|本期目录/Table of Contents|

[1]赵兴鸽,张世挺,牛克昌.青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系[J].应用与环境生物学报,2020,26(01):1-9.[doi:10.19675/j.cnki.1006-687x.2019.03047]
 ZHAO Xingge,ZHANG Shiting,NIU Kechang.Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows[J].Chinese Journal of Applied & Environmental Biology,2020,26(01):1-9.[doi:10.19675/j.cnki.1006-687x.2019.03047]
点击复制

青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
26卷
期数:
2020年01期
页码:
1-9
栏目:
研究论文
出版日期:
2020-02-25

文章信息/Info

Title:
Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows
作者:
赵兴鸽 张世挺 牛克昌
1南京大学生命科学学院 南京 210023 2兰州大学生命科学学院 兰州 730000
Author(s):
ZHAO Xingge ZHANG Shiting NIU Kechang
1 School of Life Sciences, Nanjing University, Nanjing 210023, China 2 School of Life Sciences, Lanzhou University, Lanzhou 730000, China
关键词:
高寒草甸土壤真菌植物群落功能性状土壤理化特性
Keywords:
alpine meadow soil fungus plant community functional trait soil attribute
DOI:
10.19675/j.cnki.1006-687x.2019.03047
摘要:
为探究高寒草甸土壤真菌多样性与植物群落功能性状(community-weighted mean, CWM; functional diversity, FD)及土壤理化特性的关系,选取3个试验点,每个试验点选择4种生境(沟底平地、阴坡、阳坡和山顶),采用高通量测序技术分析各生境土壤真菌多样性特点;利用广义线性混合模型,比较土壤真菌优势类群(门和属水平)及土壤理化特性在不同试验点和生境之间的差异;采用多元分析和偏回归检验土壤真菌多样性与群落水平功能性状(CWM)和性状多样性(FD)及土壤理化特性的关系. 结果表明:(1) 高寒草甸土壤真菌在门水平上的优势类群为接合菌门、子囊菌门、担子菌门和球囊菌门,在属水平上的优势类群为被孢霉属、隐球菌属、丝盖伞属、蜡壳菌属和蜡伞属. 接合菌门、球囊菌门及被孢霉属在不同生境的分布存在显著差异,在山顶接合菌门和被孢霉属的相对丰度显著高于其他3种生境(沟底平地、阴坡和阳坡),在沟底球囊菌门的相对丰度显著高于其他3种生境(阴坡、阳坡和山顶). (2)土壤理化特性能够解释土壤真菌丰富度变化的21%. 土壤真菌丰富度随土壤pH、全氮和速效氮的增加而增加,随土壤有机碳、有机质和碳氮比的增加而降低. (3)植物群落水平功能性状能够解释20%的土壤真菌丰富度变化. 土壤真菌丰富度与植物群落水平的植株高度呈显著负相关. (4)植物群落性状多样性能够解释土壤真菌丰富度变化的33%. 土壤真菌丰富度随植物群落叶片氮和磷含量多样性的增加而增加,随植株高度和叶片干物质含量的增加而减小;土壤真菌Shannon指数与土壤理化特性及植物群落功能性状均无显著相关性. 因此,植物群落功能性状和土壤理化特性可共同解释高寒草甸土壤真菌丰富度的变化,植物群落性状多样性与土壤真菌群落协同变化,可促进高寒草甸生态系统稳定性维持. (图3 表2 参51)
Abstract:
In this study, we investigate the relationships between soil fungal diversity, plant community functional traits (community-weighted mean, CWM, and functional diversity, FD), and soil attributes under various habitats (valley, north and south slopes, and top hill) at each of three test sites. High-throughput sequencing technology was applied to analyze soil fungal diversity. Five key functional traits were investigated for four typical habitats of three test sites to quantify CWM and FD. A generalized linear mixed model was used to examine the relationship between soil fungi community and soil attributes, CWM and FD, in four typical habitats of the three test sites. Generalized canonical discriminant analysis and partial regression were conducted to analyze the correlation among soil fungal diversity and soil attributes. (1) The dominant fungal phyla in alpine meadows were Zygomycota, Ascomyceta, Basidiomycota, and Glomeromycota, and the dominant genera were Mortierella, Cryptococcus, Inocybe, Sebacina, and Hygrocybe. There were significant difference among the four habitats for Zygomycota, Glomeromycota, and