|本期目录/Table of Contents|

[1]余杭,孙凡,李松阳,等.不同区段金沙江下游山地失稳性坡面土壤有机碳含量特征[J].应用与环境生物学报,2020,26(05):1192-1199.[doi: 10.19675/j.cnki.1006-687x.2019.09052]
 YU Hang,,et al.Characteristics of soil organic carbon content in different sections of the unstable slopes of the mountainous area in the lower reaches of the Jinsha River[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1192-1199.[doi: 10.19675/j.cnki.1006-687x.2019.09052]
点击复制

不同区段金沙江下游山地失稳性坡面土壤有机碳含量特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1192-1199
栏目:
研究论文
出版日期:
2020-10-25

文章信息/Info

Title:
Characteristics of soil organic carbon content in different sections of the unstable slopes of the mountainous area in the lower reaches of the Jinsha River
作者:
余杭孙凡李松阳刘颖贺静雯林勇明王道杰李键
1福建农林大学林学院 福州 350002 2中国科学院山地灾害与地表过程重点实验室 成都 610041 3福建省高校森林生态系统过程与经营重点实验室 福州 350002 4中国科学院水利部成都山地灾害与环境研究所 成都 610041
Author(s):
YU Hang1 2 3 SUN Fan1 LI Songyang1 2 3 LIU Ying1 2 3 HE Jingwen1 2 3 LIN Yongming1 2 3? WANG Daojie4 & LI Jian1 3
1 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2 Key Laboratory of Mountain Hazards and Surface Processes, Chinese Academy of Sciences, Chengdu 610041, China 3 Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fuzhou 350002, China 4 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China
关键词:
失稳性坡面气候生态恢复土壤有机碳生态脆弱区区段
Keywords:
unstable slope climate ecological restoration soil organic carbon ecologically fragile area slope section
DOI:
10.19675/j.cnki.1006-687x.2019.09052
摘要:
为探讨不同区段金沙江下游山地失稳性坡面土壤有机碳(soil organic carbon,SOC)含量特征,选择典型流域内温带湿润山岭区、亚热带和暖温带半湿润区和亚热带干热河谷区为研究对象,在各气候区失稳性坡面的不同区段(稳定区、失稳区、堆积区)设置样地,测定不同区段0-20 cm SOC含量,并结合中国科学院东川泥石流观测研究站多年的气象资料,分析气候、区段因素与SOC含量的相关性. 结果显示:(1)金沙江下游山地失稳性坡面SOC含量与年均温、夏季均温、冬季均温均存在显著负相关关系(P < 0.05),与年降水量、夏季降水量存在显著正相关关系(P < 0.05);温带湿润山岭区水热条件良好,整体上各区段SOC含量均高于亚热带和暖温带半湿润区、亚热带干热河谷区;(2)温带湿润山岭区与亚热带干热河谷区SOC含量整体上随着区段稳定程度的降低而下降,呈现稳定区>失稳区>堆积区的变化趋势;(3)金沙江下游山地失稳性坡面SOC含量还受到坡向的影响,具体表现为温带湿润山岭区和亚热带干热河谷区各区段SOC含量均呈现出“阴坡”>“阳坡”的变化趋势;(4)气候与区段的交互作用显著影响SOC含量,具体表现为查菁沟阳坡堆积区的SOC含量显著低于温带湿润山岭区与亚热带和暖温带半湿润区(P < 0.05). 本研究表明气候与区段共同对金沙江下游山地失稳性坡面SOC含量产生影响,且人类活动的干扰作用也不可忽视,具体表现为人类干扰频繁的亚热带和暖温带半湿润区稳定区SOC含量显著低于亚热带干热河谷区(P < 0.05),且3个区段SOC含量差异不显著(P > 0.05). 以上结论可为研究该区域失稳性坡面土壤碳演变规律提供数据支撑和理论参考,同时为生态脆弱区的生态恢复规划提供相应的理论依据. (图2 表4 参43)
Abstract:
To explore the characteristics of soil organic carbon (SOC) content in different sections of the unstable slopes of a mountainous area in the lower reaches of the Jinsha River, we selected the temperate humid mountain ridge region, subtropical and warm temperate sub-humid region, and subtropical dry-hot valley region as the research areas. Then we divided a stable area, an unstable area, and an accumulation area from the unstable slope of each climatic region as the sample plots. We determined the SOC content of 0-20 cm depth of the different parts of the unstable slope and collected meteorological data from the Dongchuan Debris Flow Observation and Research Station of the Chinese Academy of Sciences to analyze the relationships between climate types, section factors, and SOC content. The results showed that: (1) SOC content in the unstable slope of the lower reaches in the Jinsha River was significantly negatively correlated with average annual temperature, average summer temperature, and average winter temperature (P < 0.05), and significantly positively correlated with the annual precipitation and summer precipitation (P < 0.05). The temperate humid mountain ridge region had better hydrothermal conditions, and, as a whole, the SOC content of each slope was higher than that in the subtropical and warm temperate sub-humid region, and the subtropical dry-hot valley region. (2) The SOC storage decreased with slope stability in the temperate humid mountain ridge and subtropical dry-hot valley regions, following the rule of stable area > unstable area > accumulation area. (3) The SOC content in the unstable slopes of the lower reaches in the Jinsha River was also affected by slope direction, following the rule of “shady slope” > “sunny slope” in temperate humid mountain ridge and subtropical dry-hot valley regions. (4) The interaction between climate types and slope section significantly affected SOC content, indicating that the SOC content of the accumulation area in the Chajing gully sunny slope was significantly lower than in the temperate humid mountain ridge and subtropical and warm temperate sub-humid regions (P < 0.05). The study showed that the climate and slope sections worked together on SOC content in the lower reaches of the Jinsha River. However, human activities cannot be ignored because the SOC content of the stable area in the subtropical and warm temperate sub-humid region with intense human disturbance was significantly lower than in the subtropical dry-hot valley region (P < 0.05), and SOC content was not significant across three slope sections (P > 0.05). Our results can provide data support and theoretical references for soil carbon evolution in unstable slopes and a theoretical basis for ecological restoration planning in ecologically vulnerable areas.

