|本期目录/Table of Contents|

[1]吴盼盼,石福习,王宪伟,等.大兴安岭贫营养泥炭地维管束和非维管束植物叶片碳氮磷化学计量学特征[J].应用与环境生物学报,2020,26(05):1176-1183.[doi: 10.19675/j.cnki.1006-687x.2019.09017]
 WU Panpan,SHI Fuxi,WANG Xianwei,et al.Leaf C:N:P stoichiometry of vascular and non-vascular plants in an ombrotrophic peatland in the Daxing’an Mountains[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1176-1183.[doi: 10.19675/j.cnki.1006-687x.2019.09017]





Leaf C:N:P stoichiometry of vascular and non-vascular plants in an ombrotrophic peatland in the Daxing’an Mountains
1江西农业大学林学院,鄱阳湖流域森林生态系统保护与修复国家林业和草原局重点实验室 南昌 330045 2中国科学院东北地理与农业生态研究所,湿地生态与环境重点实验室 长春 130102
WU Panpan1 SHI Fuxi1 2? WANG Xianwei2 XU Jiawen1 LIU Shanshan1 & MAO Rong1 2
1 Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China 2 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
northern peatland permafrost plant functional group ecological stoichiometry mosses
为了解北方泥炭地植物的养分状况和元素限制性,分析大兴安岭多年冻土区典型贫营养泥炭地5类维管束植物(乔木、落叶灌木、常绿灌木、莎草、禾草)和3类非维管束植物(泥炭藓、非泥炭藓、地衣)叶片的总有机碳(TOC)、全氮(TN)、全磷(TP)浓度及生态化学计量学特征. 结果表明:(1)不同物种间叶片的C、N、P浓度及化学计量比差异较大,非维管束植物叶片的C、N、P浓度低于维管束植物,而C:N和C:P比却较高,反映出较高的N、P利用效率;(2)泥炭地22种植物叶片的N:P比均小于14,说明该地区植物的生长和发育主要受N元素的限制,其中柴桦(Betula fruticosa)、小叶章(Deyeuxia angustifolia)和石蕊(Cladonia rangiferina)3个物种叶片的N:P比值更是小于6,因而更易受N限制,可能是极敏感性物种;(3)功能群间的C、N、P及化学计量各指标变异系数(CV,7.2%-54%)远高于各个功能群内部的变异系数(CV,0.9%-31.1%). 上述结果意味着该区域植物普遍受到N元素的限制,且总体上非维管束植物比维管束植物具有更高的养分利用效率,这可为北方泥炭地植物群落的可持续经营和管理提供科学依据. (图2 表3 参45)
In order to know the plant nutrient status and limiting nutrient elements, we analyzed the leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometry of vascular plants (trees, deciduous shrub, evergreen shrub, sedge, and grass) and non-vascular plants (Sphagnum, non-Sphagnum, and lichen) in an ombrotrophic peatland of permafrost region in the Daxing’an Mountains, Northeast China. The results showed great differences in leaf C, N, and P concentrations and their stoichiometry among species. The leaf C, N, and P concentrations of non-vascular plants were lower than that of vascular plants, while the C:N and C:P ratios showed opposite trends. These indicate that the non-vascular plants had higher N and P use efficiency relative to the vascular plants. Leaf N:P ratios of all 22 plants in this peatland were less than 14, indicating that the growth and development of plants are mainly limited by N. Moreover, leaf N:P ratios of Betula fruticose, Deyeuxia angustifolia, and Cladonia rangiferina was less than 6, implying that those species were limited by N more than other plants, and, thus, might be the sensitive species. The coefficient of variance (CV) values of leaf C, N, P, and their stoichiometry among plant functional groups ranging from 7.2% to 54% were much higher than the CV values within plant functional groups (ranging from 0.9% to 31.1%). Our results suggested that the plants in this area were prevalently influenced by N limitation and the non-vascular plants have relatively higher nutrient utilization efficiency. These findings provide a fundamental reference for sustainable management of the plant community in the boreal peatlands.


