|本期目录/Table of Contents|

 ZHANG Qinghua,CHEN Guotao,FENG Linlin,et al.Research progress on microbial decolorization and degradation of azo dyes[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):469-478.[doi:10.19675/j.cnki.1006-687x.2019.06009]





Research progress on microbial decolorization and degradation of azo dyes
江西农业大学生物科学与工程学院,江西省农业微生物资源开发与利用工程实验室 南昌 330045
ZHANG Qinghua? CHEN Guotao FENG Linlin CHEN Yan XIA Xiang & WANG Yuanxiu
College of Bioscience and Biotechnology of Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China
azo dye microbial consortium decolorization biodegradation mechanism research progress
偶氮染料废水的排放会对水生环境及人类健康造成严重威胁. 目前生物法处理偶氮染料的应用与研究居于首位,而混合菌群因具有多种微生物间的协同作用成为当前研究的热点. 综述混合菌群的构建及偶氮染料脱色降解的影响因素,并重点阐述偶氮染料降解机理及降解酶系的相关研究. 研究发现,混合菌群较单一菌株具有较好的脱色降解性能;其中碳氮源、温度、pH值、染料结构与浓度、溶氧量等因素对降解染料具有重要影响. 细菌复合菌群是通过分泌一系列的酶如偶氮还原酶等使其偶氮双键断裂,产生的芳香胺类物质进一步被氧化成CO2和H2O,揭示了偶氮还原酶降解偶氮染料时的两种可能机制,即有无依赖氧化还原介质的偶氮染料降解. 真菌复合菌群是通过生化反应来催化偶氮染料降解,阐述了漆酶降解染料的机理,即底物自由基中间体的产生和氧气还原成水. 细菌与真菌复合菌群则是通过降解酶系统与生化反应相结合来降解染料. 最后提出单一菌株存在着降解不彻底、效果不理想等问题,指出未来应根据废水中偶氮染料的种类、结构特点构建具有特异性、高效性且降解多种偶氮染料的混合菌群,并开展其生物降解的分子机制研究,进而为微生物降解偶氮染料的研发提供参考与理论支撑. (图2 表3 参96)
The discharge of azo dye wastewater poses a serious threat to both the aquatic environment and human health. Thus, the application and investigation of biological treatments for azo dye wastewater is very important and the microbial consortium has become a hot topic for present studies owing to the synergy among different microorganisms. In this study, the construction of a microbial consortium and their influencing factors on the decolorization and degradation of azo dyes were reviewed, with emphasis on the degradation mechanism of azo dyes and the relative degrading enzyme systems. Results indicated that the microbial consortium had better decolorization and degradation performance than single microbial strains and factors including carbon and nitrogen sources, temperature, pH, dye structure and concentration, and dissolved oxygen had a great influence on the degradation of azo dyes by microbial consortiums. The microbial consortium constructed by bacteria broke the double azo bonds by secreting a series of enzymes such as azo reductase and the resulting aromatic amines were further oxidized into CO2 and H2O. From this, two possible mechanisms for the degradation of azo dyes were shown, i.e., dependent and independent on the redox mediator in the degradation of azo dyes. The microbial consortium constructed from fungi catalyzed the degradation of azo dyes by secreting extracellular enzymes and biochemical reactions. The mechanism of laccase degradation of dyes was described, namely the production of substrate-free radical intermediates and the reduction of oxygen to water. The microbial consortium constructed from both bacteria and fungi was found to degrade azo dye by combining the bacterial enzyme system with the fungal-catalyzed biochemical reaction. The single strain was found to have some problems such as incomplete degradation and unsatisfactory effect. A microbial consortium with high specificity and efficiency as well as the ability to degrade various azo dyes should be constructed based on the type and structural characteristics of azo dyes in wastewater, and an investigation of the molecular mechanism of the biodegradation of azo dyes should be undertaken in the future. This study provides reference and theoretical support for the research and development of the microbial degradation of azo dye.