参考文献/References:

1 Post WM, Emanuel WR, Zinke PJ, Strangenberger AG. Soil carbon pools and world life zones [J]. Nature, 1982, 298 (5870): 156-159
2 Schipper LA, Baisden WT, Parfitt RL, Ross C, Claydon JJ, Arnold G. Large losses of soil C and N from soil profiles under pasture in New Zealand during the past 20 years [J]. Global Change Biol, 2007, 13 (6): 1138-1144
3 赵泽阳, 赵志忠, 刘玉燕, 李燕, 付博, 邢瑶丽. 海南岛东部地区不同类型农用地土壤有机碳分布特征及影响因素[J]. 西南农业学报, 2019, 32 (5): 1121-1126 [Zhao ZY, Zhao ZZ, Liu YY, Li Y, Fu B, Xing YL. Distribution of soil organic carbon in different agriculture lands in east areas of Hainan Island and its controls [J]. SW China J Agric Sci, 2019, 32 (5): 1121-1126]
4 王淑平. 土壤有机碳和氮的分布及其对气候变化的响应[D]. 北京: 中国科学院研究生院(植物研究所), 2003 [Wang SP. Distribution of soil organic carbon and nitrogen and their response to climate change [D]. Beijing: Graduate School of Chinese Academy of Sciences (Institute of Botany), 2003]
5 Post WM, Kwon KC. Soil carbon sequestration and land-use change: processes and potential [J]. Global Change Biol, 2000, 6 (3) : 317-327
6 Schoenholtz SH, Van Miegroet H, Burger JA. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities [J]. For Ecol Manage, 2000, 138 (1/3): 335-356
7 Watson RT, Noble IR, B Bolin, NH Ravindranath, DJ Verardo, DJ Dokken. Land Use, Land-Use Change and Forestry. A Special Report of the International Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2000 (4): 375
8 Zimmerman AR, Gao B, Ahn MY. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils [J]. Soil Biol Biochem, 2011, 43 (6): 1169-1179
9 孙凡, 严思维, 林勇明, 陈爱民, 邓浩俊, 杜锟, 吴承祯, 洪伟. 汶川震区不同气候区受损植被土壤有机碳储量和碳密度分布特征[J]. 广西植物, 2017, 37 (12): 1498-1507 [Sun F, Yan SW, Lin YM, Chen AM, Deng HJ, Du K, Wu CZ, Hong W. Distribution characteristics of soil organic carbon storage and carbon density from damaged vegetation under different climate types in Wenchuan earthquake region [J]. Guihaia, 2017, 37 (12): 1498-1507]
10 缪琦, 史学正, 于东升, 王洪杰, 任红艳, 孙维侠, 赵永存. 气候因子对森林土壤有机碳影响的幅度效应研究[J]. 土壤学报, 2010, 47 (2): 270-278 [ Miao Q, Shi XZ, Yu DS, Wang HJ, Ren HY, Sun WX, Zhao YC. Scale effect of climate factors on forest soil organic carbon [J]. Acta Pedol Sin, 2010, 47 (2): 270-278]
11 Smith JL, Halvorson JJ, Bolton H. Soil properties and microbial activity across a 500m elevation gradient in a semi-arid environment[J]. Soil Biol Biochem, 2002, 34 (11): 1749-1757
12 朱凌宇, 潘剑君, 张威. 祁连山不同海拔土壤有机碳库及分解特征研究[J]. 环境科学, 2013, 34 (2): 668-675 [Zhu LY, Pan JJ, Zhang W. Study on soil organic carbon pools and turnover characteristics along an elevation gradient in Qilian Mountain [J]. Chin J Envir Sci, 2013, 34 (2): 668-675]
13 Tian QX, He HB, Cheng WX, Bai Z, Wang Y, Zhang XD. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient [J]. Sci Rep, 2016, 6 (1): 1-9
14 Zhu B, Wang XP, FANG JY, Piao SL, Shen HH, Zhao SQ, Peng CH. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China [J]. J Plant Res, 2010, 123 (4): 439-452
15 韩道瑞, 曹广民, 郭小伟, 张法伟, 李以康, 林丽, 李婧, 唐艳鸿, 古松. 青藏高原高寒草甸生态系统碳增汇潜力[J]. 生态学报, 2011, 31 (24): 7408-7417 [Han DR, Cao GM, Guo XW, Zhang FW, Li YK, Lin L, Li J, Tang YH, Gu S. The potential of carbon sink in alpine meadow ecosystem on the Qinghai Tibetan Plateau [J]. Acta Ecol Sin, 2011, 31 (24): 7408-7417]
