|本期目录/Table of Contents|

[1]叶贺,红梅,赵巴音那木拉,等.水氮控制对短花针茅荒漠草原根系分解的影响[J].应用与环境生物学报,2020,26(05):1169-1175.[doi: 10.19675/j.cnki.1006-687x.2019.07032]
 YE He,HONG Mei,ZHAO Bayinnamula,et al.Effects of water and nitrogen treatments on root decomposition in a Stipa breviflora desert steppe[J].Chinese Journal of Applied & Environmental Biology,2020,26(05):1169-1175.[doi: 10.19675/j.cnki.1006-687x.2019.07032]
点击复制

水氮控制对短花针茅荒漠草原根系分解的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年05期
页码:
1169-1175
栏目:
研究论文
出版日期:
2020-10-25

文章信息/Info

Title:
Effects of water and nitrogen treatments on root decomposition in a Stipa breviflora desert steppe
作者:
叶贺红梅赵巴音那木拉李静闫瑾张宇晨梁志伟
内蒙古农业大学草原与资源环境学院内蒙古自治区土壤质量与养分资源重点实验室 呼和浩特 010018
Author(s):
YE He HONG Mei? ZHAO Bayinnamula LI Jing YAN Jin ZHANG Yuchen & LIANG Zhiwei
Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhhot 010018, China
关键词:
荒漠草原氮沉降降水变化根系分解
Keywords:
desert steppe nitrogen deposition precipitation change root decomposition
DOI:
10.19675/j.cnki.1006-687x.2019.07032
摘要:
全球变化导致氮沉降增加和降雨格局发生变化,从而影响短花针茅荒漠草原植物根系分解过程. 为了解水氮变化对荒漠草原根系凋落物分解的影响,采用凋落物分解网袋法,以建群种短花针茅(Stipa breviflora)和优势种冷蒿(Artemisia frigida)、无芒隐子草(Cleistogenes songorica)3种植物混合根系为研究对象,分析其分解动态变化. 试验采用裂区设计,主区为自然降雨(CK)、增雨30%(W)和减雨30%(R)3个水分处理,副区为0(N0)、30(N30)、50(N50)和100(N100)kg hm-2 a-1 4个氮素处理共12个处理. 结果显示:分解630 d后,增雨显著降低根系质量残留率,3个水分处理分别在CK-N50、W-N50、R-N30处理下质量残留率最低,分别为63.13%、60.33%、69.90%,W-N50处理根系质量残留率显著低于其余11个处理(P < 0.05). 适量的氮输入可以促进根系分解,但过量氮会对根系分解产生抑制作用. 本研究表明荒漠草原影响根系质量残留率的主要因素为水分,次要因素为氮素. 水氮变化首先会影响根系的基质质量,从而进一步影响根系分解质量残留率,碳含量、氮含量、纤维素、木质素均是根系分解过程中的决定性因素. (图3 表4 参36)
Abstract:
Global climate change increases nitrogen deposition and modifies rainfall patterns, which in turn affects the whole root system decomposition process of the Stipa breviflora desert grassland ecosystem. This study used the litter decomposition net bag method to study the dynamic changes in the decomposition of the roots of three plant species, Stipa breviflora, Artemisia frigida, and Cleistogenes songorica, to understand how changes in water and nitrogen affect litter decomposition in a desert grassland root system. We used a split-zone test design to create 12 treatments comprising three moisture treatments: natural rainfall (CK), 30% rain enhancement (W), and 30% rain reduction (R); each of these comprised four different nitrogen (N) treatments: 0 (N0), 30 (N30), 50 (N50), and 100 (N100) kg hm-2 a-1. The results showed that after 630 days of decomposition, increasing the rainfall significantly reduced the root mass residue rate, and among the three moisture treatments, CK-N50, W-N50, and R-N30 treatments resulted in the lowest mass residue rates of 63.13%, 60.33%, and 69.90%, respectively. The residual rate of roots subjected to N50 treatment was significantly lower than that of roots subjected to the other 11 treatments (P < 0.05). Appropriate N input can promote root decomposition, but excessive N can inhibit root decomposition. Our study showed that water is the main factor affecting the residual rate of root mass in the desert steppe, with N being secondary factor. Changes in water and N concentrations will affect the quality of the root system’s matrix, which will further affect the residual rate of root decomposition. Additionally, the carbon, N, cellulose, and lignin contents are factors affecting the root decomposition process.

