模拟研究3个土壤镉水平(0、2.5和5.0 mg/kg)和5个生物炭添加量(0、5、10、20和40 g/kg)下菜园土壤酶活性和细菌群落的变化. 菜园土壤pH随着花生壳生物炭施用量的增加而增加,并与62%土壤细菌显著相关. 不同镉污染菜园土壤中过氧化氢酶、碱性磷酸酶和脲酶活性均以20 g/kg和40 g/kg花生壳生物炭施用量时分别达到最大值和最小值. Saccharibacteria、Burkholderia-Paraburkholderia和Sphingomona等部分高丰度细菌与过氧化氢酶、碱性磷酸酶或者脲酶显著相关. 40 g/kg花生壳生物炭和5.0 mg/kg重金属镉处理的土壤细菌群落结构与其他处理有显著差异,对菜园土壤细菌产生双重的抑制作用. 添加花生壳生物炭的处理,土壤中高丰度细菌受重金属镉的影响不显著. 花生壳生物炭施用量改变菜园土壤的pH值和土壤酶活性(过氧化氢酶、碱性磷酸酶和脲酶),从而影响菜园土壤的细菌群落结构. 在重金属镉浓度< 5.0 mg/kg条件下下,20 g/kg花生壳生物炭施用量更有利于改善土壤的理化性质,减轻重金属镉的毒害作用和促使细菌群落的恢复生长和提高土壤酶活性. (图10 表3 参61)
Abstract:
To further understand the passivation and environmental effects of biochar on different cadmium pollution soils, potted experiments were conducted. The effects of different cadmium levels (Cd 0, 2.5, and 5.0 mg/kg) and biochar additions (0, 5, 10, 20, and 40 g/kg) on soil enzyme activity and the soil bacterial community were examined. The pH of vegetable soil increased with increased concentrations of peanut shell biochar, which was significantly correlated with 62% of the soil bacteria. The catalase, alkaline phosphatase, and urease activities of vegetable soil reached maximum and minimum levels with the application of 20 g/kg and 40 g/kg of the peanut shell biochar, respectively. Bacteria such as Saccharibacteria, Burkholderia-Paraburkholderia, and Sphingomon, among others, were observed in high abundance and were significantly correlated with catalase, alkaline phosphatase, or urease. The bacterial community structure of the 40 g/kg peanut shell biochar and 5.0 mg/kg cadmium treatment was significantly different from that of other treatments, which had a dual inhibitory effect on bacteria in vegetable soil. The bacteria with the highest abundance were not significantly affected by cadmium when peanut shell biochar was added to vegetable soil. The pH and soil enzyme activity (catalase, alkaline phosphatase, and urease) of vegetable soil may have been altered by the amount of peanut shell biochar applied, and consequently this may have affected the structure of the soil bacterial community. When the acidic soils contaminated by cadmium (< 5.0 mg/kg) were remedied, the application amount of 20 g/kg peanut shell biochar was superior at improving soil physicochemical properties, reducing the toxic effect of cadmium, and promoting the recovery and growth of the soil bacterial community and enzyme activity.

