|本期目录/Table of Contents|

[1]吕煜梦,张舒婷,王雪晶,等.多花黄精几丁质诱导赤霉素应答基因(CIGR)克隆及其功能[J].应用与环境生物学报,2020,26(02):255-263.[doi:10.19675/j.cnki.1006-687x.2019.06022]
 L? Yumeng,ZHANG Shuting,WANG Xuejing,et al.Cloning and preliminary functional study of the chitin-inducible gibberellin-responsive (CIGR) gene in Polygonatum cyrtonema Hua[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):255-263.[doi:10.19675/j.cnki.1006-687x.2019.06022]
点击复制

多花黄精几丁质诱导赤霉素应答基因(CIGR)克隆及其功能()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年02期
页码:
255-263
栏目:
研究论文
出版日期:
2020-04-25

文章信息/Info

Title:
Cloning and preliminary functional study of the chitin-inducible gibberellin-responsive (CIGR) gene in Polygonatum cyrtonema Hua
作者:
吕煜梦张舒婷王雪晶张梓浩程春振王天池赖钟雄
福建农林大学园艺植物生物工程研究所 福州 350002
Author(s):
L? Yumeng ZHANG Shuting WANG Xuejing ZHANG Zihao CHENG Chunzhen WANG Tianchi? & LAI Zhongxiong?
Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
多花黄精CIGR基因亚细胞定位光质光周期基因表达
Keywords:
Polygonatum cyrtonema Hua CIGR (chitin-inducible gibberellin-responsive) gene subcellular localization light quality photoperiod gene expression
DOI:
10.19675/j.cnki.1006-687x.2019.06022
摘要:
为探讨多花黄精几丁质诱导赤霉素应答基因(chitin-inducible gibberellin-responsive,CIGR)在不同光处理下的的作用机制,采用全长验证的方法获得多花黄精CIGR基因的cDNA序列、gDNA序列,并对其进行生物信息学分析,再对CIGR蛋白进行亚细胞定位观察,同时对不同光质和光周期处理下CIGR基因的表达模式进行分析. 结果显示,多花黄精CIGR基因cDNA序列和gDNA全长序列一致,完整的开放阅读框(ORF)长度为1 770 bp,共编码589个氨基酸,CIGR基因无内含子结构. 生物信息学分析表明CIGR具有一个GRAS结构域,属于GRAS家族,是植物特有的转录因子,为碱性蛋白,无信号肽;Motif分析表明,CIGR蛋白在物种间比较保守,保守区主要位于中部至3′末端;氨基酸序列进化分析表明,多花黄精与石刁柏的CIGR亲缘关系最近,同源性达81%. 进一步亚细胞定位显示CIGR蛋白定位于细胞核,与预测结果一致. 实时荧光定量PCR(qPCR)结果显示,多花黄精CIGR基因具有器官表达特异性,在叶中表达量最高. 在不同光质和光周期处理下,CIGR基因在蓝光下表达量较高,在远红光下表达量低;在光周期9 h/d的处理中出现峰值. 本研究表明CIGR基因可能受蓝光及短光照周期调控从而影响多花黄精叶片的发育过程. (图9 表1 参49)
Abstract:
This study aimed to evaluate the mechanism of the CIGR (Chitin-inducible gibberellin-responsive) gene. First, the CIGR gene was cloned, then a bioinformatics analysis of the CIGR gene and subcellular localization of the CIGR protein were carried out. Finally, an expression analysis of the CIGR gene under different light qualities, photoperiods, and in different tissues of Polygonatum cyrtonema Hua was carried out. Full-length verification was used to obtain the CIGR gene cDNA and gDNA sequences of Polygonatum cyrtonema Hua. The cDNA sequence of the CIGR gene and the full length of gDNA were identical, and the complete open reading frame (ORF) was 1 770 bp in length, which encoded a total of 589 amino acids. The results showed that the CIGR gene had no intron structure. Bioinformatics analysis indicated that the CIGR protein has a GRAS conserved, which belongs to the GRAS family and is a plant-specific transcription factor. Moreover, CIGR was a basic protein with no signal peptide. Motif analysis found that the CIGR protein was relatively conserved among different species, and the conserved region was mainly located at the middle to 3’ end. Evolution analysis of the CIGR amino acid sequence showed that the CIGR proteins in Polygonatum cyrtonema Hua and Asparagus officinalis maintained a strong genetic relationship with 81% homology. Further subcellular localization revealed that the CIGR protein was localized in the nucleus, which was consistent with the predicted results. Real-time quantitative PCR (qPCR) results showed that the CIGR gene of Polygonatum cyrtonema Hua had organ expression specificity and the highest expression in leaves. Under different light conditions and photoperiods, the CIGR gene was expressed more under blue light and less under far red light, and the expression peak appeared in the treatment of the 9 h/d photoperiod. This study showed that the CIGR gene responded to light quality and photoperiod, and it appears that blue light and short daylight may be more suitable for the growth of Polygonatum cyrtonema Hua.