参考文献/References:

1 IPCC. Climate Change 2007: the Physical Science Basis: Summary for Policymakers [R]. IPCC WGI Fourth Assessment Report, 2007
2 常运华, 刘学军, 李凯辉, 吕金岭, 宋韦. 大气氮沉降研究进展[J]. 干旱区研究, 2012, 29 (6): 972-979 [Chang YH, Liu XH, Li KH, Lü JL, Song W. Research progress in atmospheric nitrogen deposition [J]. Arid Zone Res, 2012, 29 (6): 972-979]
3 Zhang WD, Yuan SF, Hu N, Lou YL, Wang SL. Predicting soil fauna effect on plant litter decomposition by using boosted regression trees [J]. Soil Biol Biochem, 2015, 82: 81-86
4 Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, V?osmarty CJ. Nitrogen cycles: past, present, and future [J]. Biogeochemistry, 2004, 70 (2): 153-226
5 IPCC. Climate Change 2013: the Physical Science Basis: Summary for Policymakers [R]. IPCC WGI Fifth Assessment Report, 2013
6 Bolinder MA, K?tterer T, Andrén O, Parent LE. Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish long-term field experiment [J]. Can J Soil Sci, 2012, 92 (6): 821-833
7 Luo YQ, Zhao XY, Li YQ, Zuo XA, Lian J, Wang T. Root decomposition of Artemisia halodendron and its effect on soil nitrogen and soil organic carbon in the Horqin Sandy Land, northeastern China [J]. Ecol Res, 2016, 31 (4): 535-545
8 罗永清, 赵学勇, 王涛李, 玉强, 左小安, 丁杰萍. 植物根系分解及其对生物和非生物因素的响应机理研究进展[J]. 草业学报, 2017, 26 (2): 197-207 [Luo YQ, Zhao XY, Wang TL Yu Q, Zuo XA, Ding JP. Plant root decomposition and its responses to biotic and abiotic factors [J]. Acta Prat Sin, 2017, 26 (2): 197-207]
9 单建平, 陶大立. 国外对树木细根的研究动态[J]. 生态学杂志, 1992, 11 (4): 46-49 [Shan JP, Tao DL. Oversea researches on tree fine root [J]. Chin J Ecol, 1992, 11 (4): 46-49]
10 John B, Pandey H, Tripathi R. Decomposition of fine roots of Pinus kesiya and turnover of organic matter, N and P of coarse and fine pine roots and herbaceous roots and rhizomes in subtropical pine forest stands of different ages [J]. Biol Ferti Soils, 2002, 35 (4): 238-246
11 Steinaker DF, Wilson SD. Belowground litter contributions to nitrogen cycling at a northern grassland-forest boundary [J]. Ecology, 2005, 86 (10): 2825-2833
12 Fahey TJ, Arthur MA. Further studies of root decomposition following harvest of a northern hardwoods forest [J]. For Sci, 1994, 40 (4): 618-629
13 宋森, 谷加存, 全先奎, 郭大立, 王政权. 水曲柳和兴安落叶松人工林细根分解研究[J]. 植物生态学报, 2008, 6: 1227-1237 [Song S, Gu JC, Quan XK, Wang ZQ. Fine root decomposition of Fraxinus mandshurica and Larix gmelini plantations [J]. Chin J Plant Ecol, 2008, 6: 1227-1237]
14 方华, 莫江明. 氮沉降对森林凋落物分解的影响[J]. 生态学报, 2006, 26 (9): 3121-3126 [Fang H, Mo JM. Effects of nitrogen deposition on forest litter decomposition [J]. Acta Ecol Sin, 2006, 26 (9): 3121-3126]
15 魏琳, 程积民, 井光花, 赵洁, 苏纪帅, 刘建, 金晶. 黄土高原天然草地3种优势物种细根分解及养分释放对模拟氮沉降的响应[J]. 水土保持学报, 2018, 32 (1): 252-258 [Wei L, Cheng JM, Jing GH, Zhao J, Su JS, Liu J, Jing J. Effects of stimulated nitrogen deposition on the fine root decomposition and nutrient release of three dominant species in natural grassland on theloess plateau [J]. J Soil Water Conserv, 2018, 32 (1): 252-258]
16 赵红梅, 黄刚, 马健, 李彦, 周丽. 荒漠区地表凋落物分解对季节性降水增加的响应[J]. 植物生态学报, 2012, 36 (6): 471-482 [Zhao HM, Huang G, Ma J, Li Y, Zhou L. Responses of surface litter decomposition to seasonal water addition in desert [J]. Chin J Plant Ecol, 2012, 36 (6): 471-482]
17 郑俊强, 郭瑞红, 李东升, 李东, 李金功, 朱保坤, 韩士杰. 氮沉降和干旱对阔叶红松林凋落物分解的影响[J]. 北京林业大学报, 2016, 38 (4): 21-28 [Zheng JQ, Guo RH, Li DS, Li D, Li JG, Zhu BK, Han SJ. Effects of nitrogen deposition and drought on litter decomposition in a temperate forest [J]. J Beijing For Univ, 2016, 38 (4): 21-28]
