|本期目录/Table of Contents|

 HU Kai,TAO Jianping,HUANG Ke,et al.Effects of simulated root exudate carbon inputs on the dynamics of microbial communities during litter decomposition[J].Chinese Journal of Applied & Environmental Biology,2020,26(02):417-424.[doi:10.19675/j.cnki.1006-687x.2019.05030]





Effects of simulated root exudate carbon inputs on the dynamics of microbial communities during litter decomposition
1重庆文理学院林学与生命科学学院,微生物生态学研究所 重庆 402168 2西南大学生命科学学院,三峡库区生态环境教育部重点实验室,重庆市三峡库区植物生态与资源重点实验室 重庆 400715
HU Kai1 TAO Jianping2 HUANG Ke1 HU Jing1 & WANG Wei1?
1 College of Forestry and Life Science, Institute of Microbial Ecology, Chongqing University of Arts and Sciences, Chongqing 402168, China 2 Key Laboratory of Eco-environments of Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources of Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, China
root exudation leaf litter decomposition microbial community microbial quantity enzyme activity
为深入理解根系分泌物对森林凋落物分解的影响,通过20 d的室内培养实验,在土壤中添加4种不同浓度的人工模拟根系分泌物中活性有机碳复合物(每克土壤添加0、0.3、0.6和1.2 mg 碳),研究活性有机碳输入对凋落叶分解和微生物群落的影响. 结果显示,一定浓度模拟根系分泌物碳输入(每克土壤添加0.6、1.2 mg碳)可引起凋落叶表面微生物数量特别是真菌数量的相对增加,并且明显改变凋落叶分解过程中微生物群落的种类组成,激活一些快速生长的真菌,促进微生物代谢活力,使分解率提高了19.0%-26.2%. 根系分泌物碳添加、取样时间及其二者的交互作用均对凋落叶表面β-葡萄糖苷酶和β-N-乙酰葡糖氨糖苷酶的活性产生显著影响,随着分解时间的推进,0.6 mg和1.2 mg碳添加处理能显著提高这两种酶的活性. 根系分泌物碳添加对凋落叶表面古菌硝化功能基因amoA和细菌硝化功能基因amoA的数量均无显著影响,但在分解20 d取样,0.6 mg碳添加处理能明显提高固氮功能基因nifH和反硝化功能基因nosZ的数量. 本研究表明一定浓度根系分泌物输入能够改变微生物群落组成与数量,并提高微生物胞外酶活性,加速凋落物分解,且激发效应的启动由底物添加的碳含量和活跃的微生物群落相互作用决定. (图5 表4 参36)
To understand how root exudates influence litter decomposition in forest ecosystems, a simulation experiment using four different C concentrations (0, 0.3, 0.6, and 1.2 mg C/g soil) was performed. C-containing compounds often found in root exudates were added to soils to assess how labile C inputs regulate litter decomposition and soil microbial communities of litter surface in a 20-d laboratory incubation. The results indicated that a certain concentration of root exudate C inputs (0.6 and 1.2 mg C/g soil) caused a relative increase in the number of microbes, especially fungi, on the surface of leaf litter, which obviously changed the composition of microbial communities during the process of litter decomposition, which was activated by some fast-growing fungi, and promoted microbial metabolic activities, which led to an increase in the decomposition rate of 19.0%-26.2%. Root exudate C addition, sampling time, and their interaction had significant effects on the activity of β-glucosidase and β-N-acetylglucosaminidase on the litter surface. With prolonged decomposition, both 0.6 and 1.2 mg C/g soil addition can significantly increase the activities of these two enzymes. Root exudate C addition had no significant effect on the number of archaeal amoA or bacterial amoA on the surface of the litter. However, the treatment of 0.6 mg C/g soil addition significantly increased the copy number of the nifH and nosZ genes on the 20th day of decomposition. In summary, a certain concentration of root exudates may change the composition and quantity of microbial communities, increase the extracellular enzyme activities of microbes, and thus accelerate litter decomposition. In addition, the initiation of the priming effect was determined by the interaction of the C content added by the substrate and the active microbial communities.


