|本期目录/Table of Contents|

[1]于丰源,蒋礼玲,贾举庆,等.中华猕猴桃bZIP家族成员的比较基因组学分析[J].应用与环境生物学报,2020,26(02):226-235.[doi:10.19675/j.cnki.1006-687x.2019.06032]
 YU Fengyuan,JIANG Liling,et al.Comparative genomics analysis of bZIP family members in Actinidia chinensis[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):226-235.[doi:10.19675/j.cnki.1006-687x.2019.06032]
点击复制

中华猕猴桃bZIP家族成员的比较基因组学分析()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年02期
页码:
226-235
栏目:
研究论文
出版日期:
2020-04-25

文章信息/Info

Title:
Comparative genomics analysis of bZIP family members in Actinidia chinensis
作者:
于丰源蒋礼玲贾举庆张真真陈思佳牛向丽王明雪黄胜雄
于丰源1, 2 蒋礼玲1? 贾举庆3 张真真2 陈思佳2 牛向丽2 王明雪1, 2 黄胜雄2?
Author(s):
YU Fengyuan1 2 JIANG Liling1? JIA Juqing3 ZHANG Zhenzhen2 CHEN Sijia2 NIU Xiangli2 WANG Mingxue1 2 & HUANG Shengxiong2?
1 State Key Laboratory of Plateau Ecology and Agriculture / Crop Breeding & Cultivation Research Institute, Qinghai Academy of Agricultural and Forestry Sciences / Qinghai Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural affairs of China, Qinghai University / National Duplicate Genebank for Crops, Xining 810016, China 2 School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China 3 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
关键词:
bZIP中华猕猴桃系统进化比较基因组学分析基因表达模式
Keywords:
bZIP Actinidia chinensis phylogenetic evolution comparative genomics analysis gene expression pattern
DOI:
10.19675/j.cnki.1006-687x.2019.06032
摘要:
bZIP转录因子调控着植物的生长发育和逆境胁迫应答,是植物中一类重要的转录因子. 基于系统的生物信息学方法,鉴定得到79个中华猕猴桃bZIP转录因子,进化分析结果揭示中华猕猴桃bZIP家族成员在J、K、L三个分组中出现了成员的缺失. 中华猕猴桃bZIP家族成员的bZIP保守域主要由碱性结构域和亮氨酸拉链结构域组成,其亮氨酸拉链结构域的第4、5肽段的第7位的亮氨酸残基存在一定程度的变异. bZIP保守域之外,在中华猕猴桃的18个bZIP家族成员中,还发现包括bZIP_C保守域在内的8种其他类型的保守域,集中分布在A、C、D和G组bZIP成员中. 通过与葡萄和番茄bZIP同源基因的比较,阐明中华猕猴桃基因组的两次三倍倍增是其bZIP基因数目增加的主要原因. 中华猕猴桃不同发育时期果实的转录组揭示了参与调控果实成熟的57个bZIP基因的表达水平. 本研究阐明了中华猕猴桃bZIP家族成员的进化特征、保守域组成、家族成员数目扩增的主要原因,提供了涉及果实发育的优良候选基因. (图6 表2 参28)
Abstract:
The bZIP family members belong to an important kind of transcriptors, which regulate plant growth and development, and responses to biotic and abiotic stresses in plants. Based on systematic bioinformatics methods, 79 bZIP genes were identified in Actinidia chinensis in this study. The absence of bZIP members in the J, K, and L groups was revealed by phylogenetic analyses. Among kiwifruit bZIP family members, the bZIP domains consist of a basic region and a leucine zipper. There were some variants in the leucine residues of the seventh position in the fourth and fifth peptides of the leucine zipper region. Besides the bZIP domains, eight additional domains, including bZIP_C, were identified in 18 kiwifruit bZIP family members, which were distributed in the A, C, D, and G groups. The comparisons of bZIP homologous genes between kiwifruit, grapevine, and tomato plants demonstrated bZIP gene member expansions in kiwifruit, which were mainly the result of genome triplication. The RNA-Seq data of kiwi fruits from different developmental stages showed the expression profiles of 57 bZIP genes, which might regulate fruit ripening. Our study demonstrated the evolutionary characteristics, domain compositions, and reasons for family member expansions of kiwifruit bZIP family members and could provide good gene candidates for future studies of fruit ripening in A. chinensis.