1 Tan L, He MY, Song L, Fu XM, Shi SN. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1 [J]. Bioresour Technol, 2016, 203: 287-294
2 Lalnunhlimi S, Krishnaswamy V. Decolorization of azo dyes (Direct blue 151 and Direct red 31) by moderately alkaliphilic bacterial consortium [J]. Braz J Microbiol, 2016, 47 (1): 39-46
3 Wang ZZ, Yin QD, Gu MQ, He K, Wu GX. Enhanced azo dye Reactive red 2 degradation in anaerobic reactors by dosing conductive material of ferroferric oxide [J]. Braz J Microbiol, 2018, 357: 226-234
4 He W, Liu YL, Ye JW, Wang GR. Electrochemical degradation of azo dye Methyl orange by anodic oxidation on Ti4O7 electrodes [J]. Mater Sci: Mater Electron, 2018, 29 (16): 14065-14072
5 江莹, 蔡亚君. 细菌染料脱色机理研究进展[J]. 广州化工, 2015, 43 (17): 4-6 [Jiang Y, Cai YJ. Research progress in decolorization mechanism of bacterial dyes [J]. Guangzhou Chem, 2015, 43 (17): 4-6]
6 Moradi R, Hamidvand M, Ganjali A. Using of TiO2/Ag2O nanocomposite in degradation of Acid red 18 dye in photoreactor by taguchi experimental design [J]. Russ J Phys Chem A, 2019, 93 (6): 1133-1142
7 Zhou XJ, Shi PH, Qin YF, Fan JC, Min YL, Yao WF. Synthesis of Co3O4/graphene composite catalysts through CTAB-assisted method for Orange II degradation by activation of peroxymonosulfate [J]. J Mater Sci-Materi El, 2016, 27 (1): 1020-1030
8 Shahid M, Mahmood F, Hussain S, Shahzad T, Haider MZ, Noman M, Mushtaq. Enzymatic detoxification of azo dyes by a multifarious Bacillus sp. strain MR-1/2-bearing plant growth-promoting characteristics [J]. 3 Biotechnology, 2018, 8 (10): 425
9 Lu CX, Chen Y, Tang L, Wei SN, Song YH, Wang J. Preparation of Yb, N and F doped Er3+:Y3Al5O12/TiO2 composite films for visible-light photocatalytic degradation of organic dyes [J]. Russ J Phys Chem A, 2017, 91 (7): 1345-1357
10 Hameed BB, Ismail ZZ. Decolorization, biodegradation and detoxification of Reactive red azo dye using non-adapted immobilized mixed cells [J]. Biochem Eng J, 2018, 137: 71-77
11 解井坤, 朱超, 花莉. 脱水污泥中脱色偶氮染料功能菌群的驯化分离[J]. 微生物学通报, 2014, 41 (12): 2432-2441 [Xie JK, Zhu C, Hua L. Domestication and separation of functional groups of decolorized azo dye in dewatered sludge [J]. Bull Microbiol, 2014, 41 (12): 2432-2441]
12 Hussain S, Quinn L, Li J, Casey E, Murphy CD. Simultaneous removal of malachite green and hexavalent chromium by Cunninghamella elegans biofilm in a semi-continuous system [J]. Int Biodeter Biodegr, 2017, 125: 142-149
13 Marina B, Fabiana P, Adarme OFH, Aquino SF, Silva SQ. Anaerobic-aerobic combined system for the biological treatment of azo dye solution using residual yeast [J]. Water Environ Res, 2018, 90 (8): 729-737
14 Krishnamoorthy R, Jose PA, Ranjith M, Anandham R, Suganya K, Prabhakaran J, Thiyageshwari S, Johnson J, Gopal NO, Kumutha K. Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3 [J]. J Environ Chem Eng, 2018, 6 (1): 588-595
15 Cui D, Li G, Zhao D, Gu XX, Wang CL, Zhao M. Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions [J]. J Hazard Mater, 2012, 221-222: 185-192
