1 Rylie G, Mohammad RA. Conducting polymers for neural prosthetic and neural interface applications [J]. Adv Mater, 2015, 27: 7620-7637 2 Su D, Di F, Xing J, Che JF, Xiao YH. Application of conducting polymers in controlled drug delivery system [J]. Prog Chem, 2014, 26 (12): 1962-1976 3 Gagan K, Raju A, Peter C, Mark B, Pathiraja G. Electrically conductive polymers and composites for biomedical applications [J]. RSC Adv, 2015, 5: 37553-37567 4 Sui L, Ju LH, Wang LY, Chen M. Applications and perspectives of conducting polymers in biomedical engineering [J]. Chin J Biomed Eng, 2011, 30 (2): 293-298 5 Tue BB, Melena DB, Yue X, Allan S, Frederik TM, Gregory JB, Ofer L, Zobeida CM, Vibeke A, Judith S, Darwin LC, Hanno S. A cost-effective high-throughput plasma and serum proteomics workflow enables mapping of the molecular impact of total pancreatectomy with islet autotransplantation [J]. Proteome Res, 2018, 17: 1983-1992 6 Limongi T, Rocchi A, Cesca F, Tan H, Miele E, Giugni A, Orlando M, Donnorso MD, Perozziello G, Benfenati F, Di Fabrizio E. Delivery of brain-derived neurotrophic factor by 3d biocompatible polymeric scaffolds for neural tissue engineering and neuronal regeneration [J]. Mol Neurobiol, 2018, 55: 8788-8798 7 赵庆祥, 李想, 洪毅. 电场刺激技术促进脊髓损伤神经再生的研究进展[J]. 中国骨与关节外科, 2013, 6 (6): 554-561 [Zhao QX,Li X,Hong Y. Research progress of electric field stimulation technology for nerve regeneration of spinal cord injury [J]. Chin J Bone Joint Surgery, 2013, 6 (6): 554-561] 8 Christian B, Felix O, Sabine S, Thomas S, Maria A. Long-term stable adhesion for conducting polymers in biomedical applications: irox and nanostructured platinum solve the chronic challenge [J]. ACS Appl Mater Interfaces, 2017, 9: 189-197 9 Xue JQ, Dai JZ, Zhang J, Zhao CX, Zhang YJ. New chemical materials [J]. Adv Mater Ind, 2017, 45 (9): 56-58 10 Elsa M, Goncalves, Filipe J, Oliveira, Rui F, Silva, Miguel A, Neto M, Helena F, Margarida A, Mar?a VR, Mercedes V. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation [J]. Biomed Mater Res Part B, 2016, 104B: 1210-1219 11 武艳强, 郭留希, 杨晋中, 张洪涛. 新型碳纳米材料制备工艺方法研究[J]. 超硬材料工程, 2016, 28 (5): 2183-2188 [Wu YQ, Guo LX, Yang JZ, Zhang HT. Research on preparation technology of new carbon nanomaterials [J]. Superhard Mater Eng, 2016, 28 (5): 2183-2188] 12 Nezakati T, Tan A, Seifalian AM. Enhancing the electrical conductivity of a hybrid POSS-PCL/graphene nanocomposite polymer [J]. Colloid Interface Sci, 2014, 435: 145-155 13 李燕, 刘惠亮. 碳纳米管在心肌组织工程应用的研究进展[J]. 中华老年心脑血管病杂志, 2016, 18 (9): 993-995 [Li Y,Liu HL. Advances in the application of carbon nanotubes in cardiac tissue engineering [J]. Chin J Card Cereb Diseases, 2016, 18 (9): 993-995] 14 Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG. Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart [J]. ACS Nano, 2014, 8: 9822-9832 15 Elias S, Hamid Y, Hossein NM, Reza G, Zuhair MH.Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: in vitro and in vivo evaluations [J]. Mater Sci Mater Med, 2017, 28: 75 16 Liu T, Dan W, Dan N, Liu X, Liu X, Peng X. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications [J]. Mater Sci Eng, 2017, 77: 202-211 17 周浩贤, 张俊明, 屈志宇, 张潘宇, 樊友军. 基于Nafion固定磷钼酸和石墨烯共修饰PEDOT膜电极的电化学过氧化氢传感器[J]. 电化学, 2016, 22 (1): 57-63 [Zhou HX, Zhang JM, Qu ZY, Zhang PY, Fan YJ. Electrochemical hydrogen peroxide sensor based on Nafion fixed PEDOT film electrode with phosphomolybdate and graphene [J]. J Electrochem, 2016, 22 (1): 57-63] 18 Jessamyn A, Fairfield. Nanostructured materials for neural electrical interfaces [J]. Adv Funct Mater, 2018, 28: 1701145 19 Abidian MR,Martin DC. Multifunctional nano biomaterials for neural interfaces [J]. Adv Funct Mater, 2009, 19: 573-585 20 Abidian MR,Martin DC. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes [J]. Biomaterials, 2008, 29: 1273-1283 21 Wang Y, Wang L, Huang W, Zhang T, Hu XY, Jason A. Perman, Ma SQ. A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection [J]. Mater Chem A, 2017, 5: 8385-8393 22 Widge AS, Jeffries-El M, Cui X, Lagenaur CF, Matsuoka Y. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes [J]. Biosens Bioelectron, 2007, 22: 1723-1732 23 Krishnasri VK, Sirshendu D. Polyaniline doped ultrafiltration membranes: mechanism of membrane formation and pH response characteristics [J]. Polymer, 2018, 153: 201-213 24 Xu C, Cai H, He P, Fang Y. Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA [J]. Analyst, 2001, 126: 62-65 25 Nihan A, Jenny M, Jadranka TS. Conducting polymer based electrochemical biosensors [J]. Phys Chem, 2016, 18: 8264-8277 26 Bhavana R, Pugal Mani S, Rajendran N. Electrochemical behavior of polypyrrole/chitosan composite coating on Ti metal for biomedical applications [J]. Carbohy Polym, 2018, 189: 126-137 27 Liu T, Liu NN, Zeng BS, Li XH, Lin YY, Hong D. The study of the ECL enzyme-sensor based on SiC nanomaterials [J]. Shandong Chem Ind, 2016, 45 (22): 60-65 28 Zhu D, Li QQ, Pang XM, Liu Y, Wang X, Jia M, Chen G. Application of the impedance spectrum in the electrochemical sensor research [J]. Chem Sensors, 2016, 36 (1): 43-47 29 Jaspard F, Nadi M. Dielectric properties of blood: an investigation of temperature dependence. Physiol Meas, 2002, 23: 547-554 30 Cui XQ, Li CM, Zang JF, Zhou Q, Gan Y, Bao HF, Guo J, Lee VS, Moochhala SM. Biocatalytic generation of PPy-enzyme-CNT nanocomposite: from network assembly to film growth [J]. Phys Chem C, 2007, 111: 2025-2031 31 Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT. Amperometric biosensor for lactate based on lactate dehydrogenase and meldola blue coimmobilized on multi-wall carbon-nanotube [J]. Sens Actuators B, 2007, 124: 269-276 32 Vinay Na, Parveen K, Pooja J, C SP. Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer [J]. Enzyme Microb Technol, 2018, 113: 44-51 33 Ilangovan G, Manivannan A, Li H, Yanagi H, Zweier JL, Kuppusamy P. A naphthalocyanine-based EPR probe for localized measurements of tissue oxygenation [J]. Free Radical Biol, Med, 2002, 32: 139-147 34 Zheng HS, Mao S, Ding S, Chen XJ, Li YF, Zong K, Cao XD, YE YK. Preparation of a gold nanoparticles-reduced graphene oxide modified glucose oxidase biosensor and its amperometric determination of glucose in beverages [J]. J Instrum Anal, 2017, 36 (9): 1115-1118 35 Li L, Shi Y, Pan L, Shi Y, Yu G. Rational design and applications of conducting polymer hydrogels as electrochemical biosensors [J]. J Mater Chem B, 2015, 3: 2920-2930 36 Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G. Highly sensitive glucose sensor based on Pt nanoparticle/ polyaniline hydrogel heterostructures [J]. ACS Nano, 2013, 7: 3540-3546 37 Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials [J]. Nat Nanotechnol, 2012, 7: 779-786 38 Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML. Protein corona significantly reduces active targeting yield [J]. Chem Commun, 2013, 49: 2557-2559
[1]刘玉倩,魏婷,张超,等. 超敏感酵母HUG1-yEGFP生物传感器遗传毒性化合物检测方法优化[J].应用与环境生物学报,2014,20(05):919.[doi:10.3724/SP.J.1145.2014.01041]
LIU Yuqian,WEI Ting,ZHANG Chao,et al. An optimized genotoxin detection method based on super-sensitive yeast HUG1-yEGFP biosensor[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):919.[doi:10.3724/SP.J.1145.2014.01041]