参考文献/References:

1 Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis [J]. Trends Plant Sci, 2002, 7 (3): 106-111
2 Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes [J]. PLoS ONE, 2008, 3 (8): e2944
3 Agarwal P, Baranwal VK, Khurana P. Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress [J]. Sci Rep, 2019, 9 (1): 4608
4 Wang Z, Yan L, Wan L, Huai D, Kang Y, Shi L, Jiang H, Lei Y, Liao B. Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut [J]. BMC Genomics, 2019, 20 (1): 51
5 Liu J, Chu J, Ma C, Jiang Y, Ma Y, Xiong J, Cheng ZM. Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis [J]. Plant Cell Rep, 2019, 38 (5): 587-596
6 Hao X, Zhong Y, Nutzmann HW, Fu X, Yan T, Shen Q, Chen M, Ma Y, Zhao J, Osbourn A, Li L, Tang K. Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua [J]. Plant Cell Physiol, 2019, 60 (8): 1747-1760
7 Lü Z, Guo Z, Zhang L, Zhang F, Jiang W, Shen Q, Fu X, Yan T, Shi P, Hao X, Ma Y, Chen M, Li L, Zhang L, Chen W, Tang K. Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynthesis in Artemisia annua [J]. J Exp Bot, 2019, 70 (15): 3969-3979
8 An JP, Qu FJ, Yao JF, Wang XN, You CX, Wang XF, Hao YJ. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple [J]. Hortic Res, 2017, 4: 17023
9 An JP, Yao JF, Xu RR, You CX, Wang XF, Hao YJ. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation [J]. Plant Cell Environ, 2018, 41 (11): 2678-2692
10 Liu CC, Chi C, Jin LJ, Zhu J, Yu JQ, Zhou YH. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato [J]. Plant Cell Environ, 2018, 41 (8): 1762-1775
11 Zhang L, Zhang L, Xia C, Gao L, Hao C, Zhao G, Jia J, Kong X. A novel wheat C-bZIP gene, TabZIP14-B, participates in salt and freezing tolerance in transgenic plants [J]. Front Plant Sci, 2017, 8: 710
12 Cai W, Yang Y, Wang W, Guo G, Liu W, Bi C. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs [J]. Plant Physiol Biochem, 2018, 124: 100-111
13 Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton [J]. Planta, 2017, 246 (3): 453-469
14 Wang W, Qiu X, Yang Y, Kim HS, Jia X, Yu H, Kwak SS. Sweetpotato bZIP Transcription factor IbABF4 confers tolerance to multiple abiotic stresses [J]. Front Plant Sci, 2019, 10: 630
15 朱芸晔, 薛冰, 王安全, 王文杰, 周昂, 黄胜雄, 刘永胜. 番茄bZIP转录因子家族的生物信息学分析[J]. 应用与环境生物学报, 2014, 20 (5): 767-774 [Zhu YY, Xue B, Wang AQ, Wang WJ, Zhou A, Huang SX, Liu YS. Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum [J]. Chin J Appl Environ Biol, 2014, 20 (5): 767-774]
16 陈强, 刘建, 陈丹阳, 于丰源, 江梦柯, 郑玉凤, 牛向丽, 刘永胜, 黄胜雄. 中华猕猴桃EIN3/EIL转录因子家族的成员鉴定、系统进化和基因表达模式[J]. 应用与环境生物学报, 2018, 24 (2): 315-321 [Chen Q, LIU J, Chen DY, Yu FY, Jiang MK, Zheng YF, Niu XL, Liu YS, Huang SX. Genome-wide identification, phylogenetic evolution, and gene expression pattern of EIN3/EIL transcription factors in Actinidia chinensis [J]. Chin J Appl Environ Biol, 2018, 24 (2): 315-321]
17 Huang S, Ding J, Deng D, Tang W, Sun H, Liu D, Zhang L, Niu X, Zhang X, Meng M, Yu J, Liu J, Han Y, Shi W, Zhang D, Cao S, Wei Z, Cui Y, Xia Y, Zeng H, Bao K, Lin L, Min Y, Zhang H, Miao M, Tang X, Zhu Y, Sui Y, Li G, Sun H, Yue J, Sun J, Liu F, Zhou L, Lei L, Zheng X, Liu M, Huang L, Song J, Xu C, Li J, Ye K, Zhong S, Lu BR, He G, Xiao F, Wang HL, Zheng H, Fei Z, Liu Y. Draft genome of the kiwifruit Actinidia chinensis [J]. Nat Commun, 2013, 4: 2640
18 Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution [J]. Nature, 2012, 485 (7400): 635-641
19 Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions [J]. Nucleic Acids Res, 2013, 41 (12): e121
20 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0 [J]. Bioinformatics, 2007, 23 (21): 2947-2948
21 Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33 (7): 1870-1874
22 Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator [J]. Genome Res, 2004, 14:1188-1190
23 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 1997, 25 (17): 3389-3402
24 Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics [J]. Genome Res, 2009, 19 (9): 1639-1645
25 de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software [J]. Bioinformatics, 2004, 20 (9): 1453-1454
26 The French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla [J]. Nature, 2007, 449 (7161): 463-467
27 Mou W, Li D, Luo Z, Li L, Mao L, Ying T. SlAREB1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening [J]. Plant Sci, 2018, 276: 239-249
28 Lovisetto A, Guzzo F, Tadiello A, Confortin E, Pavanello A, Botton A, Casadoro G. Characterization of a bZIP gene highly expressed during ripening of the peach fruit [J]. Plant Physiol Biochem, 2013, 70: 462-470

