|本期目录/Table of Contents|

[1]古勇波,陈方圆,白江珊,等.盐碱胁迫对三江藨草幼苗功能性状的影响[J].应用与环境生物学报,2020,26(01):10-16.[doi:10.19675/j.cnki.1006-687x.2019.04028]
 GU Yongbo,CHEN Fangyuan,BAI Jiangshan,et al.Effects of salt-alkaline stress on functional traits of Scirpus nipponicus seedlings[J].Chinese Journal of Applied & Environmental Biology,2020,26(01):10-16.[doi:10.19675/j.cnki.1006-687x.2019.04028]
点击复制

盐碱胁迫对三江藨草幼苗功能性状的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年01期
页码:
10-16
栏目:
研究论文
出版日期:
2020-02-25

文章信息/Info

Title:
Effects of salt-alkaline stress on functional traits of Scirpus nipponicus seedlings
作者:
古勇波 陈方圆 白江珊 娄彦景 唐占辉
1中国科学院东北地理与农业生态研究所湿地生态与环境重点实验室/长白山湿地与生态吉林省联合重点实验室 长春 130102 2东北师范大学环境学院/国家环境保护湿地生态与植被恢复重点实验室 长春 130117
Author(s):
GU YongboCHEN Fangyuan BAI Jiangshan LOU Yanjing TANG Zhanhui?
1 Key Laboratory of Wetland Ecology and Environment/Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China 2 School of Environment, State Environmental Protection Key Laboratory for Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130117, China
关键词:
湿生植物盐碱胁迫功能性状生物量分配
Keywords:
hygrophyte salt-alkaline stress functional trait biomass allocation
DOI:
10.19675/j.cnki.1006-687x.2019.04028
摘要:
盐碱作为盐碱湿地生态系统的重要环境因子之一,影响着湿地植物的定植、生长和繁殖. 以莫莫格盐碱湿地常见植物三江藨草(Scirpus nipponicus)为研究对象,设置了盐度(25,100,200 mmol/L)和pH值(7.79 ± 0.06,9.42 ± 0.02,10.40 ± 0.01)各3个梯度处理,及1个空白处理作为对照,探讨不同盐碱胁迫及其交互作用对湿地植物三江藨草幼苗功能性状和生物量分配格局的影响. 结果显示,盐碱胁迫对三江藨草幼苗生长、生物量积累及其分配均产生显著影响(P < 0.05). 与空白处理相比,随着盐碱胁迫的升高,三江藨草幼苗株高、分株数、球茎数等功能性状,以及根、根茎、球茎、地下、地上生物量和总生物量等均呈现先增加后降低的趋势;三江藨草幼苗在盐度和pH分别为25 mmol/L和7.79(± 0.06)时生长最好,在盐度和pH分别为200 mmol/L和10.40(± 0.01)时,植株全部死亡;盐碱胁迫对三江藨草幼苗生物量分配具有显著影响(P < 0.05),随着盐碱胁迫增强,根和地上生物量分配增加,而球茎生物量分配减少,根茎生物量在25 mmol/L盐度处理下分配减少,在其他盐度处理下分配则增加. 本研究表明碱胁迫对植物的伤害强于盐胁迫,湿地土壤的碱化对三江藨草的生长更为不利. (图4 表3 参43)
Abstract:
Salt-alkaline stress is a key environmental factor affecting seedling establishment, growth, and reproduction of hygrophytes in salt-marsh ecosystems. This paper aims to understand the effects of salt-alkaline stress on growth traits and biomass allocation of Scirpus nipponicus seedlings in Momoge National Nature Reserve. We conducted a common garden experiment with three levels of salinity (25, 100, and 200 mmol/L) and three levels of pH (7.79 ± 0.06, 9.42 ± 0.02, and 10.40 ± 0.01) with one control. Results indicate that salt-alkaline stress has a significant effect on growth traits, biomass accumulation, and biomass allocation of S. nipponicus seedlings (P < 0.05). With increasing salt-alkaline stress, individual height, ramet number, tuber number, and the biomass of roots, rhizomes, tubers, belowground parts, aboveground parts, and total biomass all increased firstly and then decreased compared with the control. The optimum salinity concentration and pH was 25 mmol/L and 7.79 (± 0.06), respectively. The S. nipponicus seedlings would not survive at the S3A3 (salinity and pH: 200 mmol/L and 10.40 (± 0.01), respectively) treatment. The effects of salt-alkaline stress on the root, rhizome, tuber biomass allocation and aboveground biomass allocation were all significant (P < 0.05). With increasing salt-alkaline stress, root and aboveground biomass allocation increased but tuber biomass allocation decreased. At salinity levels of 25 mmol/L, rhizome biomass allocation decreased but increased under other salinity treatments. Alkaline stress was more severe than salt stress, indicating that the alkalization of soil is more detrimental to the growth of S. nipponicus.