16 Vijayalakshmidevi SR, Muthukumar K. Improved biodegradation of textile dye effluent by coculture [J]. Ecotoxicol Environ Saf, 2015, 114: 23-30
17 Phugare SS, Kalyani DC, Patil AV, Jadhav JP. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies [J]. J Hazard Mater, 2011, 186 (1): 713-723
18 Rathod J, Archana G. Molecular fingerprinting of bacterial communities in enriched azo dye (Reactive violet 5R) decolorising native acclimatised bacterial consortia [J]. Bioresour Technol, 2013, 142: 436-444
19 Shanmugam BK, Mahadevan S. Metabolism and biotrans-formation of azo dye by bacterial consortium studied in a bioreaction calorimeter [J]. Bioresour Technol, 2015, 196: 500-508
20 Eslami H, Shariatifar A, Rafiee E, Shiranian M, Salehi F, Ebrahimi A, Asghar H, Saeede S, Eslami G, Ghanbari R. Decolorization and biodegradation of reactive Red 198 azo dye by a new Enterococcus faecalis-Klebsiella variicola bacterial consortium isolated from textile wastewater sludge [J]. World J Microbiol Biot, 2019, 35: 35-38
21 Junnarkar N, Murty D, Srinivas, Bhatt NS, Madamwar, D. Decolorization of diazo dye Direct red 81 by a novel bacterial consortium [J]. World J Microbiol Biot, 2006, 22 (2): 163-168
22 Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP. Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent [J]. Bioresour Technol, 2010, 101 (1): 165-173
23 曾丽璇, 罗国维. 优势菌处理印染废水中水解池的脱色机理[J]. 中国环境科学, 1998, 18 (5): 423-426 [Zeng LX, Luo GW. Decolorization mechanism of hydrolysis tank in dyeing wastewater treated by dominant bacteria [J]. Chin Environ Sci, 1998, 18 (5): 423-426]
24 杨财容, 杨继鸿, 祁伟亮, 王芳, 张硕, 刘松青. 活性黑染料脱色菌的分离鉴定及复合菌群培养研究[J].湖北大学学报, 2019, 41 (1): 26-31 [Yang CR, Yang JH, Yan WL, Wang F, Zhang S, Liu SQ. Isolation and identification of Reactive black dye decolorizing bacteria and study on microbial consortium culture [J]. J Hubei Univ, 2019, 41 (1): 26]
25 Khehra MS , Saini HS , Sharma DK , Chadha BS, Chimni SS. Decolorization of various azo dyes by bacterial consortium [J]. Dyes Pigments, 2005, 67 (1): 55-61
26 Chen Y, Feng LL, Li HG, Wang YX, Chen GT, Zhang QH. Biodegradation and detoxification of Direct black G textile dye by a newly isolated thermophilic microflora [J]. Bioresour Technol, 2017, 250: 650-657
27 Patel R, Suresh S. Kinetic and equilibrium studies on the biosorption of Reactive black 5 dye by Aspergillus foetidus [J]. Bioresour Technol, 2008, 99 (1): 51-58
28 郝鲁江. 采绒革盖菌 (Trametes versicolor) 染料脱色机理的研究[D]. 济南: 山东大学, 2001 [Hao LJ. Study on dye decolorization mechanism of Trametes versicolor [D]. Jinan: Shandong University, 2001]
29 赵大传, 张洪荣. 一株黑曲霉(Aspergillus niger sp. ZH-1) 对活性红ST-2BF的脱色[J]. 应用与环境生物学报, 2004, 10 (2): 103-105 [Zhao DC, Zhang HR. Decolorization of reactive red ST-2BF by Aspergillus niger sp. ZH-1 [J]. Chin J Appl Environ Biol, 2004, 10 (2): 103-105]
30 Lai CY, Wu CH, Meng CT, Lin CW. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungi on cathode [J]. Appl Energy , 2017, 188: 392-398