参考文献/References:

1 徐应星, 李军. 硅和磷配合施入对镉污染土壤的修复改良[J]. 生态环境学报, 2010, 19 (2): 340-343 [Xu YX, Li J. Silicon and phosphorus-mediated improve soil contaminated by cadmium [J]. Ecol Environ Sci, 2010, 19 (2): 340-343]
2 Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China [J]. Microchem J, 2010, 94 (2): 99-107
3 李小牛, 周长松, 杜斌, 冯民权. 北方污灌区土壤重金属污染特征分析[J]. 西北农林科技大学学报: 自然科学版, 2014, 42 (6): 205-212 [Li XN, Zhou CS, Du B, Feng MQ. Pollution characteristics of heavy metals in sewage irrigated soil of northern China [J]. J NW A&F Univ (Nat Sci Ed), 2014, 42 (6): 205-212]
4 余江, 黄志勇, 陈兰. 福建省部分菜园土壤及蔬菜重金属含量的测量及污染评价[J]. 土壤通报, 2010, 41 (4): 985-989 [Yu J, Huang ZY, Chen L. Heavy metal contents and pollution assessment of soils and vegetables sampled in Fujian province [J]. Chin J Soil Sci, 2010, 41 (4): 985-989]
5 郑小林, 唐纯良, 郑华柳. 湛江市郊区蔬园土壤重金属含量分析及其污染评价[J]. 农业环境与发展, 2004, 21 (1): 33-35 [Zheng XL, Tang CL, Zheng HL. Heavy metal content analysis and pollution evaluation of vegetable garden in suburban area of Zhanjiang City [J]. Agro-Environ Dev, 2004, 21 (1): 33-35]
6 黄顺生, 华明, 金洋, 颜朝阳, 朱佰万, 仇慎平. 南京郊区某菜地土壤镉污染水平及其来源调查[J]. 土壤通报, 2008, 39 (1): 129-132 [Huang SS, Hua M, Jin Y, Yan CY, Zhu BW, Qiu SP. Investigation of cadmium pollution and its major sources in vegetable land in the suburb of Nanjing City [J]. Chin J Soil Sci, 2008, 39 (1): 129-132]
7 于群英, 李孝良, 汪建飞. 皖北地区菜地土壤铅镉铬汞污染调查与评价[J]. 中国农学通报, 2006, 22 (12): 263-266 [Yu QY, Li XL, Wang JF. The investigation and evaluation of Pb, Cd, Cr, Hg of the vegetable soils in north of Anhui Province [J]. Chin Agric Sci Bull, 2006, 22 (12): 263-266]
8 Hong MF, Zhang LM, Tan ZG, Huang QY. Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization [J]. Environ Sci Pollut Res, 2019, 26 (12): 1-11
9 Abbas T, Rizwan M, Ali S, Adrees M, Mahmood A, Zia-Ur-Rehman M, Ibrahim M, Arshad M, Qayyum MF. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil [J]. Ecotox Environ Safe, 2018, 148: 825-833
10 叶协锋, 李志鹏, 于晓娜, 牛瑜德, 李先锋, 管赛赛, 宗胜杰, 孟琦. 生物炭用量对植烟土壤碳库及烤后烟叶质量的影响[J]. 中国烟草学报, 2015, 21 (5): 33-41 [Ye XF, Li ZP, Yu XN, Niu YD, Li XF, Guan SS, Zong SJ, Meng Q. Effect of biochar application rate on quality of flue-cured tobacco leaves and carbon pool in tobacco growing soil [J]. Acta Tabacaria Sin, 2015, 21 (5): 33-41]
11 杨晓庆, 侯仔尧, 常梦婷, 方正, 张晋华. 生物炭对镉污染土壤的修复研究[J]. 江苏农业科学, 2015, 43 (6): 335-337 [Yang XQ, Hou ZY, Chang MT, Fang Z, Zhang JH. Study on biochar remediation of cadmium-polluted soil [J]. Jiangsu Agric Sci, 2015, 43 (6): 335-337]
12 Abbas T, Rizwan M, Ali S, Zia-Ur-Rehman M, Farooq Qayyum M, Abbas F, Hannan F, Rinklebe J, Sik Ok Y. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum, L.) grown in a soil with aged contamination [J]. Ecotox Environ Safe, 2017, 140: 37-47