参考文献/References:

1 Cornwell WK, Ackerly DD. A link between plant traits and abundance: evidence from coastal California woody plants [J]. J Ecol, 2010, 98 (4): 814-821
2 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45 (4): 325-339 [Liu XJ, Ma KP. Plant functional traits-concepts, applications `and future directions [J]. Sci Sin Vitae, 2015, 45 (4): 325-339]
3 Diaz S, Cabido M. Vive la difference: plant functional diversity matters to ecosystem processes [J]. Trends Ecol Evol, 2001, 16 (11): 646-655
4 Violle C, Navas M, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. Let the concept of trait be functional! [J]. Oikos, 2007, 116 (5): 882-892
5 Mcintyre S, Lavorel S, Landsberg J, Forbes TDA. Disturbance response in vegetation: toward a global perspective on functional traits [J]. J Veg Sci, 1999, 10 (5): 621-630
6 Cornelissen JHC, Lavorel S, Garnier E, Diaz S. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide [J]. Aust J Bot, 2003, 51 (4): 335-380
7 Ikegami M, Whigham DF, Werger MJA. Responses of rhizome length and ramet production to resource availability in the clonal sedge Scirpus olneyi A. Gray [J]. Plant Ecol, 2007, 189 (2): 247-259
8 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39 (4): 362-370 [Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou [J]. Chin J Plant Ecol, 2015, 39 (4): 362-370]
9 Ge ZM, Cao HB, Cui LF, Zhao B, Zhang LQ. Future vegetation patterns and primary production in the coastal wetlands of East China under sea level rise, sediment reduction and saltwater intrusion [J]. J Geophys Res, 2015, 120: 1923-1940
10 万忠娟, 于少鹏, 王海霞, 孙广友. 松嫩平原内陆盐碱湿地的类型特征及分布规律[J]. 湿地科学, 2003, 1 (2): 141-146 [Wang ZJ, Yu SP, Wang HX, Sun GY. The types and characteristic of inland saline-alkaline wetland in songnen plain [J]. Wetland Sci, 2003, 1 (2): 141-146]
11 Sim LL, Chambers JM, Davis JA. Ecological regime shifts in salinised wetland systems. I. Salinity thresholds for the loss of submerged macrophytes [J]. Hydrobiologia, 2006, 573 (1): 89-107
12 刘强, 马宏伟, 田辉, 安志娴. 松嫩平原湿地分布变化与影响因素分析. 地质与资源, 2010, 19 (1): 76-80 [Liu Q, Ma HW, Tian H, An ZX. Analysis on the distribution chance and influencing factors of the wetlands in songnen plain [J]. Geol Resour, 2010, 19 (1): 76-80]
13 潘艳文, 古勇波, 唐占辉, 姜明, 吕宪国, 娄彦景. 盐度和氮添加对盐碱湿地芦苇幼苗生长及生物量分配的影响[J]. 土壤与作物, 2018, 7 (2): 257-265 [Pan YW, Gu YB, Tang ZH, Jiang M, Lü XG, Lou YJ. Effects of salinity and nitrogen addition on growth and biomass allocation of Phragmites australias seedlings in saline-alkali wetland [J]. Soils Crops, 2018, 7 (2): 257-265]
14 李伟, 袁琳, 张利权, 赵志远, 李蕙, 朱晓泾, 潘家琳, 陈雅慧. 海三棱藨草及互花米草对模拟盐胁迫的响应及其耐盐阈值[J]. 生态学杂志, 2018, 37 (9): 2596-2602 [Li W, Yuan L, Zhang LQ, Zhao ZY, Li H, Zhu XJ, Pan JL, Chen YH. Responses of Scirpus mariqueter and Spartina alterniflora to simulated salt stress and salt tolerance thresholds [J]. Chin J Ecol, 2018, 37 (9): 2596-2602]
15 罗成科, 肖国举, 张峰举, 李茜. 不同浓度复合盐胁迫对水稻产量和品质的影响[J]. 干旱区资源与环境, 2017, 31 (1): 137-141 [Luo CK, Xiao GJ, Zhang FJ, Li Q. Effects of different salt stresses on rice yield and quality [J]. J Arid Land Resour Environ, 2017, 31 (1): 137-141]
16 赵吉强, 李丽霞, 陈世华, 尹海波, 郭善利. 不同盐浓度处理对互花米草生长及离子含量的影响[J]. 安徽农业科学, 2011, 39 (4): 1942-1943 [Zhao JQ, Li LX, Chen SH, Yin HB, Guo SL. Influence of treatments with different salinities on the growth and ion content of Spartina alterniflora [J]. J Anhui Agric Sci, 2011, 39 (4): 1942-1943]