参考文献/References:

1 Hartweck LM. Gibberellin signaling [J]. Planta, 2008, 229 (1): 1-13
2 李军, 周涛, 郑伟, 张晨, 龚安慧, 肖承鸿, 江维克. 外源GA_3对太子参块根发育及赤霉素生物合成的调控[J]. 分子植物育种. 2018, 16 (20): 341-348 [Li J, Zhou T, Zhen W, Zhang C, Gong AH, Xiao CH, Jiang WK. Regulation of GA3 on the development of tuberous root and gibberellins biosynthesis of Pseudostellaria heterophylla [J]. Mol Plant Breed, 2018, 16 (20): 341-348]
3 Yamaguchi S. Gibberellin metabolism and its regulation [J]. J Plant Growth Regul, 2001, 20 (4): 317-318
4 Bolle C. The role of GRAS proteins in plant signal transduction and development [J]. Planta, 2004, 218 (5): 683-692
5 张文霞, 刁志娟, 吴为人. 植物GRAS蛋白研究的新进展[J]. 分子植物育种, 2016, 15 (5): 1159-1165 [Zhang WX. New advances in the study of plant GRAS proteins [J]. Mol Plant Breed, 2016, 15 (5): 1159-1165]
6 Dill A, Jung HS, Sun TP. The DELLA motif is essential for gibberellin-induced degradation of RGA [J]. PNAS, 2001, 98 (24): 14162-14167
7 Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez, D, Benfey PN. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes [J]. Plant J Cell Mol Biol, 2010, 18 (1): 111-119
8 Zhang H, Cao Y, Shang C, Li J, Wang J, Wu Z, Ma L, Qi T, Fu C, Ba Z. Genome-wide characterization of GRAS family genes in Medicago truncatula reveals their evolutionary dynamics and functional diversification [J] . PLoS ONE, 2017, 12 (9): e185439
9 Guo Y, Wu H, Li X, Li Q, Zhao X, Duan X, An Y, Lü W, An H. Identification and expression of GRAS family genes in Maize (Zea mays L.) [J]. PLoS ONE, 2017, 12 (9): e185418
10 Zhou MB, Yan Z, Tang DQ. Characterization and primary functional analysis of BvCIGR, a member of the GRAS gene family in Bambusa ventricosa [J]. Bot Rev, 2011, 77 (3): 233-241
11 Itoh H, Shimada A, Ueguchi-Tanaka MN, Hasegawa Y, Ashikari M, Matsuoka M. Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice [J]. Plant J, 2010, 44 (4): 669-679
12 Tian C, Wan P, Sun S Li J, Chen M. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis [J]. Plant Mol Biol, 2004, 54 (4): 519-532
13 Richards D, Peng JN. Plant GRAS and metazoan STATs: one family [J]. Bioessays. 2015, 22 (6): 573-577
14 Day RB, Shibuya N, Minami E. Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor [J]. Biochim Biophys Acta, 2003, 1625 (3): 261-268
15 Day RB, Tanabe S, Koshioka M, Mitsui T, Itoh H, Ueguchi-Tanaka M, Matsuoka M, Kaku H, Shibuya N, Minami E. Two rice GRAS family genes responsive to N-Acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells [J]. Plant Mol Biol, 2004, 54 (2): 261-272
16 Bolle C, Koncz C, Chua NH. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction [J]. Genes Dev, 2000, 14 (10): 1269-1278
17 袁阳阳. 山葡萄GRAS家族基因VaPAT1在非生物胁迫应答中的功能研究[D]. 武汉: 中国科学院武汉植物园, 2016 [Yuan YY. Functional study of VaPAT1, a GRAS gene from Vitis Amurensis,in response to abiotic stresses [D]. Wuhan: Wuhan Botanical Garden, University of Chinese Academy of Sciences, 2016]
18 Kneissl J, Shinomura T, Furuya M, Bolle C. A rice phytochrome a in Arabidopsis: the role of the N-terminus under red and far-red light [J]. Mol Plant, 2008, 1 (1): 84-102