13 Bashir S, Rehman M, Yousaf M, Salam A, Gulshan AB, Iqbal J, Aziz I, Azeem M, Rukh S, Asghar RMA. Comparative efficiency of wheat straw and sugarcane bagasse biochar reduces the cadmium bioavailability to spinach and enhances the microbial activity in contaminated soil [J]. Int J Phytoremediat, 2019, 21 (11): 1-6
14 Liu L, Shen G, Sun M, Cao X, Shang G, Chen P. Effect of biochar on nitrous oxide emission and its potential mechanisms [J]. J Air Waste Manage, 2014, 64 (8): 894-902
15 孔丝纺, 姚兴成, 张江勇, 姚晓东, 曾辉. 生物质炭的特性及其应用的研究进展[J]. 生态环境学报, 2015, 4: 716-723 [Kong SF, Yao XC, Zhang JY, Yao XD, Zeng H. Review of characteristics of biochar and research progress of its applications [J]. Ecol Environ Sci, 2015, 4: 716-723]
16 Kong L, Gao Y, Zhou Q, Zhao X, Sun Z. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy [J]. J Hazard Mater, 2018, 343: 276-284
17 Reyes-Cabrera J, Leon RG, Erickson JE, Rowland DL, Silveira ML, Morgan KT. Differences in biomass and water dynamics between a cotton-peanut rotation and a sweet sorghum bioenergy crop with and without biochar and vinasse as soil amendments [J]. Field Crops Res, 2017, 214: 123-130
18 付仲毅, 于晓娜, 张晓帆, 李志鹏, 凌天孝, 周涵君, 孟琦, 张胜, 叶协锋. 不同温度花生壳生物炭孔隙特征及其差异[J]. 土壤通报, 2018, 49 (3): 575-581 [Fu ZY, Yu XN, Zhang XF, Li ZP, Ling TX, Zhou HJ, Meng Q, Zhang S, Ye XF. Temperature effect on pore characteristics of peanut-shell-biochar [J]. Chin J Soil Sci, 2018, 49 (3): 575-581]
19 于晓娜, 张晓帆, 李志鹏, 周涵君, 付仲毅, 孟琦, 叶协锋. 热解温度对花生壳生物炭产率及部分理化特性的影响[J]. 河南农业大学学报, 2017, 51 (1): 108-114 [Yu XN, Zhang XF, Li ZP, Zhou HJ, Fu ZY, Meng Q, Ye XF. Pyrolysis temperature on the peanut-shell-biochar production rate and some physical and chemical properties [J]. J Henan Agric Univ, 2017, 51 (1): 108-114]
20 Novak JM, Frederick JR, Bauer PJ, Watts DW. Rebuilding organic carbon contents in coastal plain soils using conservation tillage systems [J]. Soil Sci Soc Am J, 2009, 73 (2): 622-629
21 Zimmerman AR. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) [J]. Environ Sci Technol, 2010, 44 (4): 1295-1301
22 Chu G, Zhao J, Chen FY, Dong XD, Zhou DD, Liang N, Wu M, Pan B, Steinberg CEW. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation [J]. Environ Pollut, 2017, 227: 372-379
23 Peng HB, Gao P, Chu G, Pan B, Peng JH, Xing BS. Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars [J]. Environ Pollut, 2017, 229: 846-853
24 Zhou D, Chen B, Wu M, Liang N, Zhang D, Li H, Pan B. Ofloxacin sorption in soils after long-term tillage: the contribution of organic and mineral compositions [J]. Sci Total Environ, 2014, 497-498: 665-670
25 王震宇, 徐振华, 郑浩, 宗海英, 李璐. 花生壳生物炭对中国北方典型果园酸化土壤改性研究[J]. 中国海洋大学学报 (自然科学版), 2013, 43 (8): 86-91 [Wang ZY, Xu ZH, Zheng H, Zong HY, Li L.Effect of peanut hull biochar on amelioration of typical orchard acidic soil in northern china [J]. Period Ocean Univ Chin (Nat Sci Ed), 2013, 43 (8): 86-91]