17 陈友媛, 孙萍, 陈广琳, 王宁宁. 滨海区芦苇和香蒲耐盐碱性及除氮磷效果对比研究[J]. 环境科学, 2015, 36 (4): 1489-1496 [Chen YY, Sun P, Chen GL, Wang NN. A contrastive study on salt-alkaline resistance and removal efficiency of nitrogen and phosphorus by Phragmites australis and Typha angustifolia in coastal estuary area [J]. Environ Sci, 2015, 36 (4): 1489-1496]
18 李诗华. 滨海湿地本土和外来植物对淹水与盐度胁迫的生理生态响应[D]. 上海: 华东师范大学, 2018 [Li SH. Ecophysiological responses of native and exotic coastal wetland plants to waterlogging and salinity stress [D]. Shanghai: East China Normal University, 2018]
19 殷甘强, 杨梅, 王玉国, 杨继, 杨文驹. 两种藨草属植物对盐度的表型可塑性反应[J]. 复旦学报: 自然科学版, 2018, 57 (1): 43-50 [Yin GQ, Yang M, Wang YG, Yang J, Yang WJ. Phenotypic plastic response of two Scirpus species to salinity gradient [J]. J Fudan Univ (Nat Sci), 2018, 57 (1): 43-50]
20 伍会萍, 丁振杰, 倪细炉. NaCl胁迫对长苞香蒲和芦苇生长及光合特性的影响[J]. 江苏农业科学, 2018, 46 (24): 134-138 [Wu HP, Ding ZJ, Ni XL. Effects of NaCl stress on growth and photosynthetic characteristics of Typha angustifolia and Phragmites australis [J]. Jiangsu Agric Sci, 2018, 46 (24): 134-138]
21 Xue L, Li XZ, Yan ZZ, Zhang Q, Ding WH, Huang X, Bo T, Ge ZM, Yin QX. Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion [J]. Hydrobiologia, 2017, 806: 1-9
22 张磊, 侯云鹏, 王立春. 盐碱胁迫对植物的影响及提高植物耐盐碱性的方法[J]. 东北农业科学, 2018, 43 (4): 11-16 [Zhang L, Hou YP, Wang LC. Effect of alkaline salt stress on plant and method of enhancing saline-alkali resistance [J]. J NE Agric Sci, 2018, 43 (4): 11-16]
23 杨允菲, 李建东. 松嫩平原不同生境芦苇种群分株的生物量分配与生长分析[J]. 应用生态学报, 2003, 14 (1): 30-34 [Yang YF, Li JD. Biomass allocation and growth analysis on the ramets of Phragmites communis populations in different habitats in the Songnen Plains of China [J]. Chin J Appl Ecol, 2003, 14 (1): 30-34]
24 寇艳秋. 吉林西部盐碱湿地对农田退水的净化研究[D]. 长春: 东北师范大学, 2012 [Kou YQ. Purification of farmland back water in Jilin western salinized wetland [D]. Changchun: Northeast Normal of University, 2012]
25 张敏杰, 陈香丽. 水稻杂草的防治[J]. 黑龙江农业科学, 2008 (1): 10 [Zhang MJ, Chen XL. The control methods of rice weeds [J]. Heilongjiang Agric Sci, 2008 (1): 10]
26 崔桢, 章光新, 张蕾, 武瑶. 基于白鹤生境需求的湿地生态水文调控研究——以莫莫格国家级自然保护区白鹤湖为例[J]. 湿地科学, 2018, 16 (4): 509-516 [Cui Z, Zhang GX, Zhang L, Wu Y. Eco-hydrological regulations based on requirement of Grus leucogeranus habitat—A case of Baihe Lake in Momoge National Nature Reserve [J]. Wetland Sci, 2018, 16 (4): 509-516]
27 Canalejo A, Martínez-Domínguez, David, Córdoba, Francisco, Torronteras R. Salt tolerance is related to a specific antioxidant response in the halophyte cord grass, Spartina densiflora [J]. Estuar Coast Shelf S, 2014, 146: 68-75
28 王佺珍, 刘倩, 高娅妮, 柳旭. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37 (16): 5565-5577 [Wang QZ, Liu Q, Gao YN, Liu X. Review on the mechanisms of the response to salinity-alkalinity stress in plants [J]. Acta Ecol Sin, 2017, 37 (16): 5565-5577]
29 Wang CH, Lu M, Yang B, Yang Q, Zhang XD, Hara T, Li B. Effects of environmental gradients on the performances of four dominant plants in a Chinese saltmarsh: implications for plant zonation [J]. Ecol Res, 2010, 25 (2): 347-358
30 梁正伟, 杨福, 王志春, 陈渊. 盐碱胁迫对水稻主要生育性状的影响[J]. 生态环境学报, 2004, 13 (1): 43-46 [Liang ZW, Yang F, Wang ZC, Chen Y. Effect of the main growth characteristics of rice under saline-alkali stress [J]. Ecol Environ Sci, 2004, 13 (1): 43-46]