16 Huang JQ, Li ZW, Zeng GM, Zhang JC, Li JB, Nie XD, Ma WM, Zhang X. Microbial responses to simulated water erosion in relation to organic carbon dynamics on a hilly cropland in subtropical China [J]. Ecol Eng, 2013, 60: 67-75
17 郭晓军, 崔鹏, 朱兴华. 典型泥石流流域蒋家沟的降雨-径流模拟[J]. 水土保持通报, 2011, 31 (1): 175-179 [Guo XJ, Cui P, Zhu XH. Flow simulation in a typical debris flow basin of Jiangjiagou canyon [J]. Bull Soil Water Conserv, 2011, 31 (1): 175-179]
18 宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社, 2001: 549-580 [Song YC. Vegetation ecology [M]. Shanghai: East China Normal University Press, 2001: 549-580]
19 McRoberts RE, Tomppo EO, Czaplewski RL. Sampling designs for national forest assessments [C]//Knowledge Ref Natl For Assessments. FAO: Rome, Italy, 2015: 23-40
20 潘守文. 现代气候学原理[M]. 北京: 气象出版社, 1994 [Pan Shouwen. Principles of Modern Climatology [M]. Beijing: Meteorological Press, 1994]
21 杨红飞, 穆少杰, 李建龙. 气候变化对草地生态系统土壤有机碳储量的影响[J]. 草业科学, 2012, 29 (3): 392-399 [Yang HF, Mu SJ, Li JL. Effect of climate change on soil organic carbon storage of grassland ecosystem [J]. Pratacult Sci, 2012, 29 (3): 392-399]
22 Fang C, Moncrief JB. The dependence of soil CO2 efflux on temperature[J]. Soil Biol Biochem, 2001, 33 (2): 155-165
23 Vogel JG, Valentine DW, Ruess RW. Soil and root respiration in mature Alaskan black spruce forest that vary in soil organic matter decomposition rates [J]. Can J Forest Res, 2005, 35 (1): 161-174
24 张薇, 王子芳, 王辉, 郑杰炳, 鲍金星, 高明. 土壤水分和植物残体对紫色水稻土有机碳矿化的影响[J]. 植物营养与肥料学报, 2007, 13 (6): 1013-1019 [Zhang W, Wang ZF, Wang H, Zheng JB, Bao JX, Gao M. Organic carbon mineralization affected by water content and plant residues in purple paddy soil [J]. J Plant Nutr Fertil, 2007, 13 (6): 1013-1019]
25 Rey A, Petsikos C, Jarvis PG, Grace J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions[J]. Eur J Soil Sci, 2005, 56 (5): 589-599
26 Callesen L, Liski J, Raulund-Rasmussen K, Olsson MT, Tau-Strand L, Vesterdal L, Westman CJ. Soil carbon stores in Nordic well-drained forest soils-relationships with climate and texture class[J]. Global Change Biol, 2003, 9 (3): 358-370
27 Jobbagy EG, Jackson RB. The vertical distribution of vegetation change and their treatment in models [J]. Ecol Appl, 2000, 10 (2): 470-483
28 Davidson EA, Verchot LV, Catt?nio JH, Ackerman IL, Carvalho JEM. Effects of soil water content on soil respiration in forests and cattle pastures of eastem Amazonia [J]. Biogeochemistry, 2000, 48: 53-69
29 Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J. Soil CO2 efflux in a tropical forest in the central Amazon [J]. Global Change Biol, 2004, 10 (5): 601-617
30 陈全胜, 李凌浩, 韩兴国, 阎志丹. 水分对土壤呼吸的影响及机理[J]. 生态学报, 2003, 23, (5): 972-978 [Chen QS, Li LH, Han XG, Yan ZD. Effect of water content on soil respiration and the mechanisms [J]. Acta Ecol Sin, 2003, 23, (5): 972-978]
31 王长庭, 龙瑞军, 王启基, 景增春, 尚占环, 丁路明. 高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J]. 草业学报, 2005, 14 (4): 15-20 [Wang CT, Long RJ, Wang QJ, Jing ZC, Shang ZH, Ding LM. Distribution of organic matternitrogen and phosphorus along an altitude gradient and productivity change and their relationships with environmental factors in the Alpine meadow [J]. Acta Pratac Sin, 2005, 14 (4): 15-20]
32 张剑, 汪思龙, 王清奎, 刘燕新. 不同森林植被下土壤活性有机碳含量及其季节变化[J]. 中国生态农业学报, 2009, 17, (1): 45-51 [Zhang J, Wang SL, Wang QK, Liu YX. Soil active organic carbon content and its seasonal changes under different forest vegetation [J]. Chin J Eco-Agric, 2009, 17 (1): 45-51]