31 杨秀清, 王婧人, 赵晓霞, 薛瑞. Trametes sp. SQ01和Chaetomium sp. R01混合培养对四种染料的脱色[J]. 环境科学学报, 2011, 31 (3): 26-29 [Yang XQ, Wang YR, Zhao XX, Xue R. Decolorization of four dyes by mixed culture of Trametes sp. SQ01 and Chaetomium sp. R01 [J]. Chin J Environ Sci, 2011, 31 (3): 26-29]
32 董新姣, 黄南平, 虞倩. 固定化混合菌株对刚果红脱色的研究[J]. 城市环境与城市生态, 2008, 21 (3): 26-29 [Dong XZ, Huang NP, Yu Q. Study on decolorization of Congo red by immobilized microbial consortium [J]. Urban Environ Urban Ecol, 2008, 21 (3): 26-29]
33 Yang QX, Yang M, Pritsch K, Yediler A, Hagn A, Schloter M, Kettrup A. Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates [J]. Biotechnol Lett, 2003, 25 (9): 709-713
34 Hamid F, Atefeh M, Marziyeh AK, Yasaman J, Farhad N, Ali FM. Synthetic dye decolorization by three sources of fungal laccase [J]. Iran J Environ Health Sci Eng, 2012, 9 (1): 27
35 Muthukumaran PJ, Aravind A. Thirumurugan S, Sridhar R, Balan P, Indumathi. Screening, isolation and development of fungal consortia with textile reactive dyes decolorizing capability [J]. Bioreme Sustainable Technol Clean Environ, 2017: 295-303
36 赵振. 白腐真菌对偶氮染料酸性橙7的降解及其产物分析[D]. 杭州: 浙江工商大学, 2018 [Zhao Z. Degradation of azo dye acid orange 7 by white rot fungi and its product analysis [D]. Hangzhou: Zhejiang University of Technology, 2018]
37 潘会然, 闻竹, 徐小琳. 共固定混合真菌对两种合成染料脱色的研究[C]. 深圳: 中国环境科学学会学术年会, 2015 [Pan HR, Wen Z, Xu XL. Study on the decolorization of two synthetic dyes by co-immobilized mixed fungi [C]. Shenzhen: Annual Meeting of Chinese Society of Environmental Sciences, 2015]
38 李蒙英, 孟祥勋, 倪建国, 洪法水. 真菌和细菌对染料吸附脱色的高效共培养体系研究[J]. 环境工程学报, 2002, 3 (11): 15-19 [Li MY, Meng XX, Ni JG, Hong FS. Efficient co-culture system for dye and decolorization of dyes by fungi and bacteria [J]. J Environ Eng, 2002, 3 (11): 15-19]
39 张金平, 阚振荣, 苏维. 混合培养体系对实际染料废水的脱色与降解研究[J]. 安徽农业科学, 2011, 39 (18): 11032-11034 [Zhang JP, Pei ZR, Su W. Study on decolorization and degradation of actual dye wastewater by mixed culture system [J]. Anhui Agric Sci, 2011, 39 (18): 11032-11034]
40 时胜男. 真菌和细菌协同脱色偶氮染料及其脱色特性研究[D]. 大连: 辽宁师范大学, 2010 [Shi SN. Study on synergistic decolorization of azo dyes by fungi and bacteria and their decolorization characteristics [D]. Dalian: Liaoning Normal University, 2010]
41 Kurade MB, Waghmode TR, Jadhav MU, Jeon BH, Govindwar SP. Bacterial-yeast consortium as an effective biocatalyst for biodegradation of sulphonated azo dye Reactive red 198 [J]. RSC Adv, 2015, 5 (29): 23046-23056
42 尹亮. 混合菌群共培养对偶氮染料的协同脱色及降解的研究[D]. 广州: 华南理工大学博士学位论文, 2009 [Yin L. Study on synergistic decolorization and degradation of azo dyes by co-culture of microbial consortium [D]. Guangzhou: Ph.D thesis of South China University of Technology, 2009]
43 Liang T, Shu XN. Research progress in the combined treatment of dye wastewater with fungi and bacteria [J]. Ind Water Treatment, 2013, 33 (6): 6-9
44 Novotn C, Svobodová K, Benada O, Kofroňová O, Heissenberger A, Fuchs W. Potential of combined fungal and bacterial treatment for color removal in textile wastewater [J]. Bioresour Technol, 2011, 102 (2): 879-888