26 程启明, 黄青, 刘英杰, 廖祯妮. 花生壳与花生壳生物炭对镉离子吸附性能研究[J]. 农业环境科学学报, 2014, 33 (10): 2022-2029 [Cheng QM, Huang Q, Liu YJ, Liao ZN. Adsorption of cadmium (II) on peanut shell and its biochar [J]. J Agro-Environ Sci, 2014, 33 (10): 2022-2029]
27 邓潇, 周航, 陈珊, 陈齐, 彭佩钦, 廖柏寒, 张平. 改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附[J]. 环境工程学报, 2016, 10 (11): 6325-6331 [Deng X, Zhou H, Chen S, Chen Q, Peng PQ, Liao BH, Zhang P. Adsorption of Cd2+ from aqueous solution by modified corn straw biochar and peanut shell biochar [J]. Chin J Environ Eng, 2016, 10 (11): 6325-6331]
28 董萌, 赵运林, 库文珍, 周小梅, 李燕子, 陈小玲. 蒌蒿(Artemisia selengensis L.)修复洞庭湖土壤Cd污染的强化措施研究[J]. 长江流域资源与环境, 2013, 22 (7): 937-944 [Dong M, Chao YL, Ku WZ,Zhao XM, Li YZ, Chen XL. Strengthen measures used for Artemisia selengensis L. to repair Cd contaminated soil of Dongting Lake wetland [J]. Resour Environ Yangtze Basin, 2013, 22 (7): 937-944]
29 刘爱民, 黄为一. 抗Cd细菌J5的筛选和抗Cd2+特性[J]. 农业环境科学学报, 2005, 24 (s1): 223-227 [Liu AM, Huang WY. Screening of cadmium resistant bacterium J5 and its resistance to Cd2+ [J]. J Agro-Environ Sci, 2005, 24 (s1): 223-227]
30 程金金, 宋静, 陈文超, 余海波, 黄玉娟, 吴龙华, 骆永明. 镉污染对红壤和潮土微生物的生态毒理效应[J]. 生态毒理学报, 2013, 8 (4): 577-586 [Chen JJ, Song J, Chen WC, Yu HB, Huang YJ, Wu LH, Luo YM. The ecotoxicity effects of cadmium on microorganism in udic-ferrosols and aquic-cambosols [J]. Asian J Ecotox, 2013, 8 (4): 577-586]
31 陆文龙, 卓孔友, 贾丹. 镉胁迫对暗棕壤呼吸强度和土壤微生物群落的影响[J]. 农业科学与技术, 2014, 15 (12): 2135-2137 [Lu WL, Zhuo KY, Jia D. Influence of dark brown soil respiration and microbial community under cadmium stress [J]. Agric Sci Technol, 2014, 15 (12): 2135-2137]
32 Oleszczuk P, Hale SE, Lehmann J, Cornelissen G. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge [J]. Bioresource Technol, 2012, 111: 84-91
33 Yuan JH, Xu RK, Qian W, Wang RH. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars [J]. J Soil Sediment, 2011, 11 (5): 741-750
34 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20 (4): 779-785 [Yuan JH, Xu RK. Progress of the research on the properties of biochars and their influence on soil environmental functions [J]. Ecol Environ Sci, 2011, 20 (4): 779-785]
35 王浩, 焦晓燕, 王劲松, 武爱莲, 丁玉川, 董二伟, 王立革. 生物炭对土壤水分特征及水胁迫条件下高粱生长的影响[J]. 水土保持学报, 2015, 29 (2): 253-257 [Wang H, Jiao XY, Wang JS, Wu AL, Ding YC, Dong EW, Wang LG. Effects of biochar on water characteristics of soil and sorghum growth under conditions of soil water stress [J]. J Soil Water Conserv, 2015, 29 (2): 253-257]
36 Kolton M, Harel YM, Pasternak Z, Graber ER, Elad Y, Cytryn E. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants [J]. Appl Environ Microb, 2011, 77 (14): 4924-4930