1 Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW. Biological stoichiometry from genes to ecosystems [J]. Ecol Let, 2000, 3: 540-550
2 Hall EK, Maixner F, Franklin O, Daims H, Richter A, Battin T. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches [J]. Ecosystems, 2011, 14 (2): 261-273
3 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34 (1): 2-6 [He JS, Han XG. Ecological stoichiometry: searching for unifying priciples from individuals to ecosystems [J]. Chin J Plant Ecol, 2010, 34 (1): 2-6]
4 Hessen DO, ?gren GI, Anderson TR, Elser JJ, de Ruiter PC. Carbon sequestration in ecosystems: the role of stoichiometry [J]. Ecology, 2004, 85 (5): 1179-1192
5 Güsewell S. N?: P ratios in terrestrial plants: variation and functional significance [J]. New Phytol, 2004, 164: 243-266
6 Elser JJ, Dobberfuhl DR, Mackay NA, Schampel JH. Organism size, life history, and N:P stoichiometry [J]. BioScience, 1996, 46 (9): 674-684
7 Venterink HO, Güsewell S. Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation [J]. Funct Ecol, 2010, 24: 877-886
8 Manzoni S, Trofymow JA, Jackson RB, Porporato A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter [J]. Ecol Monogr, 2010, 80 (1): 89-106
9 Mackenzie FT, Ver LM, Lerman A. Century-scale nitrogen and phosphorus controls of the carbon cycle [J]. Chem Geol, 2002, 190: 13-32
10 Wang M, Moore TR. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an Ombrotrophic peatland reflects plant functional type [J]. Ecosystems, 2014, 17 (4): 673-684
11 蒋龙, 徐振锋, 吴福忠, 谭波, 游成铭, 李汉森, 刘一霖, 彭永翔, 曾合州, 杨万勤. 亚热带3种典型常绿森林土壤和植物叶片碳氮磷化学计量特征[J]. 应用与环境生物学报, 2019, 25 (4): 759-767 [Jiang L, Xu ZF, Wu FZ, Tan B, You CM, Li HS, Liu YL, Peng YX, Zeng HZ, Yang WQ. Stoichiometric characteristics of C, N, and P in soil and plant leaves in three typical evergreen forest types in subtropical zone [J]. Chin J Appl Environ Biol, 2019, 25 (4): 759-767]
12 张珂, 陈永乐, 高艳红, 回嵘, 何明珠. 阿拉善荒漠典型植物功能群氮、磷化学计量特征[J]. 中国沙漠, 2014, 34 (5): 1261-1267 [Zhang K, Chen YL, Gao YH, Hui R, He MZ. Stoichiometry characteristics of leaf nitrogen and phosphorus of different plant functional groups in Alashan desert region [J]. J Des Res, 2014, 34 (5): 1261-1267]
13 Yu Q, Wu HH, He NP, Lü XT, Wang ZP, Elser JJ, Wu JG, Han XG. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass [J]. PLoS ONE, 2012, 7 (3): e32162
14 丑敏霞, 魏新元. 豆科植物共生结瘤的分子基础和调控研究进展[J]. 植物生态学报, 2010, 34 (7): 876-888 [Chou MX, Wei XY. Review of research advancements on the molecular basis and regulation of symbiotic nodulation of legumes [J]. Chin J Plant Ecol, 2010, 34 (7): 876-888]
15 Han WX, Fang JY, Guo DL, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China [J]. New Phytol, 2005, 168: 377-385
16 He JS, Fang JY, Wang ZH, Wang ZH, Guo DL, Flynn DFB, Geng Z. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China [J]. Oecol, 2006, 149: 115-122
17 陈慧敏, 宋长春, 石福习, 张新厚, 毛瑢. 辽东桤木扩张对大兴安岭泥炭地植物群落组成和生物量的影响[J]. 应用与环境生物学报, 2017, 23 (5): 778-784 [Chen HM, Song CC, Shi FX, Zhang XH, Mao R. Effects of alder expansion on plant community composition and biomass in the peatland in the Daxing’an Mountain [J]. Chin J Appl Environ Biol, 2017, 23 (5): 778-784]