45 Levini, Melignani E, Ramos AM. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some whiterot fungi, dye decolorization by selected culture filtrates [J]. Bioresour Technol, 2010, 101: 4554-4563
46 陈燕, 肖婷, 王园秀, 李汉广, 沈飞, 张庆华. 高效降解复合菌群的廉价降解培养基筛选[J]. 工业水处理, 2017, 37 (8): 45-49 [Chen Y, Xiao T, Wang YX, Li HG, Shen F, Zhang QH. Screening of cheap degradation medium for high-efficiency degradation of microbial consortium [J]. Ind Water Treatment, 2017, 37 (8): 45-49]
47 Harshad L, Sanjay G, Diby P. Low-cost biodegradation and detoxification of textile azo dye C.I. Reactive blue 172 by Providencia rettgeri strain. HSL1 [J]. J Chem, 2015, 163 (2009): 735-742
48 Bheemaraddi MC, Patil S, Shivannavar CT, Channappa T, Shivannavar, Subhashchandra M. Isolation and characterization of Paracoccus sp. GSM2 capable of degrading textile azo dye Reactive violet 5 [J]. Sci World J, 2014, 2014 (11): 1-9
49 Phugare SS, Kalyani DC, Patil AV, Jadhav JP. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies [J]. J Hazard Mater, 2011, 186 (1): 713-723
50 Saratale RG, Saratale GD, Chang JS, Govindwar, SP. Bacterial decolorization and degradation of azo dyes: A review[J]. J Taiwan Institute Chem Eng, 2011, 42 (1): 138-157
51 Ayed L, Mahdhi A, Cheref A, Bakhrouf A. Decolorization and degradation of azo dye Methyl red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization [J]. Desalination, 2011, 274 (1-3): 272-277
52 Imran M, Crowley DE, Khalid A, Hussain S, Mumtaz MW, Arshad M. Microbial biotechnology for decolorization of textile wastewaters [J]. Rev Environ Sci Biol Technol, 2015, 14 (1): 73-92
53 Deive FJ, Domínguez A, Barrio T, Moscoso F, Morán P, Longo MA, Sanromán, MA. Decolorization of dye Reactive black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain) [J]. J Hazard Mater, 2010, 182 (1-3): 735-742
54 Chen KC, Wu JY, Liou DJ, Wang CJ. Decolorization of the textile dyes by newly isolated bacterial strains [J]. J Biotechnol, 2003, 101 (1): 57-68
56 Wang H, Su JQ, Zheng XW, Tian Y, Xiong XJ, Zheng TL. Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3 [J]. Int Biodeter Biodegrad, 2009, 63 (4): 395-399
57 Guadie A, Tizazu S, Melese M, Guo WS, Ngo HH, Xia SQ. Biodecolorization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake [J]. Biotechnol Rep, 2017, 15: 92-100
58 Bhattacharya A, Goyal N, Gupta A. Degradation of azo dye Methyl Red by Alkaliphilic, Halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment [J]. Extremophiles, 2017, 21 (3): 479-490
59 戴树桂, 宋文华, 李彤, 庄源益. 偶氮染料结构与其生物降解性关系研究进展[J]. 环境工程学报, 1996, 4 (6): 2-10 [Dai SG, Song WH, Li T, Zhuang YY. Research progress on the relationship between azo dye structure and its biodegradability [J]. J Environ Eng Sci, 1996, 4 (6): 2-10]