18 Rowland AP, Roberts JD. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods [J]. Commun Soil Sci Plant Anal, 1994, 25: 269-277
19 郭忠玲, 郑金萍, 马元丹, 李庆康, 于贵瑞, 韩士杰, 范春楠, 刘万德. 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J]. 生态学报, 2006, 26 (4): 1037-1046 [Guo ZL, Zheng JP, Ma YD, Li QK, Yu GR, Han SJ, Fan CN, Liu WD. Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China [J]. Acta Ecol Sin, 2006, 26 (4): 1037-1046]
20 Talbot JM, Treseder KK. Interactions among lignin, cellulose, and nitrogen drive litter chemistry—decay relationships [J]. Ecology, 2012, 93 (2) : 345-354
21 杨继松, 刘景双, 孙丽娜. 三江平原草甸湿地土壤呼吸和枯落物分解的CO2释放[J]. 生态学报, 2008, 28 (2): 805-810 [Yang JS, Liu JS, Sun LN. CO2-release rate of soil respiration and litter decomposition of meadow marshes in Sanjiang Plain [J]. Acta Ecol Sin, 2008, 28 (2): 805-810]
22 Hobbie SE, Eddy WC, Buyarski CR, Carol Adair E, Ogdahl ML, Weisenhorn P. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment [J]. Ecol Monogr, 2012, 82 (3): 389-405
23 He KJ, Qi Y, Huang YM, Sheng ZL, Xu X, Duan L. Response of aboveground biomass and diversity to nitrogen addition - a five-year experiment in semi-arid grassland of Inner Mongolia, China [J]. Sci Rep, 2016, 6: 31919
24 Deng XW, Liu Y, Han SJ. Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition [J]. J For Res, 2009, 20 (2): 111-116
25 李学斌, 马林, 陈林, 许冬梅, 谢应忠.草地枯落物分解研究进展及展望[J]. 生态环境学报, 2010, 19 (9): 2260-2264 [Li XB, Ma L, Chen L, Xu DM, Xie YZ. Research progress and the prospect of grassland litters decomposition [J]. Ecol Environ Sci, 2010, 19 (9): 2260-2264]
26 Andrén O, Kihara J, Bationo A, Bernard V, Thomas K. Soil climate and decomposer activity in Sub-Saharan Africa estimated from standard weather station data: a simple climate index for soil carbon balance calculations [J]. Ambio, 2007, 36 (5): 379-386
27 Yang HJ, Li Y, Wu MY, Zhang Z, Li LH, Wan SQ. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits [J]. GCB Bioenergy, 2011, 17 (9): 2936-2944
28 Berg B, Mc Claugherty C. Plant Litter [electronic resource]: decomposition, Humus Formation, Carbon Sequestratio [M]. Verlag Berlin Heidelberg: Springer, 2008
29 Silver WL, Miya RK. Global patterns in root decomposition: comparisons of climate and litter quality effects [J]. Oecologia, 2001, 129 (3):407-419
30 Chapin FSIII, Matron PA, Mooncy HA. Principles of terrestrial ecosystem ecology [M]. Berlin: New York; Springer Verlag, 2002: 151-175
31 Henry HAL, Cleland EE, Field CB, Vitousek PM. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland [J]. Oecologia, 2005, 142: 465-473
32 Melillo JM, Aber JD, Muratore JF. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics [J]. Ecology, 1982, 63 (3): 621-626
33 Martínez AT, Speranza M, Ruiz-Due?as FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, Río JC. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin [J]. Int Microbiol, 2005, 8 (3): 195-204
34 韩雪, 王春梅, 蔺照兰. 模拟氮沉降对温带森林凋落物分解的影响[J]. 生态环境学报, 23 (9): 1503-1508 [Han X, Wang CM, Lin ZL. Effects of simulated nitrogen deposition on temperate forest litter decomposition [J]. Ecol Environ Sci, 2014, 23 (9): 1503-1508]
35 Micks P, Downs MR, Magill AH, Nadelhoffer KJ, Aber JD. Decomposing litter as a sink for N-15-enriched additions to an oak forest and a red pine plantation [J]. For Ecol Manage, 2004, 196 (1): 71-87
36 Allson SD, Hanson CA, Treseder KK. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems [J]. Soil Biol Biochem, 2007, 39 (8): 1878-1887