Mortierella. The relative abundance of Zygomycota and Mortierella in top hill soil was significantly higher than that in the other three habitats (valley, north and south slopes). The relative abundance of Glomeromycota in the valley was significantly higher than that in other three habitats (north and south slopes and top hill). (2) Soil attributes accounted for 20% of the variation in soil fungal richness, with soil fungal richness associated positively with soil pH, total nitrogen and available nitrogen, but negatively with soil organic carbon, soil organic matter and C/N ratio. No significant correlation was found between soil fungal Shannon index and soil attributes. (3) CWM of five traits accounted for 21% of variation in soil fungal richness, with soil fungal richness correlated negatively with CWM of plant height. (4) FD of five traits accounted for 33% of variation in soil fungal richness, which increased with FD of leaf nitrogen and leaf phosphorus but declined with FD of plant height and leaf dry matter content. Neither CWM nor FD significantly correlated with soil fungal Shannon index. The soil fungal richness, rather than Shannon index, was not only associated with soil attributes but also with plant community functional traits. The interaction between soil fungal richness and FD plays an important role in promoting ecosystem stability in alpine meadows.

参考文献/References:

1 贺金生, 王政权, 方精云. 全球变化下的地下生态学: 问题与展望[J]. 科学通报, 2004, 49 (13): 1226-1233 [He JS, Wang ZQ, Fang JY. Belowground ecology under global change: problems and prospects [J]. Chin Sci Bull, 2004, 49 (13): 1226-1233]
2 Legay N, Baxendale C, Grigulis K, Krainer U, Kastl E, Schloter M, Bardgett RD, Arnoldi C, Bahn M, Dumont M, Poly F, Pommier T, Clément JC, Lavorell S. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities [J]. Ann Bot, 2014, 114 (5): 1011-1021
3 Murugan R, Loges R, Taube F, Sradnick A, Joergensen RG. Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland [J]. Microb Ecol, 2014, 67 (4): 907-918
4 Deacon LJ, Pryce-Miller EJ, Frankland JC, Bainbridge BW, Moore PD, Robinson CH. Diversity and function of decomposer fungi from a grassland soil [J]. Soil Biol Biochem, 2006, 38 (1): 7-20
5 Kennedy AC, Smith KL. Soil microbial diversity and the sustainability of agricultural soils [J]. Plant Soil, 1995, 170 (1): 75-86
6 Wardle DA, Bardgett RD, Klironomos JN, Set?l? H, van der Putten WH, Wall DH. Ecological linkages between aboveground and belowground biota [J]. Science, 2004, 304 (5677): 1629-1633
7 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26 (9): 972-987 [Liu AR, Yang T, Xu W, Shangguan ZJ, Wang JZ, Liu HY, Shi Y, Chu HY, He JS. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodivers Sci, 2018, 26 (9): 972-987]
8 De Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management [J]. Soil Biol Biochem, 2006, 38 (8): 2092-2103