19 李丽, 田丽娜, 任振兴, 龙子江. 黄精多糖的结构分析及功能活性研究进展[J]. 中国实验方剂学杂志, 2015 (15): 231-234 [Li L, Tian LN, Ren ZX, Long ZJ. Structural analysis and functional activity research progress of Polygonatum sibiricum polysaccharides [J]. Chin J Exp Tradit Med Formulae, 2015 (15): 231-234]
20 张洁, 马百平, 杨云, 孙国珍. 黄精属植物甾体皂苷类成分及药理活性研究进展[J]. 中国药学杂志, 2006, 41 (5): 14-16 [Zhang J, Ma BP, Yang Y, Sun GZ. Advances in research on steroidal saponins and pharmacological activities of Polygonatum [J]. Chin Pharm J, 2006, 41 (5): 14-16]
21 黄河胜, 马传庚, 陈志武. 黄酮类化合物药理作用研究进展[J]. 中国中药杂志, 2000, 25 (10): 589-592 [Huang HS, Ma CG, Chen ZW. Advances in pharmacological studies of flavonoids [J]. China J Chin Mater Med, 2000, 25 (10): 589-592]
22 陶弘景.名医别录(辑校本)[M]. 北京: 人民卫生出版社, 1986: 342 [Tao HJ. Famous Doctor (School Copy) [M]. Beijing: People’s Health Publishing House, 1986: 342]
23 李时珍著, 吴兆基, 武春华. 本草纲目(上册) [M]. 北京: 时代文艺出版社, 2005 [Li SZ, Wu ZJ, Wu CH. Compendium of Materia Medica (Volume One) [M]. Beijing: Times Literature and Art Publishing House, 2005]
24 国家药典委员会. 中华人民共和国药典: 2005年版. 一部[M]. 北京: 化学工业出版社, 2005 [National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China: 2005 edition. One [M]. Beijing: Chemical Industry Press, 2005]
25 Sun Q, Yoda K, Suzuki H. Internal axial light conduction in the stems and roots of herbaceous plants [J]. J Expl Bot, 2005, 56 (409): 191-203
26 邢阿宝, 崔海峰, 俞晓平, 张雅芬, 叶子弘. 光质及光周期对植物生长发育的影响[J]. 北方园艺, 2018 (3): 163-172 [Xing AB, Cui HF, Yu XP, Zhang YF, Ye ZH. Effect of nutrient components on growth of Pholiota adiposa [J]. North Hortic, 2018 (3): 163-172]
27 Fan S, Zhang D, Gao C, Zhao M, Wu H, Li Y, Shen Y, Han M. Identification, classification, and expression analysis of GRAS Gene family in Malus domestica [J]. Front Physiol, 2017, 8: 253
28 严涵薇. 玉米及其近缘物种无内含子基因的数据库构建与进化研究[D]. 合肥: 安徽农业大学, 2014 [Yan HW. Database construction and evolutionary analysis of intronless genes in maize and related species [D]. Hefei: Anhui Agricultural University, 2014]
29 张松, 黄波, 夏学峰, 孙之荣. 蛋白质亚细胞定位的生物信息学研究[J]. 生物化学与生物物理进展, 2007, 34 (6): 573-579 [Zhang S, Huang B, Xia XF, Sun ZR. Bioinformatics study of protein subcellular localization [J]. Prog Biochem Biophys, 2007, 34 (6): 573-579]
30 樊航, 宣磊, 胥猛. 杨树PeHAM1和PeHAM2基因的克隆、表达及亚细胞定位[J]. 分子植物育种, 2019, 17 (8): 2476-2485 [Fan H, Xuan L, Xu M. Cloning, expression and subcellular localization of PeHAM1 and PeHAM2 genes in poplar [J]. Mol Plant Breed, 2019, 17 (8): 2476-2485]
31 李蓉, 吴晓佩, 王雪晶,陈裕坤, 郭容芳, 林玉玲, 赖钟雄, 徐涵. 文心兰RFNR的克隆、亚细胞定位及其与LFNR不同的胁迫响应机制研究[J]. 园艺学报, 2018, 45 (11): 2164-2176 [Li R, Wu XP, Wang XJ, Chen YK, Guo RF, Lin YL, Lai ZX, Xu H. Cloning and subcellular localization of RFNR and the mechanisms of stress induced response of RFNR and LFNR in Oncidium [J]. Acta Hortic Sin, 2018, 45 (11): 2164-2176]
32 Marchetti J, Bougaran G, Jauffrais T, Lefebvre S, Rouxel C, Saint-Jean B, Lukomska E, Robert R, Cadoret JP. Effects of blue light on the biochemical composition and photosynthetic activity of Isochrysis sp. (T-iso) [J]. J Appl Phycol, 2013, 25 (1): 109-119
