|本期目录/Table of Contents|

[1]郭静,宋秀丽,白杰,等.氟磺胺草醚降解菌株TB-2的生物学特性及生物修复对玉米生长发育的影响[J].应用与环境生物学报,2020,26(05):1059-1065.[doi: 10.19675/j.cnki.1006-687x.2019.09025]
 GUO Jing,SONG Xiuli,BAI Jie & TAO Bo.Biological characteristics of fomesafen-degrading strain TB-2 and effects of bioremediation on growth and development of corn[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1059-1065.[doi: 10.19675/j.cnki.1006-687x.2019.09025]
点击复制

氟磺胺草醚降解菌株TB-2的生物学特性及生物修复对玉米生长发育的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1059-1065
栏目:
土壤与农业微生物应用专栏
出版日期:
2020-10-25

文章信息/Info

Title:
Biological characteristics of fomesafen-degrading strain TB-2 and effects of bioremediation on growth and development of corn
作者:
郭静宋秀丽白杰陶波
1东北农业大学农学院 哈尔滨 150030 2岭南师范学院 湛江 524048
Author(s):
GUO Jing1 SONG Xiuli2 BAI Jie1 & TAO Bo1?
1 College of Agriculture, Northeast Agricultural University, Harbin 150030, China 2 Lingnan Normal University, Zhanjiang 524048, China
关键词:
氟磺胺草醚残留药害假单胞杆菌生物修复玉米
Keywords:
fomesafen residual phytotoxicity Pseudomonas bioremediation corn
DOI:
10.19675/j.cnki.1006-687x.2019.09025
摘要:
为解决氟磺胺草醚残留药害问题,利用已筛选出的高效降解菌株假单胞杆菌TB-2,结合高效液相色谱法检测其残留浓度,统计分析计算其降解率,利用室内盆栽培养结合田间应用进行降解菌对玉米的生物修复研究. 结果显示,氟磺胺草醚残留浓度在0.1-10 mg/L范围内,标准曲线线性良好,符合农残分析要求;LB液体培养基中氟磺胺草醚在TB-2降解菌处理72 h的降解率接近96%;最适接种量是5%,最适葡萄糖含量0.5%,35 ℃、pH 7.0时菌株生长最佳. 盆栽试验土壤中氟磺胺草醚残留浓度为0.4 mg/kg时,加入降解菌后能够明显恢复玉米的各项生长指标和生理指标. 在田间应用中,降解菌对375 g a.i./hm2氟磺胺草醚污染的土壤修复作用明显. 不同剂型降解菌剂对玉米抽穗期的效果最为显著,能有效地减轻玉米毒害,促进玉米生长,减少产量损失. 在高剂量氟磺胺草醚处理下,降解菌剂应用效果依次为粒剂>粉剂>菌液. 本研究表明微生物修复可减轻氟磺胺草醚残留对后茬作物玉米的毒害作用,结果可为农药残留的生物修复提供科学参考. (图6 表2 参31)
Abstract:
To solve the toxicity problems associated with fomesafen residues, a highly efficient fomesafen-degrading TB-2 (Pseudomonas) strain was selected in the laboratory. The residual concentration of fomesafen was determined by high-performance liquid chromatography, and the degradation rate was calculated using statistical analysis. The bioremediation effect by degrading bacteria was carried out using a potted culture experiment combined with field applications. When the fomesafen residue concentration was in the range of 0.1–10 mg/L, the standard curve met the requirements of pesticide residue analysis. The study showed that the degradation rate of fomesafen by strain TB-2 was close to 96% within 72 h of incubation, the optimum inoculum size was found to be 5%, and the optimum glucose content was measured at 0.5%. The optimum temperature and pH were 35 ℃ and 7.0, respectively. When the residual concentration of fomesafen was 0.4 mg/kg, the growth index and physiological index of corn could be restored after adding degrading bacteria in the potted experiment. In field applications, the degrading bacteria were found to have a significant effect on the soil remediation of 375 g a.i./hm2 fomesafen. The different dosage forms of degrading bacteria had the most significant effect on the heading stage of corn, which can effectively alleviate the poisoning of corn, promote the growth of corn, and reduce the loss of yield. Under the high-dose fomesafen treatment, the application effect of the degrading bacteriostatic agent was found to be granules > powder > bacterial liquid. This study showed that microbial remediation could reduce the toxic effect of fomesafen residue on corn and has provided a scientific reference for bioremediation of pesticide residue.