相似文献/References:

[1]袁颖红,樊后保,李燕燕,等.模拟氮沉降对土壤酸化和土壤盐基离子含量的影响[J].应用与环境生物学报,2011,17(04):461.[doi:10.3724/SP.J.1145.2011.00461]
 YUAN Yinghong,FAN Houbao,LI Yanyan,et al.Effects of Simulated N Deposition on Soil Acidification and Content of Base Cations[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):461.[doi:10.3724/SP.J.1145.2011.00461]
[2]李化山,汪金松,法蕾,等.模拟氮沉降对油松幼苗生长的影响[J].应用与环境生物学报,2013,19(05):774.[doi:10.3724/SP.J.1145.2013.00774]
 LI Huashan,WANG Jinsong,FA Lei & ZHAO Xiuhai.Effects of Simulated Nitrogen Deposition on Seedling Growth of Pinus tabulaeformis[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):774.[doi:10.3724/SP.J.1145.2013.00774]
[3]陈瑶,王法明,莫其锋,等.氮磷添加对华南热带森林尾叶桉木质残体分解和养分动态的影响[J].应用与环境生物学报,2015,21(04):743.[doi:10.3724/SP.J.1145.2015.01056]
 CHEN Yao,WANG Faming,MO Qifeng,et al.Effects of nitrogen and phosphorus additions on woody debris decomposition in a secondary tropical forest of South China[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):743.[doi:10.3724/SP.J.1145.2015.01056]
[4]彭勇,陈刚,陈冠陶,等.模拟氮沉降对瓦屋山常绿阔叶次生林土壤呼吸的影响[J].应用与环境生物学报,2015,21(04):733.[doi:10.3724/SP.J.1145.2015.01023]
 PENG Yong,CHEN Gang,CHEN Guantao,et al.Effects of simulated nitrogen deposition on soil respiration in a secondary evergreen broad-leaved forest on Wawushan Mountain[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):733.[doi:10.3724/SP.J.1145.2015.01023]
[5]刘文亭,卫智军,吕世杰,等.短花针茅荒漠草原不同组织尺度地上生物量[J].应用与环境生物学报,2015,21(05):912.[doi:10.3724/SP.J.1145.2014.11019]
 LIU Wenting,WEI Zhijun,L? Shijie,et al.Above-ground biomass in Stipa breviflora desert grassland at different organizational scales[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):912.[doi:10.3724/SP.J.1145.2014.11019]
[6]陈晶,康峰峰,程小琴,等.太岳山华北落叶松林土壤呼吸特征对模拟氮硫沉降的短期响应[J].应用与环境生物学报,2016,22(22卷04):646.[doi:10.3724/SP.J.1145.2015.11027]
 CHEN Jing,KANG Fengfeng,CHENG Xiaoqin,et al.Short-term response of soil respiration to simnlated nitrogen and sulfue deposition in Larix principis-rupprechtii plantation in Taiyue Mountain, China*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):646.[doi:10.3724/SP.J.1145.2015.11027]
[7]杨开军,杨万勤,庄丽燕,等.四川盆地西缘都江堰大气氮素湿沉降特征[J].应用与环境生物学报,2018,24(01):107.[doi:10.19675/j.cnki.1006-687x.2017.04001]
 YANG Kaijun,YANG Wanqin,ZHUANG Liyan,et al.Characteristics of atmospheric wet nitrogen deposition in Dujiangyan, western edge of Sichuan Basin[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):107.[doi:10.19675/j.cnki.1006-687x.2017.04001]
[8]陈冠陶,李顺,彭天驰,等.根系隔离和氮添加对湿性常绿阔叶林土壤碳氮组分的影响[J].应用与环境生物学报,2018,24(01):125.[doi: 10.19675/j.cnki.1006-687x.2017.04021]
 CHEN Guantao,LI Shun,PENG Tianchi,et al.Effect of root isolation and nitrogen addition on soil carbon and nitrogen component in a moist evergreen broad-leaved forest[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):125.[doi: 10.19675/j.cnki.1006-687x.2017.04021]
[9]铁烈华,符饶,张仕斌,等.华西雨屏区常绿阔叶林凋落叶分解过程中纤维素降解对模拟氮、硫沉降的响应[J].应用与环境生物学报,2019,25(01):16.[doi:10.19675/j.cnki.1006-687x.2018.03014]
 TIE Liehua,FU Rao,ZHANG Shibin,et al.Effects of simulated nitrogen and sulfur deposition on cellulose degradation during foliar litter decomposition in evergreen broad-leaved forest in the Rainy Area of West China[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):16.[doi:10.19675/j.cnki.1006-687x.2018.03014]
[10]刘鑫铭,荣海,吴承祯,等.模拟氮沉降对温郁金养分吸收及生长的影响[J].应用与环境生物学报,2019,25(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.12033]
 LIU Xinming,RONG Hai,WU Chengzhen**,et al.Effects of simulated nitrogen deposition on nutrient absorption and growth of Curcuma wenyujin Y. H. Chen et. C. Ling[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.12033]

更新日期/Last Update: 2020-10-25