60 陈燕, 王园秀, 肖婷,沈飞, 王春莲, 张庆华. 嗜热复合菌群对不同结构偶氮染料的转化脱色性能[J]. 江西农业大学学报, 2017, 39 (1): 153-160 [Chen Y, Wang YX, Xiao T, Shen F, Wang CL, Zhang QH. Decolorization performance of thermophilic microbial consortium on different structures of azo dyes [J]. J Jiangxi Agric Univ, 2017, 39 (1): 153-160]
61 Walker R, Ryan AJ. Some molecular parameters influencing rate of reduction of azo compounds by intestinal microflora [J]. Xenobiotica, 1971, 1 (4-5): 483-486
62 Hsueh CC, Chen BY. Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola [J]. J Hazard Mater, 2008, 154 (1-3): 703-710
63 Popli S, Patel UD. Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review [J]. Int J Environ Sci Technol, 2014, 12 (1): 405-420
64 Bhatt N, Patel KC, Keharia H, Madamwar D. Decolorization of diazo-dye Reactive blue 172 by Pseudomonas aeruginosa NBAR12 [J]. J Basic Microbiol, 2005, 45 (6): 407-418
65 Rosu CM, Avadanei M, Gherghel D, Mihasan M, Mihai C, Trifan A, Miron A, Vochita G. Biodegradation and detoxification efficiency of azo-dye Reactive orange 16 by Pichia kudriavzevii CR-Y103 [J]. Water Air Soil Pollution, 2018, 229: 15
66 Ning XA, Yang CY, Wang YJ, Yang ZY, Wang JY, Li RJ. Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226 [J]. Biotechnol Bioproc, 2014, 19 (4): 687-695
67 Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR [J]. Bioresour Technol, 2009, 100 (9): 2493-2500
68 Saratale RG, Saratale GD, Chang JS , Govindwar, SP. Bacterial decolorization and degradation of azo dyes: a review [J]. J Taiwan Institute Chem Eng, 2011, 42 (1): 138-157
69 Novotny C, Svobodová K, Benada O, Kofroňová O, Heissenberger A, Fuchs W. Potential of combined fungal and bacterial treatment for color removal in textile wastewater [J]. Bioresour Technol, 2011, 102 (2): 879-888
70 柳广飞, 周集体, 王竞, 曲媛媛, 宋智勇. 细菌对偶氮染料的降解及偶氮还原酶的研究进展[J]. 环境科学与技术, 2006, 29 (4): 112-114 [Liu GF, Zhou JT, Wang J, Song ZY. Progress in the degradation of azo dyes and azo reductase by bacteria [J]. Environ Sci Technol, 2006, 29 (4): 112-114]
71 崔岱宗. 偶氮染料脱色细菌的脱色特性及偶氮还原机理的研究[D].哈尔滨: 东北林业大学, 2012 [Cui DZ. Study on decolorization characteristics and azo reduction mechanism of azo dye decolorizing bacteria [D]. Haerbin: Northeast Forestry University, 2012]
72 柳广飞. 偶氮还原酶AZR的结构模型与功能研究[D]. 大连: 大连理工大学, 2009 [Liu GF. Structural model and function study of azoreductase AZR [D]. Dalian: Dalian University of Technology, 2009]
73 周觅, 柳广飞,周集体, 金若菲, 陈明翔, 王艳青. 醌还原酶-醌类化合物对偶氮染料脱色的作用[J]. 环境科学, 2009, 30 (6): 1810-1817 [Zhou M, Liu GF, Zhou JT, Jin RF, Chen MX, Wang YQ. Effect of quinone reductase-indole compound on decolorization of azo dyes [J]. Environ Sci, 2009, 30 (6): 1810-1817]
74 Das R, Li G, Mai B, An T. Spore cells from BPA degrading bacteria, Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation [J]. Sci Total Environ, 2018, 640-641: 798-806
75 Siroosi M, Amoozegar MA, Khajeh K, Dabirmanesh B. Decolorization of dyes by a novel sodium azide-resistant spore laccase from a halotolerant bacterium, Bacillus safensis sp. strain S31 [J]. Water Sci Technol, 2018, 77 (12): 2867-2875