1 Noguchi K, Nagakura J, Kon?pka B, Sakata T, Kaneko S, Takahashi M. Fine-root dynamics in sugi (Cryptomeria japonica) under manipulated soil nitrogen conditions [J]. Plant Soil, 2013, 364 (1-2): 159-169
2 Dijkstra FA, Cheng WX. Interactions between soil and tree roots accelerate long-term soil carbon decomposition [J]. Ecol Lett, 2007, 10 (11): 1046-1053
3 de Graaff MA, Classen AT, Castro HF, Schadt CW. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates [J]. New Phytol, 2010, 188 (4): 1055-1064
4 Yin H, Li Y, Xiao J, Xu Z, Cheng X, Liu Q. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming [J]. Global Change Biol, 2013, 19 (7): 2158-2167
5 尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42 (11): 1055-1070 [Yin HJ, Zhang ZL, Liu Q. Root exudate and their ecological consequences in forest ecosystems: problems and perspective [J]. Chin J Plant Ecol, 2018, 42 (11): 1055-1070]
6 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38 (3): 298-310 [Wu LK, Lin XM, Lin WX. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates [J]. Chin J Plant Ecol, 2014, 38 (3): 298-310]
7 Liu R, Huang Z, Luke McCormack M, Zhou X, Wan X, Yu Z, Wang M, Zheng L. Plasticity of fine-root functional traits in the litter layer in response to nitrogen addition in a subtropical forest plantation [J]. Plant Soil, 2017, 415 (1-2): 317-330
8 Wang FC, Fang XM, Ding ZQ, Wan SZ, Chen FS. Effects of understory plant root growth into the litter layer on the leaf litter decomposition of two woody species in a subtropical forest [J]. For Ecol Manag, 2016, 364: 39-45
9 梁儒彪, 梁进, 乔明锋, 徐振锋, 刘庆, 尹华军. 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39 (5): 466-476 [Liang RB, Liang J, Qiao MF, Xu ZF, Liu Q, Yin HJ. Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan, China [J]. Chin J Plant Ecol, 2015, 39 (5): 466-476]
10 Hobbie SE, Vitousek PM. Nutrient limitation of decomposition in Hawaiian forests [J]. Ecology, 2000, 81 (7): 1867-1877
11 王微, 伍小刚, 胡凯, 陶建平. 凋落物输入对中亚热带不同森林细根生物量及分布的影响[J]. 生态学报, 2016, 36 (11): 3391-3401 [Wang W, Wu XG, Hu K, Tao JP.Increased litterfall regulates fine root biomass and distribution in three typical forests in subtropical China [J]. Acta Ecol Sin, 2016, 36 (11): 3391-3401]
12 胡凯, 王微, 陶建平. 细根对中亚热带森林几种优势树种凋落叶分解的影响[J]. 应用与环境生物学报, 2019, 25 (3): 1135-1142 [Hu K, Wang W, Tao JP. Effects of fine roots on the leaf litter decomposition of dominant tree species in the mid-subtropical forests [J]. Chin J Appl Environ Biol, 2019, 25 (3): 1135-1142]
13 Mao Y, Yannarell AC, Davis SC, Mackie RI. Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil [J]. Environ Microbiol, 2013, 15 (3): 928-942
14 Lee SH, Lee HJ, Kim SJ, Lee HM, Kang H, Kim YP. Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR [J]. Sci Total Environ, 2010, 408 (6): 1349-1357
15 Williams CJ, Shingara EA, Yavitt JB. Phenol oxidase activity in peatlands in New York State: Response to summer drought and peat type [J]. Wetlands, 2000, 20 (2): 416-421
16 张金屯.数量生态学[M].2版.北京: 科学出版社, 2011: 248-249 [Zhang JT. Quantitative Ecology [M]. 2nd ed. Beijing: Science Press, 2011: 248-249]
17 Shahbaz M, Kumar A, Kuzyakov Y, B?rjesson G, Blagodatskaya E. Priming effects induced by glucose and decaying plant residues on SOM decomposition: a three-source, 13C/ 14C partitioning study [J]. Soil Biol Biochem, 2018, 121: 138-146
18 Grover M, Maheswari M, Desai S, Gopinath KA, Venkateswarlu B. Elevated CO2: plant associated microorganisms and carbon sequestration [J]. Appl Soil Ecol, 2015, 95: 73-85
19 袁红朝, 王久荣, 刘守龙, 祝贞科, 葛体达, 陈珊, 吴金水. 稳定碳同位素技术在土壤根际激发效应研究中的应用[J]. 同位素, 2018, 31 (1): 57-63 [Yuan HZ, Wang JR, Liu SR Zhu ZK,Ge TD, Chen S, Wu JS. Application of stable carbon isotope technique in the research of soil rhizosphere priming effect [J]. J Isotopes, 2018, 31 (1): 57-63]
20 Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition? [J]. Soil Biol Biochem, 2003, 35 (6): 837-843
21 Hamer U, Marschner B. Priming effects in soils after combined and repeated substrate additions [J]. Geoderma, 2005, 128 (1-2): 38-51
22 Chigineva NI, Aleksandrova AV, Tiunov AV. The addition of labile carbon alters litter fungal communities and decreases litter decomposition rates [J]. Appl Soil Ecol, 2009, 42 (3): 264-270
23 Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities [J]. PNAS, 2015, 112 (20): 6449-6454
24 Kaiser C, Franklin O, Dieckmann U, Richter A. Microbial community dynamics alleviate stoichiometric constraints during litter decay [J]. Ecol Lett, 2014, 17 (6): 680-690
25 Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions [J]. ISME J, 2012, 6 (9): 1749-1762
26 Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. Nat Microbiol, 2018, 3: 470-480
27 Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco J M. Root exudates regulate soil fungal community composition and diversity [J]. Appl Environ Microb, 2008, 74 (3): 738-744
28 Pascault N, Ranjard L, Kaisermann A, Bachar D, Christen R, Terrat S, Mathieu O, Lévêque J, Mougel C, Henault C, Lemanceau P, Péan M, Boiry S, Fontaine S, Maron PA. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect [J]. Ecosystems, 2013, 16 (5): 810-822
29 Otten W, Hall D, Harris K, Ritz K, Young IM, Gilligan CA. Soil physics, fungal epidemiology and the spread of Rhizoctonia solani [J]. New Phytol, 2001, 151 (2): 459-468
30 Blagodatskaya E, Khomyakov N, Myachina O, Bogomolova I, Blagodatsky S, Kuzyakov Y. Microbial interactions affect sources of priming induced by cellulose [J]. Soil Biol Biochem, 2014, 74: 39-49
31 Manzoni S, Jackson RB, Trofymow JA, Porporato A. The global stoichiometry of litter nitrogen mineralization [J]. Science, 2008, 321 (5889): 684-686
32 Veres Z, Kotroczó Z, Fekete I, Tóth JA, Lajtha K, Townsend K, Tóthmérész B. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability [J]. Appl Soil Ecol, 2015, 92: 18-23
33 Perez PG, Ye J, Wang S, Wang X, Huang D. Analysis of the occurrence and activity of diazotrophic communities in organic and conventional horticultural soils [J]. Appl Soil Ecol, 2014, 79: 37-48
34 Levy-Booth DJ, Prescott CE, Grayston SJ. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems [J]. Soil Biol Biochem, 2014, 75: 11-25
35 Proctor C, He Y. Quantifying root extracts and exudates of sedge and shrub in relation to root morphology [J]. Soil Biol Biochem, 2017, 114: 168-180
36 Dennis PG, Miller AJ, Hirsch PR. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? [J]. FEMS Microbiol Ecol, 2010, 72 (3): 313-327