18 Aerts R, Verhoeven JTA, Whigham DF. Plant-mediated controls on nutrient cycling in temperate fens and bogs [J]. Ecology, 1999, 80 (7): 2170-2181
19 Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming [J]. Ecol Appl, 1991, 1 (2): 182-195
20 Güsewell S, Koerselman W. Variation in nitrogen and phosphorus concentrations of wetland plants [J]. Persp Plant Ecol Evol Syst, 2002, 5 (1): 37-61
21 李瑞, 胡朝臣, 许士麒, 吴迪, 董玉平, 孙新超, 毛瑢, 王宪伟, 刘学炎. 大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征[J]. 植物生态学报, 2018, 42 (12): 1154-1167 [Li R, Hu CC, Xu SQ, Wu D, Dong YP, Sun XC, Mao R, Wang XW, Liu XY. Leaf C, N, and P concentrations and their stoichiometry in peatland plants of Da Hinggan Ling, China [J]. Chin J Plant Ecol, 2018, 42 (12): 1154-1167]
22 任书杰, 于贵瑞, 姜春明, 方华军, 孙晓敏. 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征[J]. 应用生态学报, 2012, 23 (3): 581-586 [Ren SJ, Yu GR, Jiang CM, Fang HJ, Sun XM. Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystem along the North-South Transect of East China [J]. Chin J Appl Ecol, 2012, 23 (3): 581-586]
23 He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY. Leaf nitrogen: phosphorus stoichiometry across chinese grassland biomes [J]. Oecologia, 2008, 155: 301-310
24 Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proc Nat Acad Sci USA, 2004, 101 (30): 11001-11006
25 Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW. Nutritional constraints in terrestrial and freshwater food webs [J]. Nature, 2000b, 408: 578-580
26 刘子刚, 王铭, 马学慧. 中国泥炭地有机碳储量与储存特征分析[J]. 中国环境科学, 2012, 32 (10): 1814-1819 [Liu ZG, Wang M, Ma XH. Analysis of organic carbon storage and characteristics of China’s peatlands [J]. Chin Environ Sci, 2012, 32 (10): 1814-1819]
27 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35 (12): 1245-1255 [Yu LM, Wang CK, Wang XC. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China [J]. Chin J Plant Ecol, 2011, 35 (12): 1245-1255]
28 朱亮, 顾国军, 徐振锋, 游成铭, 牟凌, 丁爽, 曾欣, 吴福忠. 北亚热带常绿阔叶林乔灌草物种的碳氮磷生态化学计量比[J]. 应用与环境生物学报, 2019, 25 (6): 1277-1287 [Zhu L, Gu GJ, Xu ZF, You CM, Mou L, Ding S, Zeng X, Wu FZ. Ecological stoichiometric ratio of carbon, nitrogen and phosphorus for tree, shrub and herb species in north subtropical evergreen broad-leaved forest [J]. Chin J Appl Environ Biol, 2019, 25 (6): 1277-1287]
29 葛佳丽, 卜兆君, 郑星星, 马进泽, 崔伟琳, 谷晓楠. 三种泥炭藓对干旱及植物相互作用的形态响应[J]. 生态学杂志, 2014, 33 (9): 2363-2368 [Ge JL, Bu ZJ, Zheng XX, Ma JZ, Cui WL, Gu XN. Morphological responses of three Sphagnum species to drought and interspecific interaction [J]. Chin J Ecol, 2014, 33 (9): 2363-2368]
30 韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云. 北京及周边地区植物叶的碳氮磷元素计量特征[J]. 北京大学学报(自然科学版), 2009, 45 (5): 855-860 [Han WX, Wu Y, Tang LY, Chen YH, Li LP, He JS, Fang JY. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery [J]. Acta Sci Nat Univ Peking, 2009, 45 (5): 855-860]
31 白坤栋, 莫凌, 刘铭, 张德楠, 何成新, 万贤崇, 蒋得斌. 广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式[J]. 生态学报, 2015, 35 (17): 5776-5787 [Bai KD , Mo L, Liu M, Zhang DN, He CX, Wan XC, Jiang DB. Nutrient resorption patterns of evergreen and deciduous tree species at different altitudes on Mao’er Mountain, Guangxi [J]. Acta Ecol Sin, 2015, 35 (17): 5776-5787]