9 Yang T, Adams JM, Shi Y, He JS, Jing X, Chen L, Tedersoo L, Chu H. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity [J]. New Phytol, 2017, 215 (2): 756-765
10 Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide [J]. Austr J Bot, 2003, 51 (4): 335-380
11 D??az S, Cabido M. Vive la différence: plant functional diversity matters to ecosystem processes [J]. Trends Ecol Evol, 2001, 16 (11): 646-655
12 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets ?, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum [J]. Nature, 2004, 428 (6985): 821-827
13 Hooper DU, Bignell DE, Brown VK, Brussard L, Mark Dangerfield J, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, Van Der Putten WH, De Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks [J]. BioScience, 2000, 50 (12): 1049-1061
14 Delgado-Baquerizo M, Fry EL, Eldridge DJ, de Vries FT, Manning P, Hamonts K, Kattge J, Boenisch G, Singh BK, Bardgett RD. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe [J]. New Phytol, 2018, 219 (2): 574-587
15 Gao C, Shi NN, Liu YX, Peay KG, Zheng Y, Ding Q, Mi XC, Ma KP, Wubet T, Buscot F, Guo LD. Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest [J]. Mol Ecol, 2013, 22 (12): 3403-3414
16 Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S, Mason KE, Ostle NJ, Johnson D, Baggs EM, Fierer N. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits [J]. ISME J, 2018, 12 (7): 1794-1805]
17 丁明军, 张镱锂, 孙晓敏, 刘林山, 王兆锋. 近10年青藏高原高寒草地物候时空变化特征分析[J]. 科学通报, 2012, 57 (33): 3185-3194 [Ding MJ, Zhang YL, Sun XM, Liu LS, Wang ZF. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009 [J]. Chin Sci Bull, 2012, 57 (33): 3185-3194]
18 孔维栋. 极地陆域微生物多样性研究进展[J]. 生物多样性, 2013, 21 (4): 456-467 [Kong WD. A review of microbial diversity in polar terrestrial environments [J]. Biodivers Sci, 2013, 21 (4): 456-467]
19 李海云, 姚拓, 高亚敏, 张建贵, 马亚春, 路晓雯, 杨晓蕾, 张慧荣, 夏东慧. 退化高寒草地土壤真菌群落与土壤环境因子间相互关系[J]. 微生物学报, 2019, 59 (4): 678-688 [Li HY, Yao T, Gao YM, Zhang JG, Ma YC, Lu XW, Yang XL, Zhang HR, Xia DH. Relationship between soil fungal community and soil environmental factors in degraded alpine grassland [J]. Acta Microbiol Sin, 2019, 59 (4): 678-688]
20 Niu KC, Choler P, de Bello F, Mirotchnick N, Du GZ, Sun SC. Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow [J]. Agr Ecosyst Environ, 2014, 182 (2): 106-112
21 李宏林 徐当会 杜国祯. 青藏高原高寒沼泽湿地在退化梯度上植物群落组成的改变对湿地水分状况的影响[J]. 植物生态学报, 2012, 36 (5): 403-410 [Li HL, Xu DH, Du GZ. Effect of change of plant community composition along degradation gradients on water conditions in an alpine swamp wetland on the Qinghai-Tibetan Plateau of China [J]. Chin J Plant Ecol, 2012, 36 (5): 403-410]
22 Niu KC, He JS, Lechowicz MJ. Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows [J]. J Appl Ecol, 2016, 53 (5): 1554-1564