相似文献/References:

[1]阳小成,王伯初,段传人,等.机械振荡对猕猴桃愈伤组织的生理效应[J].应用与环境生物学报,2002,8(01):36.
 YANG Xiaocheng,et al..Physiological effect of mechanical vibration on callus of Actinidia chinensis planch[J].Chinese Journal of Applied & Environmental Biology,2002,8(02):36.
[2]阳小成,王伯初,叶梅.不同强度的声波对猕猴桃试管苗根系发育的影响[J].应用与环境生物学报,2004,10(03):274.
 YANG Xiaocheng,et al..Effects of different sound intensities on root development of Actinidia chinensis plantlet[J].Chinese Journal of Applied & Environmental Biology,2004,10(02):274.
[3]孟蒙,唐维,刘嘉,等.基于中华猕猴桃“红阳”转录组序列开发EST-SSR分子标记[J].应用与环境生物学报,2014,20(04):564.[doi:10.3724/SP.J.1145.2013.12034]
 MENG Meng,TANG Wei,LIU Jia,et al.Development of EST-SSR markers in Actinidia chinesis cv ‘Hongyang’ based on transcriptomic sequences[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):564.[doi:10.3724/SP.J.1145.2013.12034]
[4]朱芸晔,薛冰,王安全,等.番茄bZIP转录因子家族的生物信息学分析[J].应用与环境生物学报,2014,20(05):767.[doi:10.3724/SP.J.1145.2014.01033]
 ZHU Yunye,XUE Bing,WANG Anquan,et al.Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):767.[doi:10.3724/SP.J.1145.2014.01033]
[5]董婧,刘永胜,唐维.中华猕猴桃(Actinidia chinensis Planch)果实香气成分及相关基因表达[J].应用与环境生物学报,2018,24(02):307.[doi:10.19675/j.cnki.1006-687x.2017.05044]
 DONG Jing,LIU Yongsheng,TANG Wei,et al.Volatile components and their corresponding synthetic gene expression profile in the fruits of Actinidia chinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):307.[doi:10.19675/j.cnki.1006-687x.2017.05044]
[6]陈强,刘建,陈丹阳,等.中华猕猴桃EIN3/EIL转录因子家族的成员鉴定、系统进化和基因表达模式[J].应用与环境生物学报,2018,24(02):315.[doi:10.19675/j.cnki.1006-687x.2017.05006]
 CHEN Qiang,LIU Jian,CHEN Danyang,et al.Genome-wide identification, phylogenetic evolution, and gene expression pattern of EIN3/EIL transcription factors in Actinidia chinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):315.[doi:10.19675/j.cnki.1006-687x.2017.05006]

更新日期/Last Update: 2020-04-25