|本期目录/Table of Contents|

[1]戚志伟,高艳娜,李沙沙,等.长江口滨海湿地芦苇和白茅形态和生长特征对地下水位的响应[J].应用与环境生物学报,2016,22(06):986-992.[doi:10.3724/SP.J.1145.2016.04010]
 QI Zhiwei,GAO Yanna,et al.A comparative study of morphology and growth traits between Phragmites australis and Imperata cylindrica under varying ground water table in the coastal wetland of Yangtze River Estuary[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):986-992.[doi:10.3724/SP.J.1145.2016.04010]
点击复制

长江口滨海湿地芦苇和白茅形态和生长特征对地下水位的响应()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年06期
页码:
986-992
栏目:
“生态系统的格局与恢复”专栏论文
出版日期:
2016-12-25

文章信息/Info

Title:
A comparative study of morphology and growth traits between Phragmites australis and Imperata cylindrica under varying ground water table in the coastal wetland of Yangtze River Estuary
作者:
戚志伟1 2 高艳娜1 2 李沙沙1 2 樊 同1 2 管 桐1 王开运1 2** 张 超3
1华东师范大学生态与环境科学学院 上海 200041 2上海市城市化生态过程与生态恢复重点实验室 上海 200041 3华东师范大学地理科学学院 上海 200241
Author(s):
QI Zhiwei1 2 GAO Yanna1 2 LI Shasha1 2 FAN Tong1 2 GUAN Tong1 WANG Kaiyun1 2** & ZHANG Chao3
1School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China 2Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, Shanghai 200241, China 3College of Geographical Science, East China Normal University, Shanghai 200241, China
关键词:
滨海湿地芦苇白茅水位管理竞争
Keywords:
coastal wetland Phragmites australis Imperata cylindrica water table management competition
分类号:
Q148
DOI:
10.3724/SP.J.1145.2016.04010
摘要:
芦苇是长江口地区滨海滩涂湿地主要建群种,如何控制白茅扩散、维持原生植被已成为滨海湿地管理亟待解决的生态问题之一. 以长江口崇明东滩湿地为研究对象,通过野外调查滨海湿地芦苇(Phragmites australis)和白茅(Imperata cylindrica)种群特征,比较3个不同地下水位(低、中、高水位)条件下芦苇与白茅幼苗和成株生长特征. 结果表明:对幼苗而言,地下水位对芦苇单株生长特征影响不显著,地下水位升高会促进芦苇种群密度增加,而显著限制白茅种群密度增加;对成株而言,在单株水平,中水位芦苇株高、基径、叶面积和地上生物量以及相对生长速率显著高于低水位和高水位,并且芦苇相对于白茅的生长优势在中水位条件下最为明显. 除株高和基径以外,白茅的其它生长指标在3个地下水位梯度间均无明显差异;在种群水平,芦苇种群植株密度,叶面积指数,叶、茎和地上生物量随着地下水位升高而逐渐升高,在高水位达到最优. 与芦苇相反,白茅种群植株密度,叶面积指数,叶、茎和地上生物量随着地下水位升高而逐渐降低,在低水位生长最好. 虽然白茅在单株水平上生长不如芦苇,但是凭借其极强的无性繁殖能力在芦苇群落中迅速扩散,与芦苇竞争光照、水分等资源,并且在地下水位较低的条件下白茅种群生长尤为旺盛. 因此,在植物幼苗阶段通过人工水位调控适当提高地下水位可以抑制中生性植物白茅的生长,从而有助于恢复东滩湿地以芦苇为单优势种的湿地群落结构和功能. (图5 表2 参24)
Abstract:
Phragmites australis is a constructive species in the tidal wetland in the Yangtze Estuary of China. Imperata cylindrica, a typical perennial mesophyte, is currently spreading wetlands previously dominated by the reed population and changing the structure and function of native ecosystem. Soil ground water table could affect soil physical, chemical and biogeochemical characters, which in turn influence the morphology and growth of P. australis and I. cylindrica. How to control the spread of I. cylindrica and maintain native community becomes one of the key problems for the wetland management. The relationship between the morphology and growth of P. australis and I. cylindrica and ground water table was investigated by using one-way ANOVA and Pearson correlative analysis in order to find how reed and Cogongrass respond to changes of ground water table in coastal wetland at the shoot level and at the population level. The investigation found that the rise of ground water table improved the population density but no otherwise obvious effects P. australis seedlings. The population density of I. cylindrica seedlings decreased with the rise of ground water table. At the shoot level, plant height, stem diameter, leaf area, aboveground biomass and relative growth rates of P. australis were significantly higher at middle water table than at low and high water tables. Besides plant height and base diameter, other morphological and growth traits of I. cylindrica showed no significant differences at the three ground water tables. At the population level, the population density, leaf area index, leaf biomass, stem biomass and aboveground biomass of P. australis increased with the ground water table, while those of I. cylindrica decreased. Although the growth of I. cylindrica was worse than P. australis at the shoot level, I. cylindrica spread rapidly throughout the reed population by strong agamogenesis ability, especially at low ground water table. Therefore a higher wetland ground water table at the early stage of the growing season may inhibit the growth of mesophyte I. cylindrica, and benefit the restoration of structure and function of P. australis-dominated wetland community.