32 Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment—a review [J]. Environ Poll, 2001, 114: 471-492
33 宁志英, 李玉霖, 杨红玲, 孙殿超, 毕京东. 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41 (10): 1069-1080 [Ning ZY, Li YL, Yang HL, Sun DC, Bi JD. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land [J]. Chin J Plant Ecol, 2017, 41 (10): 1069-1080]
34 Ruttenberg KC. The global phosphorus cycle [J]. Treatise on Geochemistry, 2003, 8: 585-643.
35 Güsewell S, Koerselman W, Verhoeven JTA. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands [J]. Ecol Appl, 2003, 13 (2): 372-384
36 Yan ZB, Tian D, Han WX, Tang ZY, Fang JY. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants [J]. An Bot, 2017, 120 (6): 937-942
37 Koerselman W, Meuleman AFM. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 1996, 33 (6): 1441-1450
38 Chen FS, Niklas KJ, Zeng DH. Important foliar traits depend on species-grouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China [J]. Plant Soil, 2011, 340 (1-2): 337-345
39 Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change [J]. New Phytol, 2010, 186: 593-608
40 Bradshaw C, Kautsky U, Kumblad L. Ecological stoichiometry and multi-element transfer in a coastal ecosystem [J]. Ecosystems, 2012, 15: 591-603
41 唐青青, 黄永涛, 丁易, 臧润国. 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异[J]. 生物多样性, 2016, 24 (3): 262-270 [Tang QQ, Huang YT, Ding Y, Zang RG. Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests [J]. Biodiv Sci, 2016, 24 (3): 262-270]
42 胡楠, 范玉龙, 丁圣彦, 廖秉华. 陆地生态系统植物功能群研究进展[J]. 生态学报, 2008, 28 (7): 3302-3311 [Hu N, Fang YL, Ding SY, Liao BH. Progress in researches on plant functional groups of terrestrial ecosystem [J]. Acta Ecol Sin, 2008, 28 (7): 3302-3311]
43 Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S. Intraspecific functional variability: extent, structure and sources of variation [J]. J Ecol, 2010, 98: 604-613
44 Zhang HY, Wu HH, Yu Q, Wang ZW, Wei CZ, Long M, Kattge J, Smith M, Han XG. Sampling date, leaf age and root size: implications for the study of plant C:N:P stoichiometry [J]. PLoS ONE, 2013, 8 (4): e60360
45 张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁. 中国典型草原优势植物功能群氮磷化学计量学特征研究[J]. 草地学报, 2010, 18 (4): 503-509 [Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N. The nitrogen : phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China [J]. Acta Agrestia Sin, 2010, 18 (4): 503-509]


 CHEN Huimin,SONG Changchun,et al.Effects of alder expansion on plant community composition and biomass in the peatland in the Da’xingan Mountain[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):778.[doi:10.3724/SP.J.1145.2016.10037]
 ZHANG Xiaolan,LIU Guimin**,et al.Effects of thaw slump on the bacterial community in a desert steppe in the Beiluhe Region of the Qinghai-Tibet Plateau[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1327.[doi:10.19675/j.cnki.1006-687x.2019.01049]

更新日期/Last Update: 2020-10-25