1 Musa SD, Tang ZH, Ibrahim AO, Habib M. China’s energy status: A critical look at fossils and renewable options [J]. Renew Sust Energ Rev, 2018, 81: 2281-2290 2 Feng TT, Yang YS, Xie SY, Dong J, Ding L. Economic drivers of greenhouse gas emissions in China [J]. Renew Sust Energ Rev, 2017, 78: 996-1006 3 Sen S, Ganguly S. Opportunities, barriers and issues with renewable energy development – A discussion [J]. Renew Sust Energ Rev, 2017, 69: 1170-1181 4 郭静, 徐自祥, 付亚星, 刘碧芸, 孟静, 肖可, 付德刚, 孙啸. 产电微生物基因及代谢网络分析[J]. 应用与环境生物学报, 2012, 18 (6): 1075-1084 [Guo J, Xu ZX, Fu YX, Liu BY, Meng J, Xiao K, Fu DG, Sun X. Analysis on electricigen genomes and metabolic networks [J]. Chin J Appl Environ Biol, 2012, 18 (6): 1075-1084] 5 Deng Q, Li X, Zuo J, Ling A, Logan BE. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell [J]. J Power Sources, 2010, 195 (4): 1130-1135 6 Kim J, Kim B, Kim H, Yun Z. Effects of ammonium ions from the anolyte within bio-cathode microbial fuel cells on nitrate reduction and current density [J]. Int Biodeter Biodegr, 2014, 95: 122-126 7 Logan BE, Wallack MJ, Kim KY, He WH, Feng YJ, Saikaly PE. Assessment of microbial fuel cell configurations and power densities [J]. Environ Sci Technol Let, 2015, 2 (8): 206-214 8 张延滔, 张礼霞, 高平, 李大平. 混合菌群生物燃料电池的产电机理与特性 [J]. 应用与环境生物学报, 2012, 18 (3): 465-470 [Zhang YT, Zhang LX, Gao P, Li DP. Mechanism an characteristics of electricity generation in microbial fule cells catalyzed by mixd culture [J]. Chin J Appl Environ Biol, 2012, 18 (3): 465-470] 9 Hong SW, Chang IS, Choi YS, Chung TH. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell [J]. Bioresour Technol, 2009, 100 (12): 3029-3035 10 Wang YY, Hou BH, Lü HY, Wan F, Wang J, Wu XL. Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage [J]. RSC Adv, 2015, 5 (118): 97427-97434 11 Chen Q, Pu W, Hou H, Hu JP, Liu BC, Li JF, Cheng K, Huang L, Yuan XQ, Yang CZ, Yang JK. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells [J]. Bioresour Technol, 2018, 249: 567-573 12 Sun Y, Dai Y, Duan Y, Xu X, Lv Y, Yang L, Zou JL. Biofouling inhibition on nano-silver/ferrous sulfide/partly-graphitized carbon cathode with enhanced catalytic activity and durability for microbial fuel cells [J]. Carbon, 2017, 119: 394-402 13 Hindatu Y, Annuar MSM, Gumel AM. Mini-review: Anode modification for improved performance of microbial fuel cell [J]. Renew Sust Energ Rev, 2017, 73: 236-248 14 Taskan E, Hasar H, Ozkaya B. Usage of Ti-TiO2 electrode in microbial fuel cell to enhance the electricity generation and its biocompatibility [J]. Appl Mech Mater, 2013, 404: 371-376 15 Zhu X, Logan BE. Copper anode corrosion affects power generation in microbial fuel cells [J]. J Chem Technol Biotechnol, 2014, 89 (3): 471-474 16 Liu J, Qiao Y, Guo CX, Lim S, Song H, Li CM. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells [J]. Bioresour Technol, 2012, 114: 275-280 17 Park IH, Christy M, Kim P, Nahm KS. Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell [J]. Biosens Bioelectron, 2014, 58: 75-80 18 Jia X, He Z, Zhang X, Tian XJ. Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell [J]. Synthetic Meti, 2016, 215: 170-175 19 Liu J, Liu JF, He WH, Qu YP, Ren NQ, Feng YJ. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode [J]. J Power Sources, 2014, 265: 391-396 20 Yu YY, Guo CX, Yong YC, Li CM, Song H. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode [J]. Chemosphere, 2015, 140: 26-33 21 Chang SH, Liou JS, Liu JL, Chiu YF, Xu CH, Chen BY, Chen JZ. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells [J]. J Power Sources, 2016, 336: 99-106 22 Huang LH, Li XF, Ren YP, Wang XH. In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell [J]. Int J Hydrogen Energy, 2016, 41 (26): 11369-11379 23 Fan MJ, Zhang W, Sun JY, Chen LL, Li PW, Chen YW, Zhu SM, Shen SB. Different modified multi-walled carbon nanotube–based anodes to improve the performance of microbial fuel cells [J]. Int J Hydrogen Energy, 2017, 42 (36): 22786-22795 24 Lü ZS, Xie DH, Li FS, H Y, Wei CH, Feng CH. Microbial fuel cell as a biocapacitor by using pseudo-capacitive anode materials [J]. J Power Sources, 2014, 246: 642-649 25 Zhang CY, Liang P, Yang XF, Jiang Y, Bian YH, Chen CM, Zhang XY, Huang X. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell [J]. Biosens Bioelectron, 2016, 81: 32-38 26 Hidalgo D, Tommasi T, Bocchini S,Chiolerio A, Chiodoni A, Mazzarino I, Ruggeri B. Surface modification of commercial carbon felt used as anode for microbial fuel cells [J]. Energy, 2016, 99: 193-201 27 Lanas V, Ahn Y, Logan BE. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode [J]. J Power Sources, 2014, 247: 228-234 28 Liao Q, Zhang J, Li J, Ye DD, Zhu X, Zhang B. Increased performance of a tubular microbial fuel cell with a rotating carbon-brush anode [J]. Biosens Bioelectron, 2015, 63: 558-561 29 Ahn Y, Logan BE. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures [J]. Bioresour Technol, 2010, 101 (2): 469-475 30 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva LV, Firsov AA. Electric Field Effect in Atomically Thin Carbon Films [J]. Science, 2004, 306 (5696): 666-669 31 Yang S, Feng X, Mullen K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage [J]. Adv Mater, 2011, 23 (31): 3575-3579 32 Falkovsky LA, Varlamov AA. Space-time dispersion of graphene conductivity [J]. Eur Phys J B, 2007, 56 (4): 281-284. 33 Han D, Yan L, Chen W, Li W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state [J]. Carbohydr Polym, 2011, 83 (2): 653-658 34 Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene [J]. Solid State Commun, 2008, 146 (9-10): 351-355 35 Liang J, Jiao Y, Jaroniec M, Qiao SZ. Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance [J]. Angew Chem Int Ed, 2012, 51 (46): 11496-11500 36 Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321 (5887): 385-388 37 Lv W, Li ZJ, Deng YQ, Yang QH. Graphene-based materials for electrochemical energy storage devices: opportunities and challenges [J]. Energy Storage Mater, 2016, 2: 107-138 38 Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CC. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups [J]. ACS Appl Mater Interfaces, 2010, 2 (11): 3092-3099 39 Zhang Y, Pan C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light [J]. J Mater Sci, 2010, 46 (8): 2622-2626 40 Zhou XL, Wang M, Lian J, Lian YF. Supercapacitors based on high-surface-area graphene [J]. Sci China Technol Sc, 2014, 57 (2): 278-283 41 Zhang YZ, Mo GQ, Li XW, Zhang WD, Zhang JQ, Ye JS, Huang XD, Yu CZ. A graphene modified anode to improve the performance of microbial fuel cells [J]. J Power Sources, 2011, 196 (13): 5402-5407 42 Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells [J]. Nano Lett, 2011, 11 (1): 291-296 43 Qiao Y, Bao SJ, Li CM. Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry [J]. Energ Environ Sci, 2010, 3 (5): 544 44 Wang D, Wang GW, Zhang GQ, Xu XC, Yang FL. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal [J]. Bioresour Technol, 2013, 131: 527-530 45 Zhang KH, Zheng HH, Liang S, Gao CY. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth [J]. Acta Biomater, 2016, 37: 131-142 46 Shan CS, Yang HF, Han DX, Zhang QX, Lvaska A, Niu L. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene [J]. Biosens Bioelectron, 2010, 25 (6): 1504-1508 47 Romero-Vargas Castrillón S, Perreault F, De Faria AF, Elimelech M. Interaction of Graphene Oxide with Bacterial Cell Membranes: Insights from Force Spectroscopy [J]. Environ Sci Tech Let, 2015, 2 (4): 112-117 48 Xiao L, Damien J, Luo JY, Jang HD, Huang JX, He Z. Crumpled graphene particles for microbial fuel cell electrodes [J]. J Power Sources, 2012, 208: 187-192 49 He ZM, Liu J, Qiao Y, Li CM, Tan TTY. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell [J]. Nano Lett, 2012, 12 (9): 4738-4741 50 Wang HY, Wang GM, Ling YC, Qian F, Song Y, Lu XH, Chen SW, Tong YX, Li Y. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode [J]. Nanoscale, 2013, 5 (21): 10283-10290 51 Hou J, Liu Z, Zhang P. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes [J]. J Power Sources, 2013, 224: 139-144 52 Lv ZS, Chen YF, Wei HC, Li FS, Hu Y, Wei CH, Feng CH. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application [J]. Electrochim Acta, 2013, 111: 366-373 53 Mehdinia A, Ziaei E, Jabbari A. Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation [J]. Int J Hydrogen Energy, 2014, 39 (20): 10724-10730 54 Qiao Y, Wen GY, Wu XS, Zou L. l-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells [J]. RSC Adv, 2015, 5 (72): 58921-58927 55 Yang XS, Ma XX, Wang K, Wu D, Lei ZC, Feng CH. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode [J]. Electrochim Acta, 2016, 210: 846-853 56 Najafabadi AT, Ng N, Gyenge E. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells [J]. Biosens Bioelectron, 2016, 81: 103-110 57 Call TP, Carey T, Bombelli P, Lee-Smith DJ, Hooper P, Howe CJ, Torrisi F. Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells [J]. J Mater Chem A, 2017, 5 (45): 23872-23886 58 Yu F, Wang C, Ma J. Capacitance-enhanced 3D graphene anode for microbial fuel cell with long-time electricity generation stability [J]. Electrochim Acta, 2018, 259: 1059-1067 59 Maiyalagan T, Dong XC, Chen P, Wang X. Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application [J]. J Mater Chem, 2012, 22 (12): 5286 60 Han MY, Brant JC, Kim P. Electron transport in disordered graphene nanoribbons [J]. Phys Rev Lett, 2010, 104 (5): 056801 61 Chen HQ, Müller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper [J]. Adv Mater, 2008, 20 (18): 3557-3561 62 Geng DS, Chen Y, Chen YG, Li YL, Li RY, Sun Xl, Ye SY, Knights S. High oxygen-reduction activity and durability of nitrogen-doped graphene [J]. Energ Environ Sci, 2011, 4 (3): 760 63 Chen SL, He GH, Liu Q, Harnisch F, Zhou Y, Chen Y, Hanif M, Wang SQ, Peng XW, Hou HQ, Schr?der U. Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis [J]. Energ Environ Sci, 2012, 5 (12): 9769 64 Huang L, Regan JM, Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells [J]. Bioresour Technol, 2011, 102 (1): 316-323 65 Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells [J]. Electrochem Commun, 2007, 9 (3): 492-496 66 Chen JF, Hu YY, Zhang L, Huang WT, Sun J. Bacterial community shift and improved performance induced by in situ preparing dual graphene modified bioelectrode in microbial fuel cell [J]. Bioresour Technol, 2017, 238: 273-280 67 Xie X, Yu GH, Liu N, Bao ZN, Criddle CS, Cui Y. Graphene–sponges as high-performance low-cost anodes for microbial fuel cells [J]. Energ Environ Sci, 2012, 5 (5): 6862 68 Sonawane JM, Yadav A, Ghosh PC, Adeloju SB. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells [J]. Biosens Bioelectron, 2017, 90: 558-576 69 Wei JC, Liang P, Zuo KC, Cao XX, Huang X. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial Fuel Cells [J]. ChemSusChem, 2012, 5 (6): 1065-1070 70 Tang XH, Guo K, Li HR, Du ZW, Tian JL. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes [J]. Bioresour Technol, 2011, 102 (3): 3558-3560 71 Zhang L, Zhang F, Yang X, Leng K, Huang Y, Chen YS. High-performance supercapacitor electrode materials prepared from various pollens [J]. Small, 2013, 9 (8): 1342-1347 72 Chen SL, He GH, Hu XW, Xie MY, Wang SQ, Zeng DJ, Hou HQ, Schr?der U. A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems [J]. ChemSusChem, 2012, 5 (6): 1059-1063 73 Chen SL, Liu Q, He GH, Zhou Y, Hanif M, Peng XW, Wang SQ, Hou HQ. Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells [J]. J Mater Chem, 2012, 22 (35): 18609 74 Yuan Y, Zhou SG, Liu Y, Tang JH. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells [J]. Environ Sci Tech, 2013, 47 (24): 14525-14532 75 Zhang J, Li J, Ye DD, Zhu X, Liao Q, Zhang B. Tubular bamboo charcoal for anode in microbial fuel cells [J]. J Power Sources, 2014, 272: 277-282 76 Karthikeyan R, Wang B, Xuan J, Wong JWC, Lee PKH, Leung MKH. Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell [J]. Electrochim Acta, 2015, 157: 314-323 77 Chen SS, Tang JH, Jing XY, Liu Y, Yuan Y, Zhou SG. A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting [J]. Electrochim Acta, 2016, 212: 883-889 78 Li YY, Zhu HL, Shen F, Wan JY, Han XG, Dai JQ, Dai HQ, Hu LB. Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose [J]. Adv Funct Mater, 2014, 24 (46): 7366-7372 79 Ambrogi M, Sakaushi K, Antonietti M, Yuan JY. Poly(ionic liquid)s for enhanced activation of cotton to generate simple and cheap fibrous electrodes for energy applications [J]. Polymer, 2015, 68: 315-320 80 Lijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354 (6348): 56-58 81 Ai L, Jiang J. Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene–carbon nanotube hybrid [J]. Chem Eng J, 2012, 192: 156-163 82 Barber AH, Andrews R, Schadler LS, Wagner DH. On the tensile strength distribution of multiwalled carbon nanotubes [J]. Appl Phys Lett, 2005, 87 (20): 203106 83 Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Richie RO. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J]. Mat Sci Eng A, 2002, 334 (1-2): 173-178 84 Berber S, Kwon YK, Tománek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys Rev Lett, 2000, 84 (20): 4613 85 Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, Waarbeek RFT, Jong JJD, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. Science, 2013, 339 (6116): 182-186 86 Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V. Evaluating the characteristics of multiwall carbon nanotubes [J]. Carbon, 2011, 49 (8): 2581-2602 87 Bianco A, Kostarelos K, Prato M. Making carbon nanotubes biocompatible and biodegradable [J]. Chem Commun, 2011, 47 (37): 10182-10188 88 Kim IT, Tannenbaum A, Tannenbaum R. Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices [J]. Carbon, 2011, 49 (1): 54-61 89 Ci SQ, Wen ZH, Chen JH, He Z. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells [J]. Electrochem Commun, 2012, 14 (1): 71-74 90 Wen ZH, Ci SQ, Mao S, Cui SM, Lu GH, Yu KH, Luo SL, He Z, Chen JH. TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells [J]. J Power Sources, 2013, 234: 100-106 91 Mehdinia A, Ziaei E, Jabbari A. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells [J]. Electrochim Acta, 2014, 130: 512-518 92 Hou JX, Liu ZL, Yang SQ, Zhou Y. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells [J]. J Power Sources, 2014, 258: 204-209 93 Wang YQ, Li B, Cui D, Xiang XD, Li WS. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell [J]. Biosens Bioelectron, 2014, 51: 349-355 94 Cui HF, Du L, Guo PB, Zhu B, Luong JHT. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode [J]. J Power Sources, 2015, 283: 46-53 95 Tang XH, Li HR, Du ZW, Wang WD, Ng HY. Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells [J]. RSC Adv, 2015, 5 (63): 50968-50974 96 Wei H, Wu XS, Zou L, Wen GY, Liu DY, Qiao Y. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells [J]. J Power Sources, 2016, 315: 192-198 97 Chen YW, Chen LL, Li PW, Xu Y, Fan MJ, Zhu SM, Shen SB. Enhanced performance of microbial fuel cells by using MnO2 /Halloysite nanotubes to modify carbon cloth anodes [J]. Energy, 2016, 109: 620-628 98 Hindatu Y, Annuar MSM, Subramaniam R, Gumel AM. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell [J]. Bioprocess Biosyst Eng, 2017, 40 (6): 919-928 99 Wu XH, Qiao Y, Shi ZZ, Tang W, Li CM. Hierarchically porous n-doped carbon nanotubes/reduced graphene oxide composite for promoting flavin-based interfacial electron transfer in microbial fuel cells [J]. Acs Appl Mater Inter, 2018, 10 (14): 11671-11677 100 Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG. Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes [J]. Angew Chem Int Edit, 2006, 45 (16): 2533-2537 101 Gu D, Li W, Wang F, Bongard HJ, Bernd S, Schmidt W, Weidenthaler C, Xia YY, Zhao DY, Schüth F. Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries [J]. Angew Chem Int Edit, 2015, 54 (24): 7060-7064 102 Duan M, Rong YG, Mei A, Hu Y, Sheng YS, Guan YJ, Han HW. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with carbon electrode based on ultrathin graphite [J]. Carbon, 2017, 120: 71-76 103 Erable B, Byrne N, Etcheverry L, Achouak W, Bergel A. Single medium microbial fuel cell: stainless steel and graphite electrode materials select bacterial communities resulting in opposite electrocatalytic activities [J]. Int J Hydrogen Energy, 2017, 42 (41): 26059-26067 104 Li Y, Wu Y, Ong BS. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics [J]. J Am Chem Soc, 2005, 127 (10): 3266-3267 105 Hermida-Merino C, Pérez-Rodríguez M, Pi?eiro MM, Gallego MJP. Tuning the electrical conductivity of exfoliated graphite nanosheets nanofluids by surface functionalization [J]. Soft Matter, 2017, 13 (18): 3395-3403 106 Prasher P, Singh M, Mudila H. Oligodynamic Effect of silver nanoparticles: a review [J]. BioNanoScience, 2018 107 Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1 [J]. Colloid Surface B, 2011, 85 (2): 174-181 108 Baudler A, Schmidt I, Langner M, Gewiner A, Schr?der U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems [J]. Energ Environ Sci, 2015, 8 (7): 2048-2055 109 Yamashita T, Yokoyama H. Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes [J]. Biotechnol Biofuels, 2018, 11 (1) 110 Yang YC, Chen CC, Huang CS,Wang CT, Ong HC. Developments of metallic anodes with various compositions and surfaces for the microbial fuel cells [J]. Int J Hydrogen Energy, 2017, 42 (34): 22235-22242 111 Brown RK, Schmidt UC, Harnisch F, Schr?der U. Combining hydrogen evolution and corrosion data - A case study on the economic viability of selected metal cathodes in microbial electrolysis cells [J]. J Power Sources, 2017, 356: 473-483 112 Zheng SQ, Yang FF, Chen SL, Liu L, Xiong Q, Yu T, Zhao F, Schr?der U, Hou HQ. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells [J]. J Power Sources, 2015, 284: 252-257 113 Singh S, Verma N. Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production [J]. Int J Hydrogen Energy, 2015, 40 (2): 1145-1153 114 Yuan Y, Shin H, Kang C, Kim S. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells [J]. Bioelectrochemistry, 2016, 108: 8-12 115 Narayanasamy S, Jayaprakash J. Improved performance of Pseudomonas aeruginosa catalyzed MFCs with graphite/polyester composite electrodes doped with metal ions for azo dye degradation [J]. Chem Eng J, 2018, 343: 258-269 116 Chakraborty A, Deva D, Sharma A, Verma N. Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water [J]. J Colloid Interf Sci, 2011, 359 (1): 228-39 117 蒋沁芮, 李泽华, 杨暖, 吴亭亭, 李大平. 三维电极微生物燃料电池处理生活污水同步产电性能 [J]. 应用与环境生物学报, 2018, 24 (4): 873-878 [Jang QR, Li ZH, Yang N, Wu TT, Li DP. Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation [J]. Chin J Appl Environ Biol, 2018, 24 (4): 873-878]
[1]李登兰,洪义国,许玫英,等.微生物燃料电池构造研究进展[J].应用与环境生物学报,2008,14(01):147.
LI Denglan,et al..Progress in Construction of Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):147.
[2]张雅舒,张礼霞,李大平.微生物燃料电池还原二氧化铅及产电研究[J].应用与环境生物学报,2012,18(05):780.[doi:10.3724/SP.J.1145.2012.00780]
ZHANG Yashu,ZHANG Lixia,LI Daping.Simultaneous Reduction of Lead Dioxide and Improvement of Bioelectricity Production in Microbial Fuel Cell[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):780.[doi:10.3724/SP.J.1145.2012.00780]
[3]崔旸,苏文涛,高平,等.还原性硫化物微生物燃料电池偶联偶氮染料降解[J].应用与环境生物学报,2012,18(06):978.[doi:10.3724/SP.J.1145.2012.00978]
CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):978.[doi:10.3724/SP.J.1145.2012.00978]
[4]郭静,徐自祥,付亚星,等.产电微生物基因组及代谢网络分析[J].应用与环境生物学报,2012,18(06):1075.[doi:10.3724/SP.J.1145.2012.01075]
GUO Jing,XU Zixiang,FU Yaxing,et al.Analysis on Electricigen Genomes and Metabolic Networks[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):1075.[doi:10.3724/SP.J.1145.2012.01075]
[5]刘柯,李大平,王娟.尿液微生物燃料电池研究[J].应用与环境生物学报,2015,21(01):36.[doi:10.3724/SP.J.1145.2014.03030]
LIU Ke,LI Daping,WANG Juan.Study on urine microbial fuel cell[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):36.[doi:10.3724/SP.J.1145.2014.03030]
[6]华涛,李胜男,周启星,等.生物电化学系统3种典型构型及其应用研究进展[J].应用与环境生物学报,2018,24(03):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
HUA Tao,LI Shengnan,ZHOU Qixing,et al.Recent advances in three typical configurations and applications of bioelectrochemical systems[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):663.[doi:10.19675/j.cnki.1006-687x.2017.08046]
[7]蒋沁芮,李泽华,杨暖,等.三维电极微生物燃料电池处理生活污水同步产电性能[J].应用与环境生物学报,2018,24(04):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]
JIANG Qinrui,LI Zehua,et al.Microbial fuel cell with three-dimensional electrodes for domestic wastewater treatment and electricity generation[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):873.[doi:10.19675/j.cnki.1006-687x.2017.11011]