参考文献/References:

1 陶波, 池源, 滕春红, 李松宇, 刘迎春. 助剂对氟磺胺草醚在土壤中分布影响研究[J]. 东北农业大学学报, 2018, 49 (4): 21-28 [Tao B, Chi Y, Teng CH. Study on the effect of adjuvant on fomesafen distribution in soil [J]. J NE Agric Univ, 2018, 49 (4): 21-28]
2 Hu HY, Zhou H, Zhou SX, Li ZJ, Wei CJ, Yu Y. Fomesafen impacts bacterial communities and enzyme activities in the rhizospher [J]. Environ Pollut, 2019, 253 (23): 301-311
3 Salicis F, Krivobok S, Jack M, Benoit Guyod JL. Biodegradation of fluoranthene by soil fungi [J]. Chemosphere, 1999, 38 (13): 3031-3039
4 陶波, 胡凡. 杂草化学防除实用技术[M]. 北京: 化学工业出版社, 2009: 29-30 [Tao B, Hu F. Weed Chemical Control Practical Technology [M]. Beijing: Chenmical Industry Press, 2009: 29-30]
5 王险峰, 关成宏, 辛明远. 我国长残效除草剂使用概况、问题及对策[J]. 农药, 2003 (11): 5-10 [Wang XF, Guan CH, Xin MY. Long residual herbicides in China-current status, problems and solutions [J]. Pesticide, 2003 (11): 5-10]
6 Audus LJ. The biological detoxication of hormone herbicides in soil [J]. Plant Soil, 1951, 3 (2): 170-192
7 薛琦. 土壤微生物和农药[J]. 农药译丛, 1994, 16 (4): 53-54 [Xue Q. Soil microorganisms and pesticides [J]. Pestic Trans, 1994, 16 (4): 53-54]
8 Babiker EM, Hulbert SH, Schroeder KL, Paulitz TC. Optimum timing of preplant applications of glyphosate to manage rhizoctonia root rot in barley [J]. Plant Dis, 2011 95(3): 304-310]
9 高慧鹏. 土壤中持久性有机污染物生物可利用性的预测及其生物降解的促进方法[D]. 大连: 大连理工大学, 2014 [Gao HP. Bioavailability assessment and biodegradation-promoting method for persistent organic pollutants in soil [D]. Dalian: Dalian University of Technology, 2014]
10 王娅丽, 王友超, 黄英泽, 来洋, 杨峰山, 付海燕, 刘春光. 菌株Shigella flexneri FB5响应氟磺胺草醚蛋白质组学分析[J]. 中国农学通报, 2018, 34 (23): 110-116 [Wang YL, Wang YC, Huang YZ, Lai Y, Yang FS, Fu HY, Liu CG. Strain Shigella fleneri FB5 responses to fomesafen: proteomics analysis [J]. Chin Agric Sci Bull, 2018, 34 (23): 110-116]
11 崔文娟, 邹月利, 陶波, 孙宁, 赵迪, 朱美华, 张如如. 真菌黄曲霉对氟磺胺草醚的最佳降解条件研究[J]. 食品工业科技, 2014, 35 (1): 178-180+185 [Cui WJ, Zou YL, Tao B, Sun N, Zhao D, Zhu MH, Zhang RR. Research of optimum degradation condition of fomesafen by Aspergillus flavus [J]. Sci Technol Food Ind, 2014, 35 (1): 178-180+185]
12 Feng ZZ, Li QF, Zhang J, Zhang J, Huang X, Lu P, li SP. Microbial degradation of fomesafen by a newly isolated strain Pseudomonas zeshuii BY-1 and the biochemical degradation pathway [J]. J Agric Food Chem, 2012, 60 (29): 7104-7110
13 吴秋彩, 刘艳, 王晓萍. 氟磺胺草醚降解菌F-12的分离鉴定及降解特性研究[J]. 中国农学通报, 2012, 28 (12): 216-222 [Wu QC, Liu Y, Wang XP. Isolation, identification and degradation characteristics analysis of formesafen degradation bacteria [J]. Chin Agric Sci Bull, 2012, 28 (12): 216-222]
14 白宝璋, 金锦子, 白崧, 黄丽萍. 玉米根系活力TTC测定法的改良[J]. 玉米科学, 1994 (4): 44-47[Bai BZ, Jin JZ, Bai S, Huang LP. Improvement of TTC method determining root activity in corn [J]. J Maize Sci, 1994 (4): 44-47]
15 李得孝, 郭月霞, 员海燕, 张敏, 龚小艳, 穆芳. 玉米叶绿素含量测定方法研究[J]. 中国农学通报, 2005, 44 (6): 153-155 [Li DX, Guo YX, Yuan HY, Zhang M, Gong XY, Mu F. Determined methods of chlorophyll from mzize [J]. Chin Agric Sci Bull, 2005, 44 (6): 153-155]
16 Hiratsuka N, Wariishi H, Tanaka H. Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus versicolor [J]. Appl Microbiol Biot, 2001, 57 (4): 563-571
17 Chen L, Cai T, Wang Q. Characterization of fluoroglycofen ethyl degradation by strain Mycobacterium phocaicum MBWY-1 [J]. Curr Microbiol, 2011, 62 (6): 1710-1717