37 Simarani K, Halmi MFA, Abdullah R. Short-term effects of biochar amendment on soil microbial community in humid tropics [J]. Arch Agron Soil Sci, 2018, 64 (13): 1847-1860
38 常栋, 马文辉, 张凯, 王晓强, 何晓冰, 许跃奇, 徐放达. 生物炭基肥对植烟土壤微生物功能多样性的影响[J]. 中国烟草学报, 2018, 24 (6): 58-66 [Chang D, Ma WH, Zhang K, Wang XQ, He XB, Xu YQ, Xu FD. Effect of biochar fertilizer on microbial functional diversity in tobacco growing soil [J]. Acta Tabacaria Sin, 2018, 24 (6): 58-66]
39 Agyarko-Mintah E, Cowie A, Van-Zwieten L, Singh BP, Smillie R, Harden S, Fornasier F. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting [J]. Waste Manage, 2017, 61: 129-137
40 陈心想, 耿增超, 王森, 赵宏飞. 施用生物炭后塿土土壤微生物及酶活性变化特征[J]. 农业环境科学学报, 2014, 33 (4): 751-758 [Chen XX, Geng ZC, Wang S, Zhao HF. Effects of biochar amendment on microbial biomass and enzyme activities in loess soil [J]. J Agro-Environ Sci, 2014, 33 (4): 751-758]
41 Anderson CR, Hamonts K, Clough TJ, Condron LM. Biochar does not affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria [J]. Agric Ecosyst Environ, 2014, 191: 63-72
42 Hu L, Cao L, Zhang R. Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil [J]. World J Microb Biot, 2014, 30 (3): 1085-1092
43 43 Du ZL, Zhao JK, Wang YD, Wang YD, Zhang QZ. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system [J]. J Soil Sediment, 2017, 17 (3): 581-589
44 张秀, 夏运生, 尚艺婕, 赵青青, 史静. 生物质炭对镉污染土壤微生物多样性的影响[J]. 中国环境科学, 2017, 37 (1): 52-262 [Zhang X, Xia YS, Shang YJ, Zhao QQ, Shi J. Effects of biochar (BC) on microbial diversity of cadmium (Cd) contaminated soil [J]. China Environ Sci, 2017, 37 (1): 52-262]
45 王志鹏, 陈蕾. 秸秆生物炭的研究进展[J]. 应用化工, 2019, 48 (2): 444-447 [Wang ZP, Chen L. Research progress on straw-based biochar [J]. Appl Chem Ind, 2019, 48 (2): 444-447]
46 王义祥, 赖永翔, 叶菁, 刘岑薇, 翁伯琦. 生物炭对不同镉污染土壤钝化效果和小白菜镉吸收的影响[J]. 土壤通报, 2019, 50 (3): 713-718 [Wang YX, Lai YX, Ye J, Liu CW, Weng BQ. Effects of biochar on passivation and uptake of cadmium by Brassica chinensis in cadmium-polluted soils [J]. Chin J Soil Sci, 2019, 50 (3): 713-18]
47 吴淑娟, 任运涛, 吴彩霞, 傅华. 草地土壤pH值测定方法比较研究[J]. 土壤通报, 2018, 49 (2): 343-348 [Wu SJ, Ren YT, Wu CX, Fu H. Comparing pH determination in grassland soil [J]. Chin J Soil Sci, 2018, 49 (2): 343-348]
48 杨兰芳, 曾巧, 李海波, 闫静静. 紫外分光光度法测定土壤过氧化氢酶活性[J]. 土壤通报, 2011, 42 (1): 207-210 [Yang LF, Zeng Q, Li HB, Yan JJ. Measurement of catalase activity in soil by ultraviolet spectrophotometry [J]. Chin J Soil Sci, 2011, 42 (1): 207-210]
49 石春芳, 王志勇, 冷小云, 刘菊梅, 曹菊梅. 土壤磷酸酶活性测定方法的改进[J]. 实验技术与管理, 2016, 33 (7): 48-49 [Shi CF, Wang ZY, Leng XY, Liu JM, Cao JM. Improvement of soil phosphatase activity measurement method [J]. Exp Technol Manage, 2016, 33 (7): 48-49]
50 徐欣, 王晓军, 谢洪宝, 周珂, 张锦源, 陈一民, 高洪生, 焦晓光. 秸秆腐解对不同氮肥水平土壤脲酶活性的影响[J]. 中国农学通报, 2018, 34 (34): 105-108 [Xu X, Wang XJ, Xie HB, Zhou K, Zhang JY, Chen YM, Gao HS, Jiao XG. Effects of straw decomposition on soil urease activity at different nitrogen fertilizer levels [J]. Chin Agric Sci Bull, 2018, 34 (34): 105-108]