31 步金宝, 赵宏伟, 刘化龙, 王敬国, 兴旺. 盐碱胁迫对寒地粳稻产量形成机理的研究[J]. 农业现代化研究, 2012, 33 (4): 485-488 [Bu JB, Zhao HW, Liu HL, Wang JG, Xing W. Study on yield formation mechanism of salinity and alkalinity stress in japonica rice of cold region [J]. Res Agric Modern, 2012, 33 (4): 485-488]
32 Janousek CN, Mayo C. Plant responses to increased inundation and salt exposure: interactive effects on tidal marsh productivity [J]. Plant Ecol, 2013, 214 (7): 917-928
33 Ma Y, Wang XP, Zhang SF, Shi DC, Sheng LX. Effects of salt and alkali stress on growth, accumulation of oxalic acid, and activity of oxalic acid-metabolizing enzymes in Kochia sieversiana [J]. Biol Plantarum, 2016, 60 (4): 774-782
34 李悦, 陈忠林, 王杰, 徐苏南, 侯伟. 盐胁迫对翅碱蓬生长和渗透调节物质浓度的影响[J]. 生态学杂志, 2011, 30 (1): 72-76 [Li Y, Chen ZL, Wang J, Xu SN, Hou W. Effects of salt stress on Suaeda heteroptera Kitagawa growth and osmosis-regulating substance concentration [J]. Chin J Ecol, 2011, 30 (1): 72-76]
35 Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants [J]. Crop Sci, 2005, 45 (2): 437-448
36 Croser C, Renault S, Franklin JA, Zwiazek JJ. The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana [J]. Environ Pollut, 2001, 115 (1): 9-16
37 郭建荣, 郑聪聪, 李艳迪, 范海, 王宝山. NaCl处理对真盐生植物盐地碱蓬根系特征及活力的影响[J]. 植物生理学报, 2017, 53 (1): 63-70 [Guo JR, Zheng CC, Li YD, Fan H, Wang BS. Effects of NaCl treatment on root system characteristics and activity of the euhalophyte, Suaeda salsa [J]. Plant Physiol J, 2017, 53 (1): 63-70]
38 Li R, Shi F, Fukuda K. Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae) [J]. S Afr J Bot, 2010, 76 (2): 380-387
39 Aziz I, Khan MA. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan [J]. Aquat Bot, 2001, 70 (3): 259-268
40 Thompson DI, Edwards TJ, Staden JV. A novel dual-phase culture medium promotes germination and seedling establishment from immature embryos in South African Disa (Orchidaceae) species [J]. Plant Growth Regul, 2007, 53 (3): 163-171
41 Van Zandt PA, Tobler MA, Mouton E, Hasenstein KH, Morpper S. Positive and negative consequences of salinity stress for the growth and reproduction of the clonal plant, Iris hexagona [J]. J Ecol, 2003, 91 (5): 837-846
42 Gilbert AA, Fraser LH. Effects of salinity and clipping on biomass and competition between a halophyte and a glycophyte [J]. Plant Ecol, 2013, 214 (3): 433-442
43 Shao YH, Gao JL, Wu XW, Li Q, Wang JG, Ding P, Lai XP. Effect of salt treatment on growth, isoenzymes and metabolites of Andrographis paniculata (Burm. f.) Nees [J]. Acta Physiol Plant, 2015, 37 (2): 35-46

相似文献/References:

[1]王志春,杨福,齐春艳.盐碱胁迫对水稻花粉扫描特征和生活力的影响[J].应用与环境生物学报,2010,16(01):63.[doi:10.3724/SP.J.1145.2010.00063]
 WANG Zhichun,YANG Fu,QI Chunyan.Effects of Salinity and Sodicity Stresses on Pollen Surface Characteristics and Viability of Rice[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):63.[doi:10.3724/SP.J.1145.2010.00063]
[2]李月明 杨帆 韩沛霖 周万里 王竞红 阎秀峰 蔺吉祥**.【综述】植物根系分泌物响应非生物胁迫机理研究进展[J].应用与环境生物学报,2022,28(04):1.[doi:10.19675/j.cnki.1006-687x.2021.03011]
 LI Yueming,YANG Fan,HAN Peilin,et al.Research progress on the mechanism of root exudates in response to abiotic stresses[J].Chinese Journal of Applied & Environmental Biology,2022,28(01):1.[doi:10.19675/j.cnki.1006-687x.2021.03011]

更新日期/Last Update: 2020-02-25