33 Lin WT, Chou WC, Lin YC. Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan [J]. Forest Ecol Manage, 2005, 210 (1): 55-66
34 Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP. Impact factors and uncertainties of the temperature sensitivity of soil respiration [J]. Acta Ecol Sin, 2011, 31 (8): 2301-2311
35 陈锦盈. 中国几个气候带不同生态系统土壤有机碳分解动态及其通用模型探索[D]. 南京: 南京农业大学, 2008 [Chen JY. Soil organic carbon dynamics and general model for the dynamics in several temperate zones of different ecosystems [D]. Nanjing: Nanjing Agricultural University, 2008]
36 吴艳芹, 程积民, 白于, 朱仁斌, 陈奥, 魏琳. 坡向对云雾山典型草原枯落物分解特性的影响[J]. 草地学报, 2013, 21 (3): 460-466 [Wu YQ, Cheng JM, Bai Y, Zhu RB, Chen A, Wei L. Effects of different slope on litter decomposition characteristics in the national natural reserve of Yunwu Mountain [J]. Acta Agrestia Sin, 2013, 21 (3): 460-466]
37 杜峰, 梁宗锁, 徐学选, 张兴昌, 山仑. 陕北黄土丘陵区撂荒群落土壤养分与地上生物量空间异质性[J]. 生态学报, 2008, 28 (1): 13-22 [Du F, Liang ZS, Xu XX, Zhang XC, Shan L. Spatial heterogeneity of soil nutrients and aboveground biomass in abandoned old-fields of Loess Hilly region in northern Shaanxi, China [J]. Acta Ecol Sin, 2008, 28 (1): 13-22]
38 聂莹莹, 李新娥, 王刚. 阳坡-阴坡生境梯度上植物群落α多样性与β多样性的变化模式及与环境因子的关系[J]. 兰州大学学报, 2010, 46 (3): 73-79 [Nie YY, Li XE, Wang G. Vriation mode of α diversity and β diversity of plant communities of different habitat gradients from south-facing slope to north-facing slope and its relation with different environmental factors [J]. J Lanzhou Univ, 2010, 46 (3): 73-79]
39 Pritpal Singh, Dinesh K. Benbi. Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas [J]. Catena, 2018, 166: 171-180
40 王丽华, 薛晶月, 谢雨, 吴彦. 不同气候类型下四川草地土壤有机碳空间分布及影响因素[J]. 植物生态学报, 2018, 42 (3): 297-306 [Wang LH, Xue JY, Xie Y, Wu Y. Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China [J]. J Plant Ecol, 2018, 42 (3): 297-306]
41 王合云, 董智, 郭建英, 李红丽, 李锦荣, 韩国栋, 陈新闯. 不同放牧强度下短花针茅荒漠草原植被-土壤系统有机碳组分储量特征[J]. 生态学报, 2016, 36 (15): 4617-4625 [Wang HY, Dong Z, Guo JY, Li HL, Li JR, Han GD, Chen XC. Organic carbon storage properties in Stipa breviflora desert steppe vegetation soil systems under different grazing intensities [J]. Acta Ecol Sin, 2016, 36 (15): 4617-4625]
42 徐长林. 坡向对青藏高原东北缘高寒草甸植被构成和养分特征的影响[J]. 草业学报, 2016, 25 (4): 26-35 [Xu CL. Variations in vegetation composition and nutrient characteristics related to aspect in an alpine meadow in the northeast margin of the Qinghai-Tibet Plateau [J]. Acta Pratac Sin, 2016, 25 (4): 26-35]
43 王绍强, 周成虎. 中国陆地土壤有机碳库的估算[J]. 地理研究, 1999, 18 (4): 349-356 [Wang SQ, Zhou CH. Estimating soil carbon reservior of terrestrial ecosystem in China [J]. Geogr Res, 1999, 18 (4): 349-356]

相似文献/References:

[1]张云,张真,王鸿斌.气候因子对靖远松叶蜂暴发的影响[J].应用与环境生物学报,2006,12(05):660.
 ZHANG Yun,et al..Effect of Climate on Outbreak of Diprion jingyuanensis (Diprondae, Hemenoptera)[J].Chinese Journal of Applied & Environmental Biology,2006,12(05):660.
[2]罗清虎,孙凡,崔羽,等.泥石流频发流域失稳性坡面主要植物种间关联性[J].应用与环境生物学报,2018,24(04):689.[doi:10.19675/j.cnki.1006-687x.2017.11005]
 LUO Qinghu,SUN Fan,et al.Interspecific association among main plant species in the unstable slope with high-frequency debris flow[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):689.[doi:10.19675/j.cnki.1006-687x.2017.11005]

更新日期/Last Update: 2020-10-25