 LIN Han,CHEN Hui,WU Chengzhen,et al.Effects of Decomposition of Aleurites montana and Phyllostachys pubescences Mixed Foliage Litter on Activity of Soil Enzymes[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):539.[doi:10.3724/SP.J.1145.2012.00539]
 XIN Qi,LIU Changfa,LIU Yuan,et al.Secretion of total organic carbon and inorganic carbon from roots of seepweed Suaeda heteroptera in response to Zn(II) stress[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):134.[doi:10.3724/SP.J.1145.2014.00134]
 XIN Qi,LIU Changfa,LIU Yuan,et al.Secretion of total organic carbon and inorganic carbon from roots of seepweed Suaeda heteroptera in response to Zn(II) stress[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):134.[doi:10.3724/SP.J.1145.2014.00134]
[4]刘玉,魏洁,黄雄飞,等. 红树植物桐花树、秋茄的有机酸类根系分泌物组成及含量[J].应用与环境生物学报,2014,20(05):850.[doi:10.3724/SP.J.1145.2014.01037]
 LIU Yu,WEI Jie,HUANG Xiongfei,et al.Composition and contents of organic acids in root exudates of mangrove Aegiceras corniculatum and Kandelia candel[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):850.[doi:10.3724/SP.J.1145.2014.01037]
 TANG Shishan,YANG Wanqin,WANG Haipeng,et al.Stoichiometri characteristics and controlling factors of N and P in forest leaf litter of China[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):316.[doi:10.3724/SP.J.1145.2014.10040]
 DENG Haojun,CHEN Aimin,YAN Siwei,et al.Nutrient resorption efficiency and C:N:P stoichiometry in different ages of Leucaena leucocephala[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):522.[doi:10.3724/SP.J.1145.2014.11032]
 LI Zhongbin,HU Tingxing,LI Shuang,et al.Effects of initial decomposing leaf litter of Cinnamomum camphora on the growth and physiology of Impatiens balsamina[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):571.[doi:10.3724/SP.J.1145.2014.10027]
 YANG Shanshan,WANG Qian,HU Hongling,et al.Allelopathy of Cinnamomum septentrionale leaf litter on maize growth and relieving effect of fertilization[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):770.[doi:10.3724/SP.J.1145.2015.04033]
 ZHOU Guangliang,HU Tingxing,WU Zhanglei,et al.Effects of Juglans regia leaf litter decomposition on growth and physiological characteristics of spinach (Spinacia oleracea)[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):777.[doi:10.3724/SP.J.1145.2015.01032]
 JIANG Xue,CHEN Hong,HU Tingxing,et al.Inhibition of decomposing leaf litter of Cinnamomum camphora on growth of Pharbitis nil and the alleviation effect of nitrogen application[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):926.[doi:10.3724/SP.J.1145.2015.04057]

更新日期/Last Update: 2020-04-25