23 Niu KC, He JS, Zhang ST, Lechowicz MJ. Grazing increases functional richness but not functional divergence in Tibetan alpine meadow plant communities [J]. Biodivers Conserv, 2016, 25 (12): 2441-2452
24 赵兴鸽, 张世挺, 牛克昌. 高寒草甸植物群落功能属性与土壤细菌多样性关系[J]. 中国科学: 生命科学, 2019, 49: 1-11 [Zhao XG, Zhang ST, Niu KC. Association of soil bacterial diversity with plant community functional attributes in alpine meadows [J]. Sci Sin Vitae, 2019, 49: 1-11]
25 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000 [Bao SD. Soil and Agricultural Chemistry Analysis [M]. 3rd ed. Beijing: China Agriculture Press, 2000]
26 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [CP]. URL: https://www.R-project.org/, 2017
27 Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. Nlme: Linear and nonlinear mixed effects models. R package version 3.1-131 [CP]. URL: https://CRAN.R-project.org/package=nlme, 2017
28 Bertrand F, Meyer N, Maumy-Bertrand M. Partial least squares regression for generalized linear models. R package version 1.1.1 [CP]. URL: https://CRAN.R-project.org/package=plsRglm, 2014
29 Friendly M, Fox J. Candisc: Visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.8-0 [CP]. URL: https://CRAN.R-project.org/package=candisc, 2017
30 Fox J, Friendly M, Monette G. Heplots: Visualizing tests in multivariate linear models. R package version 1.3-4 [CP]. URL: https://CRAN.R-project.org/package=heplots, 2017
31 尹亚丽, 王玉琴, 李世雄, 刘燕, 赵文, 马玉寿, 鲍根生. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响[J]. 应用生态学报, 2019, 30 (1): 127-136 [Yin YL, Wang YQ, Li SX, Liu Y, Zhao W, Ma YS, Bao GS. Effects of enclosing on soil microbial community diversity and soil stoichiometric characteristics in a degraded alpine meadow [J]. Chin J Appl Ecol, 2019, 30 (1): 127-136]
32 Broeckling CD, Broz AK , Bergelson J, Manter DK, Vivanco JM. Root exudates regulate soil fungal community composition and diversity [J]. Appl Environ Microbiol, 2008, 74 (3): 738-744
33 Badri DV, Vivanco JM. Regulation and function of root exudates [J]. Plant Cell Environ, 2009, 32 (6): 666-681
34 林先贵, 胡君利, 戴珏, 王发园, 冯有智. 丛枝菌根真菌群落结构与多样性研究方法概述及实例比较[J]. 应用与环境生物学报, 2017, 23 (2): 343-350 [Lin XG, Hu JL, Dai J, Wang FY, Feng YZ. Overview and comparison of research methods for determining the community structure and diversity of arbuscular mycorrhizal fungi [J]. Chin J Appl Environ Biol, 2017, 23 (2): 343-350]
35 Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses [J]. Nat Rev Microbiol, 2008, 6 (10): 763-775
36 Zhang XF, Zhao L, Xu SJ Jr, Liu YZ, Liu HY, Cheng GD. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types [J]. J Appl Microbiol, 2013, 114 (4) : 1054-1065
37 楚海燕, 李若南, 李靖雯, 钟兆全, 刘小飞, 李一清. 中亚热带森林转换对土壤微生物群落结构的影响[J]. 应用与环境生物学报, 2019, 25 (1): 23-28 [Chu HY, Li RN, Li JW, Zhong YQ, Liu XF, Li YQ. Effects of forest conversion on soil microbial community structure [J]. Chin J Appl Environ Biol, 2019, 25 (1): 23-28]
38 Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types [J]. Soil Biol Biochem, 2008, 40 (9): 2407-2415