51 Xie ZM. Effect of cadmium, lead and zinc on microbial biomass carbon, nitrogen, and phosphorus in red soil. Plant Nutr Fertil Sci, 2000, 6: 69-74
52 王甜. 土壤重金属含量与土壤微生物数量和酶活性的关系[D]. 兰州: 甘肃农业大学, 2014 [Wang T. The relationships between soil heavy metal contents and soil microbial quantity and enzyme activities [D]. Lanzhou: Gansu Agricture University, 2014]
53 邱静, 李凝玉, 胡群群, 李志安. 石灰与磷肥对籽粒苋吸收镉的影响[J]. 生态环境学报, 2009, 18 (1): 187-192 [Qiu J, Li NY, Hu QQ, Li ZA. Effects of lime and phosphate fertilizer application on the cadmium uptake by grain amaranth [J]. Ecol Environ, 2009, 18 (1): 187-192]
54 袁金蕊, 郭富睿, 邹冬生, 曾清如. 镉对土壤微生物的影响及微生物修复镉污染研究进展[J]. 湖南农业科学, 2018 (3): 114-117 [Yuan JR, Guo FR, Zou DS, Zeng QR. Research progress on the influence of cadmium on soil microorganism and bioremediation technology [J]. Hunan Agric Sci, 2018 (3) 114-117]
55 Mitchell PJ, Simpson AJ, Soong R, Simpson MJ. Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil [J]. Soil Biol Biochem, 2015, 81: 244-254
56 刘军生, 解修超, 罗阳兰, 邓百万, 柏秋月, 燕孟琛, 白星. 抗镉内生细菌阿耶波多氏芽孢杆菌的分离鉴定及生物学特性[J]. 生物技术通报, 2019, 35 (2): 64-72 [Liu JS, Xie XC, Luo YL, Deng BW, Bai QY, Yan MC, Bai X. Isolation, Identification, and biological characteristics of a cadmium-resistant endophytic bacteria Bacillus aryabhattai [J]. Biotechnol Bull, 2019, 35 (2): 64-72]
57 Qin X, Huang QQ, Liu YY, Zhao LJ, Xu YM, Liu YT. Effects of sepiolite and biochar on microbial diversity in acid red soil from southern China [J]. Chem Ecol, 2019, 35 (9): 1-15
58 Mitra S, Pramanik K, Ghosh P, Soren T, Sarkar A, Sundar R, Pandey S, Maiti T. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress [J]. Microbiol Res, 2018, 210: 12-25.
59 张瑞清, 杨剑超, 张占田, 姜学玲, 徐维华, 孙晓. 生物炭对酸化土壤锰毒害的缓解效应研究[J]. 中国农学通报, 2018, 34 (36): 116-122 [Zhang RQ, Yang JC, Zhang ZT, Jiang XL, Chu WW, Sun X. The mitigation effect of biochar on manganese toxicity in acidified soil [J]. Chin Agric Sci Bull, 2018, 34 (36): 116-122]
60 Ball PN, MacKenzie MD, DeLuca TH, Holben WE. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils [J]. J Environ Qual, 2010, 39 (4): 1243-1253
61 Paz-Ferreiro J, Gasc G, Gutirrez B, Mndez A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil [J]. Biol Fert Soils, 2012, 48 (5): 511-517

相似文献/References:

[1]唐利萍,方扬,靳艳玲,等.重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J].应用与环境生物学报,2015,21(05):830.[doi:10.3724/SP.J.1145.2015.04023]
 TANG Liping,FANG Yang,JIN Yanling,et al.Preliminary study on screening of cadmium hyperaccumulator duckweed strain and removal of cadmium in water[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):830.[doi:10.3724/SP.J.1145.2015.04023]

更新日期/Last Update: 2020-10-25