76 孟婧. 木质素促进白腐真菌降解偶氮染料的机制研究[D]. 武汉: 华中科技大学, 2016 [Meng Y. Mechanism of lignin promoting white rot fungi to degrade azo dyes [D]. Wuhan: Huazhong University of Science and Technology, 2016]
77 石贝杰. 高效降解偶氮染料白腐真菌的筛选及其降解机理[D]. 合肥: 安徽工程大学, 2016 [Shi BJ. Screening and degradation mechanism of highly efficient degradation of azo dye white rot fungi [D]. Hefei: Anhui University of Engineering, 2016]
78 李慧君. 混合真菌染料脱色系统的构建及脱色机制研究[D].新乡: 河南师范大学, 2008 [Li HJ. Construction and decolorization mechanism of mixed fungi dye decolorization system [D]. Xinxiang: Henan Normal University, 2008]
79 Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences [J]. FEBS J, 2006, 273 (10): 2308-2326
80 Saratale RG, Saratale GD, Chang JS, Govindwar SP. Bacterial decolorization and degradation of azo dyes: a review [J]. J Taiwan Institute Chem Eng, 2011, 42 (1): 138-157
81 孙峥. 产漆酶细菌菌株的分离筛选及漆酶基因片段的克隆[D]. 北京: 中国农业科学院, 2007 [Sun Z. Isolation and screening of laccase-producing bacterial strains and cloning of laccase gene fragments [D]. Beijing: Chinese Academy of Agricultural Sciences, 2007]
82 Kalme S, Jadhav S, Jadhav M, Govindwar S. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112 [J]. Enzyme Microbiol Technol, 2009, 44 (2): 65-71
83 王维乐, 牟志美, 张淑君, 于奇, 任春久, 赵凯, 姚娟, 高绘菊. 响应面法优化Paraconiothyrium variabile GHJ-4产漆酶发酵条件[J]. 应用与环境生物学报, 2011, 173: 321-325 [Wang WL, Mou ZM, Yu Q, Ren CJ, Zhao K, Yao J, Gao HJ. Optimization of laccase fermentation conditions of Paraconiothyrium variabile GHJ-4 by response surface methodology [J]. J Appl Environ Biol, 2011, 173: 321-325]
84 Moiseenko KV, Vasina DV, Farukshina KT, Savinova OS, Glazunova OA, Fedorova TV, Tyazhelova TV. Orchestration of the expression of the laccase multigene family in white-rot basidiomycete, Trametes hirsuta, 072: evidences of transcription level subfunctionalization [J]. Fungal Biol, 2018, 122 (5): 353-362
85 赵敏, 王海东, 赵丹, 谷惠琦, 张曦. 产漆酶疣孢漆斑菌NF-05的分离及对偶氮染料的脱色[J]. 菌物学报, 2011, 30 (4): 604-611 [Zhao M, Wang HD, Zhao D, Gu HQ, Zhang X. Separation of laccase from Lacquer enamel NF-05 and decolorization of azo dyes [J]. J Chin Fungi, 2011, 30 (4): 604-611]
86 Iqbal HMN, Kyazze G, Tron T, Tajalli K. Laccase from Aspergillus niger: a novel tool to graft multifunctional materials of interests and their characterization [J]. Saudi J Biol Sci, 2018, 25 (3): 545-550
87 Zheng F, An Q, Meng G, Wu XJ, Dai YC, Si J, Cui BK. A novel laccase from white rot fungi, Trametes orientalis: purification, characterization, and application [J]. Int J Biol Macro, 2017, 102: 758-770
88 Tukayi K, Blessing N, Le Roes-Hill L Marilize. Laccase catalysis for the synthesis of bioactive compounds [J]. Appl Microbiol Biot, 2017, 101 (1): 13-33
89 Shi H, Wang G, Huang Q, Li J, Yang Y, Gao S, Wang Z. The mutual promotion of photolysis and laccase-catalysis on removal of dichlorophen from water under simulated sunlight irradiation [J]. Chem Eng J, 2018, 338: 392-400
90 Sun JL, Liu H, Yang WP, Chen SC, Fu SY. Molecular mechanisms underlying inhibitory binding of alkylimidazolium ionic liquids to laccase [J]. Molecules, 2017, 22 (8): 1353