39 Rousk J, B??th E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 2010, 4 (10): 1340-1351
40 韩世忠, 高人, 马红亮, 尹云锋, 司友涛, 杨玉盛, 陈仕东, 陆建芳, 刘功辉, 李爱萍, 郑群瑞. 中亚热带森林土壤真菌多样性的案例研究[J]. 热带亚热带植物学报, 2015, 23 (3): 343-352 [Han SZ, Gao R, Ma HL, Yin YF, Si YT, Yang YS, Chen SD, Lu JF, Liu GH, Li AP, Zheng QR. Soil fungal diversities of Castanopsis carlesii nature forests in mid-subtropical China [J]. J Trop and Subtrop Bot, 2015, 23 (3): 343-352]
41 高利, 刘杏忠, 宗兆锋. 碳浓度及碳氮比对几种生防真菌孢子萌发的作用[J]. 植物保护学报, 2009, 36 (1): 93-94 [Gao L, Liu XZ, Zong ZF. Effects of carbon concentration and carbon-to-nitrogen ratio on spore germination of several biocontrol fungi [J]. Acta Phytoph Sin, 2009, 36 (1): 93-94]
42 陆雅海, 傅声雷, 褚海燕, 杨云锋, 刘占锋. 全球变化背景下的土壤生物学研究进展[J]. 中国科学基金, 2015, 29 (1): 19-24 [Lu YH, Fu SL, Chu HY, Yang YF, Liu ZF. Recent advances in global change and soil biology [J]. Sci Found Chin, 2015, 29 (1): 19-24]
43 Grime JP. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects [J]. J Ecol, 1998, 86 (6): 902-910
44 Van der Heijden MGA, Dombrowski N, Schlaeppi K. Continuum of root-fungal symbioses for plant nutrition [J]. PNAS, 2017, 114 (44): 11574-11576
45 贺纪正, 葛源. 土壤微生物生物地理学研究进展[J]. 生态学报, 2008, 28 (11): 5571-5582 [Ji HZ, Ge Y. Recent advances in soil microbial biogeography [J]. Acta Ecol Sin, 2008, 28 (11): 5571-5582]
46 Millard P, Singh BK. Does grassland vegetation drive soil microbial diversity? [J]. Nutr Cycl Agroecosys, 2010, 88 (2): 147-158
47 Wardle DA. The influence of biotic interactions on soil biodiversity [J]. Ecol Lett, 2006, 9 (7): 870-886
48 Eldridge DJ, Delgado-Baquerizo M, Travers SK, Val J, Oliver I, Hamonts K, Singh BK. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores [J]. Ecology, 2017, 98 (7): 1922-1931
49 陈法霖, 张凯, 郑华, 林学强, 欧阳志云, 屠乃美. PCR-DGGE技术解析针叶和阔叶凋落物混合分解对土壤微生物群落结构的影响[J]. 应用与环境生物学报, 2011, 17 (2): 145-150 [Chen FL, Zhang K, Zheng H, Lin XQ, Ouyang ZY, Tu NM. Analyzing the effect of mixed decomposition of conifer and broadleaf litters on soil microbial communities by using PCR-DGGE [J]. Chin J Appl Environ Biol, 2011, 17 (2): 145-150]
50 周天阳, 王金牛, 杜文涛, 徐波, 周海燕, 谢雨, 吴彦. 吴彦季节性积雪下的高山草地凋落物分解[J]. 应用与环境生物学报, 2019, 25 (1): 1-8 [Zhou TY, Wang JN, Du WT, Xu B, Zhou HY, Xie Y, Wu Y. Litter decomposition of alpine meadow under seasonal snow cover [J]. Chin J Appl Environ Biol, 2019, 25 (1): 1-8]
51 Tilman D. Distinguishing between the effects of species diversity and species composition [J]. Oikos, 1997, 80 (1): 185

相似文献/References:

[1]王长庭,龙瑞军,王启兰,等.三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化[J].应用与环境生物学报,2008,14(02):225.
 WANG Changting,et al..Changes in Soil Organic Carbon and Microbial Biomass Carbon at Different Degradation Successional Stages of Alpine Meadows in the Headwater Region of Three Rivers in China[J].Chinese Journal of Applied & Environmental Biology,2008,14(01):225.