18 Keum YS, Lee YJ, Kim JH. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1 [J]. J Agr Food Chem, 2008, 56: 9146-9151
19 战徊旭, 任洪雷, 蒋凌雪, 滕春红, 邱丽娟, 陶波. 氟磺胺草醚降解菌的分离鉴定及生长特性研究[J]. 作物杂志, 2011, 11 (2): 40-44 [Zhan HX, Ren HL, Jiang LX, Teng CH, Qiu LJ, Tao B. Saparation, identification and growth charaters of herbicide fomesafen defrading-fungi [J]. Crops, 2011, 11 (2): 40-44]
20 杨峰山, 刘亮, 刘春光, 李云龙, 于慧颖, 宋福强, 耿贵. 除草剂氟磺胺草醚降解菌FB8的分离鉴定与土壤修复[J]. 微生物学报, 2011, 51 (9): 1232-1239 [Yang FS, Liu L, Liu CG, Li YL, Yu HY, Song FQ, Geng G. Isolation, identification and soil remediation of fomesafe -degrading strain FB8 [J]. Acta Microbiol Sin., 2011, 51 (9): 1232-1239]
21 李阳, 孙庆元, 宗娟, 韩婷婷. 一株降解氟磺胺草醚的黑曲霉菌特性[J]. 农药, 2009, 48 (12): 878-880+882 [Li Y, Sun QY, Zong J, Han TT. Characteristics of fungus degeneration fomesafen [J]. Pesticide, 2009, 48 (12): 878-880+882]
22 Liang B, Lu P, Li HH, Li SP, Huang X. Biodegradation of fomesafen by strain Lysinibacillus sp. ZB-1 isolated from soil [J]. Chemosphere, 2009, 77 (11): 1614-1619
23 Cui N, Wang S, Khorram MS, Fang H, Yu YL. Microbial degradation of fomesafen and detoxification of fomesafen-contaminated soil by the newly isolated strain Bacillus sp. FE-1 via a proposed biochemical degradation pathway [J]. Sci Total Environ, 2018, 616-617 (10): 1612-1619.
24 王海兰, 臧海莲, 成毅, 安雪娇, 徐春红, 李春艳. 氯嘧磺隆降解菌的筛选及对污染土壤的生物修复[J]. 中国环境科学, 2018, 38 (4): 1473-1480 [Wang HL, Zang HL, Cheng Y, An XJ, Xu CH, Li CY. Screening of a chlorimuron-ethyl-degrading strain and chlorimuron-ethyl-contaminated soil bioremediation [J]. Chin J Sci Technol, 2018, 38 (4): 1473-1480]
25 Ermakova IT, Kiseleva NI, Shushkova T, Zharikov M, Zharikov GA, Leontievsky AA. Bioremediation of glyphosate-contaminated soils [J]. Appl Microbiol Biot, 2010, 88 (2): 585-594
26 苏丹, 李培军, 台培东, Verkhozina EV. 共基质对10株细菌降解苯并芘的作用研究[J]. 农业环境科学学报, 2007, 58 (1): 290-294 [Su D, li PJ, Tai PD, Verkhozina EV. Effects of Co-Substrates on the biodegradation of benzo[a]pyrene by ten bacteria strains [J]. J Agro-environ Sci, 2007, 58 (1): 290-294]
27 任大军, 颜克亮, 刘飞虎, 张晓昱, 陆晓华. 不同共代谢基质对白腐菌降解吲哚的作用研究[J]. 环境科学学报, 2007, 6 (2): 206-212 [Ren DJ, Yan KL, Liu FH, Zhang XY, Lu XH. The study on effects of co-metabolism substrates on the biodegradation of indole by white rot fungus [J]. Environ Sci, 2007, 6 (2): 206-212]
28 Raj A, Reddy MMK, Chandra R, Purohit HJ, Kapley A. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill [J]. Biodegradation, 2007, 18 (6): 783-792
29 刘晓春, 阎光绪, 郭绍辉, 陈春茂. 共基质和无机盐对原油降解菌株降解原油效果的影响[J]. 化工环保, 2008, 28 (3): 218-221 [Liu XC, Yan GX, Guo SH, Chen CM. Effects of co-substrates and inorganic salts on degradation of crude oil by oil degrading bacteria [J]. Environ Prot Chem Inst, 2008, 28 (3): 218-22]
30 侯晓娟, 赵巍巍, 杨茜, 李莎, 常津毓, 张浩. 戊唑醇降解菌B1的培养基优化[J]. 吉林农业大学学报, 2019, 41 (1): 23-28 [Hou XJ, Zhao WW, Yang X, Li S, Chang JH, Zhang H. Optimization of culture medium for thbuconazole-degrading strain B1 [J]. J Jilin Agric Univ, 2019, 41 (1): 23-28]
31 顾娟, 李秀芬, 齐希光, 任月萍, 王新华. 固态微生物菌剂的制备及其在好氧堆肥中的应用[J]. 环境工程学报, 2019, 14 (1): 253-261 [Gu J, Li XF, Qi XG, Ren YP, Wang XH. Preparation of soild microbial inoculants and its application in aerobic composting [J]. Chin J Environ Eng, 2019: 14 (1): 253-261]

更新日期/Last Update: 2020-10-25