91 Liu H, Zhu Y, Yang X, Lin Y. Four second-sphere residues of Thermus thermophilus SG0.5 JP17-16 laccase tune the catalysis by hydrogen-bonding networks [J]. Appl Microbiol Biotechnol, 2018, 102 (9): 4049-4061
92 Wang T, Xiang YQ, Liu XX, Chen WL, Hu YG. A novel fluorimetric method for laccase activities measurement using Amplex red as substrate [J]. Talanta. 2017, 162: 143-150
93 谭靓, 宁淑香. 真菌和细菌联合处理染料废水的研究进展[J]. 工业水处理, 2013, 33 (6): 6-9 [Tan L, Ning SX. Research progress in the treatment of dye wastewater by fungi and bacteria [J]. Ind Water Treatment, 2013, 33 (6): 6-9]
94 Wang SN, Chen QJ, Zhu M J, Xue FY, Li WC, Zhao TJ, Li GD, Zhang, GQ. An extracellular yellow laccase from white rot fungi, Trametes, sp. F1635 and its mediator systems for dye decolorization [J]. Biochimie, 2018, 148: 46-54
95 钟金汤. 偶氮染料及其代谢产物的化学结构与毒性关系的回顾与前瞻[J].环境与职业医学, 2004, 21 (1): 58-62 [Zhong JT. Retrospect and prospect of the relationship between chemical structure and toxicity of azo dyes and their metabolites [J]. Occup Environ Med, 2004, 21 (1): 58-62]
96 马利. 白腐真菌及其漆酶对不同结构染料的降解研究[D]. 武汉: 华中科技大学, 2013 [Ma L. Degradation of different structural dyes by white rot fungi and laccase [D]. Wuhan: Huazhong University of Science and Technology, 2013]


 Liu Shenghao,Shi Yuying,Lou Wuji,et al.PROPERTIES OF AZO DYES DEGRADATION BY PENICILLIUM P-93[J].Chinese Journal of Applied & Environmental Biology,1995,1(02):168.
 HU Jijun,GUO Weiqiang,JIA Zhiguo,et al.Characterization of H2-producing Bacteria in Mixed Cultures[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):115.[doi:10.3724/SP.J.1145.2009.00115]
 ZHANG Tingtao,ZHANG Lixia,GAO Ping,et al.Mechanism and Characteristics of Electricity Generation in Microbial Fuel Cells Catalyzed by Mixed Culture[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):465.[doi:10.3724/SP.J.1145.2012.00465]
 CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):978.[doi:10.3724/SP.J.1145.2012.00978]
[5]甘国娟,田红灯,潘永龙,等.一株新的高效偶氮染料脱色菌Paenibacillus dendritiformis GGJ7及其脱色作用[J].应用与环境生物学报,2018,24(03):563.[doi:10.19675/j.cnki.1006-687x.2017.03045]
 GAN Guojuan,,et al.A new efficient azo dye-decolorizing bacterium Paenibacillus dendritiformis GGJ7 and its decolorization process[J].Chinese Journal of Applied & Environmental Biology,2018,24(02):563.[doi:10.19675/j.cnki.1006-687x.2017.03045]
[6]张珩琳,杨婧,周浩,等.Cupriavidus metallidurans SHE胞内提取物合成纳米金及其催化应用[J].应用与环境生物学报,2019,25(02):457.[doi:10.19675/j.cnki.1006-687x.2018.07023]
 ZHANG Henglin,YANG Jing,ZHOU Hao,et al.Biosynthesis of gold nanoparticles by the cell-free extracts of Cupriavidus metallidurans SHE and its catalytic applications[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):457.[doi:10.19675/j.cnki.1006-687x.2018.07023]
 CHEN Guotao,WAN Chaochao,An Xuejiao,et al.Decolorization and detoxification of the azo dyes by thermophilic microflora[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):800.

更新日期/Last Update: 2020-04-25