[2]何奕忻,孙庚,刘琳,等.牦牛粪便对川西北高寒草甸土壤养分的影响[J].应用与环境生物学报,2009,15(05):666.[doi:10.3724/SP.J.1145.2009.00666]
 Effect of Yak Dung on High-frigid Meadow Soil Nutrition in Northwestern Sichuan,China.Impact of Yak Dung on Soil Nutrient in Northwest Grassland of Sichuan[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):666.[doi:10.3724/SP.J.1145.2009.00666]
[3]芦晓飞,赵志祥,谢丙炎,等.西藏米拉山高寒草甸土壤微生物DNA提取及宏基因组Fosmid文库构建[J].应用与环境生物学报,2009,15(06):824.[doi:10.3724/SP.J.1145.2009.00824]
 LU Xiaofei,ZHAO Zhixiang,XIE Bingyan,et al.DNA Extraction and Construction of a Metagenomic Fosmid Library of Alpine Meadow Soil from the Mila Mountains in Tibet, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(01):824.[doi:10.3724/SP.J.1145.2009.00824]
[4]刘琳,孙庚,吴彦,等.季节性雪被对青藏高原东缘高寒草甸土壤氮矿化的影响[J].应用与环境生物学报,2011,17(04):453.[doi:10.3724/SP.J.1145.2011.00453]
 LIU Lin,SUN Geng,WU Yan,et al.Effect of Seasonal Snow Cover on Soil Nitrogen Mineralization in an Alpine Meadow on the Eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):453.[doi:10.3724/SP.J.1145.2011.00453]
[5]袁一斌,慕军鹏,彭幼红,等.多齿马先蒿与刺齿马先蒿花部形态、昆虫访花频率及种子产量比较研究[J].应用与环境生物学报,2011,17(04):467.[doi:10.3724/SP.J.1145.2011.00467]
 YUAN Yibin,MU Junpeng,PENG Youhong,et al.Comparative Study on Flower Trait, Pollinator Visitation Rate and Seed Production of Two Pedicularis Species[J].Chinese Journal of Applied & Environmental Biology,2011,17(01):467.[doi:10.3724/SP.J.1145.2011.00467]
[6]阳小成,冯坚,吴新卫,等.川西北高寒草甸两种蚯蚓的互作及其对土壤养分的影响[J].应用与环境生物学报,2012,18(02):186.[doi:10.3724/SP.J.1145.2012.00186]
 YANG Xiaocheng,FENG Jian,WU Xinwei,et al.Species Interaction Between Earthworms and Its Effect on Soil Nutrients in an Alpine Meadow, Northwestern Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2012,18(01):186.[doi:10.3724/SP.J.1145.2012.00186]
[7]牟成香,孙庚,罗鹏,等.青藏高原高寒草甸植物开花物候对极端干旱的响应[J].应用与环境生物学报,2013,19(02):272.[doi:10.3724/SP.J.1145.2013.00272]
 MOU Chengxiang,SUN Geng,LUO Peng,et al.Flowering Responses of Alpine Meadow Plant in the Qinghai-Tibetan Plateau to Extreme Drought Imposed in Different Periods[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):272.[doi:10.3724/SP.J.1145.2013.00272]
[8]晋方佑,李治滢,王永霞,等.云南程海湖可培养真菌多样性分析[J].应用与环境生物学报,2013,19(06):1025.[doi:10.3724/SP.J.1145.2013.01025]
 JIN Fangyou,LI Zhiying,WANG Yongxia,et al.Diversity of Cultivable Fungi Isolated from the Chenghai Lake in Yunnan Province[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):1025.[doi:10.3724/SP.J.1145.2013.01025]
[9]刘 敏 王长庭** 字洪标 胡 雷 杨希智 杨有芳.火烧干扰下高寒草甸土壤微生物群落功能多样性变化特征[J].应用与环境生物学报,2016,22(02):263.[doi:10.3724/SP.J.1145.2015.08019]
 LIU Min,WANG Changting**,ZI Hongbiao,et al.Effects of fire disturbance on the functional diversity of soil microbialcommunity in alpine meadows*[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):263.[doi:10.3724/SP.J.1145.2015.08019]
[10]字洪标,阿的鲁骥,刘敏,等.高寒草甸不同类型草地群落特征及优势种植物生态位差异[J].应用与环境生物学报,2016,22(04):546.[doi:10.3724/SP.J.1145.2016.02018]
 ZI Hongbiao,ADE Luji,LIU Min,et al.Difference of community characteristics and niche of dominant species in different grassland types of alpine meadow[J].Chinese Journal of Applied & Environmental Biology,2016,22(01):546.[doi:10.3724/SP.J.1145.2016.02018]

更新日期/Last Update: 2020-02-25