33 李国良, 刘中华, 许泳清, 张鸿, 李华伟, 纪荣昌, 罗文彬, 邱思鑫, 汤浩. 光温对叶菜型甘薯叶片花青素合成及相关酶基因表达的影响[J]. 核农学报, 2017, 31 (1): 8-13 [Li GL, Liu ZH, Xu YQ, Zhang H, Li HW, Ji RC, Luo WB, Qiu SX, Tang H. Effects of light temperature on anthocyanin biosynthesis and expression of related enzyme genes in leaves of leafy sweet potato [J]. J Nucl Agri Sci, 2017, 31 (1): 8-13]
34 Ma Z, Li S, Zhang M, Jiang S, Xiao Y. Light intensity affects growth, photosynthetic capability, and total flavonoid accumulation of anoectochilus plants [J]. Hortsci A Publ Ame Soc Hortic Sci, 2010, 45 (6): 863-867
35 Li H, Chen X, Wang Y, Yao D, Lai Z. Exploration of the effect of blue light on microRNAs involved in the accumulation of functional metabolites of longan embryonic calli through RNA-sequencing [J]. J Sci Food Agric, 2018, 99: 1533-1547
36 Li H, Lin Y, Chen X, Yu B, Wang C, Xu X, Yun W, Lai Z. Effects of blue light on flavonoid accumulation linked to the expression of miR393, miR394 and miR395 in longan embryogenic calli [J]. PLoS ONE, 2018, 13 (1): e191444
37 Yang Z, Liu B, Su J,Liao J, Lin C, Oka Y. Cryptochromes orchestrate transcription regulation of diverse blue light responses in plants [J]. Photochem Photobiol, 2017, 93 (1): 112-127
38 Zhou W, Liu W, Yang Q. Reducing nitrate content in Lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes [J]. J Plant Nutr, 2013, 36 (3): 481-490
39 Scaife A, Schloemer S. The diurnal pattern of nitrate uptake and reduction by spinach (Spinacia oleracea L.) [J]. Ann Bot, 1994, 73 (3): 337-343
40 Mathew D, Forer Y, Rabinowitch HD, Kamenetsky R. Effect of long photoperiod on the reproductive and bulbing processes in Garlic (Allium sativum L.) genotypes [J]. Environ Exp Bot, 2011, 71 (2): 166-173
41 Dong WX, Zhang YY, Zhang YL, Ren S, Wei Y, Zhang YC. Short-day photoperiod effects on plant growth, flower bud differentiation, and yield formation in adzuki bean (Vigna angularis) [J]. Int J Agric Biol, 2016, 18 (2): 337-345
42 Brian P W A. Effects of gibberellins on plant growth and development [J]. Biol Rev, 2010, 34 (1): 37-77
43 余养华. 杉木林下套种多花黄精的试验研究[J]. 绿色科技, 2015 (12): 65-66 [Yu YH. Experimental study on Polygonatum cyrtonema Hua in Chinese fir undergrowth [J]. J Green Sci Technol, 2015 (12): 65-66]
44 郑林森. 杉木林下多花黄精种植试验研究[J]. 林业勘察设计, 2012 (1): 155-157 [Zhen LS. Experimental study on planting of Polygonatum cyrtonema Hua under Cunninghamia lanceolata [J]. For Surv Des, 2012 (1): 155-157]
45 Kovi MR, Zhang Y, Yu S, Yang G, Yan W, Xing Y. Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene sd1 [J]. Tag Theor Appl Genet, 2011, 123 (5): 705
46 Cai H, Xuan L, Xu L, Huang M, Xu M. Identification and characterization of nine PAT1 branch genes in poplar [J]. Plant Growth Regul, 2017, 81 (2): 355-364
47 Torres-Galea P, Hirtreiter B, Bolle C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction [J]. Plant Physiol, 2012, 161 (1): 291-304
48 Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, Li S, Xin H. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis [J]. Plant Cell Rep, 2016, 35 (3): 655-666
49 Torres-Galea P, Huang LF, Chua NH, Bolle C. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses [J]. Mol Genet Genom, 2006, 276 (1): 13-30

更新日期/Last Update: 2020-04-25