参考文献/References:

1 巩晋楠, 王开运, 张超, 马永亮. 围垦滩涂湿地旱生耐盐植物的入侵和影响[J]. 应用生态学报, 2009, 20 (1): 33-39 [Gong JN, Wang KY, Zhang C, M YL. Invasion and its effects of xerarch halophytes in reclaimed tidal wetlands [J]. Chin J Appl Ecol, 2009, 20 (1): 33-39] 2 彭恒, 桂富荣, 李正跃, 李隽, 万方浩. 白茅对紫茎泽兰的竞争效应[J]. 生态学杂志, 2010, 29 (10): 1931-1936 [Peng H, Gui FR, Li ZY, Li J, Wan FH. Competition effect of Imperata cylindrica to Ageratina adenophora [J]. Chin J Ecol, 2010, 29 (10): 1931-1936] 3 仲启铖, 王江涛, 周剑虹, 欧强, 王开运. 地下水位调控对崇明东滩围垦区滩涂湿地芦苇和白茅光合、形态及生长的影响[J]. 应用生态学报, 2014, 25 (2): 408-418 [Zhong QC, Wang JT, Zhou JH, Ou Q, Wang KY. Effects of ground water table manipulation on leaf photosynthesis, morphology and growth of Phragmites australis and Imperata cylindrica in the reclaimed tidal wetland at Dongtan of Chongming Island, China [J]. Chin J Appl Ecol, 2014, 25 (2): 408-418] 4 Daneshgar P, Jose S, Collins A, Ramsey C. Cogongrass (Imperata cylindrica), an alien invasive grass, reduces survival and productivity of an establishing pine forest [J]. For Sci, 2008, 54 (6): 579-587 5 谭学界, 赵欣胜. 水深梯度下湿地植被空间分布与生态适应[J]. 生态学杂志, 2006, 25 (12): 1460-1464 [Tan XJ, Zhao XS. Spatial distribution and ecological adaptability of wetland vegetation in Yellow River Delta along a ground water depth gradient [J]. Chin J Ecol, 2006, 25 (12): 1460-1464] 6 崔保山, 赵欣胜, 杨志峰, 唐娜, 谭学界. 黄河三角洲芦苇种群特征对水深环境梯度的响应[J]. 生态学报, 2006, 26 (5): 1533-1541 [Cui BS, Zhao XS, Yang ZF, Tang N, Tan XJ. The response of reed community to the environment gradient of water depth in the Yellow River Delta [J]. Acta Ecol Sin, 2006, 26 (5): 1533-1541] 7 徐治国, 何岩, 闫百兴, 任慧敏. 营养物及水位变化对湿地植物的影响[J]. 生态学杂志, 2006, 25 (1): 87-92 [Xu ZG, He Y, Yan BX, Ren HM. Effects of nutrients and water level fluctuation on wetland plants [J]. Chin J Ecol, 2006, 25 (1): 87-92] 8 Zhen L, Yoshiki S, Limi M, Toru T, Zhen L, Bing S, Yulan Z, Anqing L, Sotham S, Jie L. Mid-Holocene mangrove succession and its response to sea-level change in the upper Mekong River delta, Cambodia [J]. Quat Res, 2012, 78 (2): 386-399 9 杨淑慧, 祁秋艳, 仲启铖, 张超, 王开运. 崇明东滩围垦湿地芦苇光合作用对模拟升温的响应初探[J]. 长江流域资源与环境, 2012, 21 (5): 604-610 [Yang SH, Qi QY, Zhong QC, Zhang C, Wang KY. Responses of the photo-synthesis of reclamation Phragmites australis in eastern Chongming Island on elevated temperature [J]. Resour Environ Yangtze Basin, 2012, 21 (5): 604-610 10 赵可夫. 植物对水涝胁迫的适应[J]. 生物学通报, 2003 (12): 11-14 [Zhao KF. Adaptation of plants to waterlogged stress [J]. Bull Boil, 2003 (12): 11-14] 11 庄瑶, 孙一香, 王中生, 杨琳璐, 邓自发, 姚志刚, 安树青. 芦苇生态型研究进展[J]. 生态学报, 2010, 30 (8): 2173-2181 [Zhuang Y, Sun YX, Wang ZS, Yang LL, Deng ZF, Yao ZG, An SQ. Research advances in ecotypes of Phragmites australis [J]. Acta Ecol Sin, 2010, 30 (8): 2173-2181] 12 王俊峰, 冯玉龙. 光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响[J]. 植物生态学报, 2004, 28 (6): 781-786 [Wang JF, Feng YL. The effect of light intensity on biomass allocation, leaf morphology and relative growth rate of two invasive plants [J]. Acta Phytoecol Sin, 2004, 28 (6): 781-786] 13 娇杨, 厉恩华, 蔡晓斌, 王智, 王学雷. 湿地植物对水位变化的响应研究进展[J]. 湿地科学, 2014, 12 (6): 6-13 [Jiao Y, Li EH, Cai XB, Wang Z, Wang XL. Research progress in response of plants in wetlands to water level change [J]. Wetl Sci, 2014, 12 (6): 6-13] 14 许秀丽, 张奇, 李云良, 谭志强, 王晓龙. 鄱阳湖洲滩芦苇种群特征及其与淹水深度和地下水埋深的关系[J]. 湿地科学, 2014, 12 (6): 714-722 [Xu XL, Zhang Q, Li YL, Tang ZQ, Wang XL. Reed population features and relationships between feature indicators and flooding depth, groundwater depth in an Islet in Poyang Lake [J]. Wetl Sci, 2014, 12 (6): 714-722] 15 Mauchamp A, Blanch S, Grillas P. Effects of submergence on the growth of Phragmites australis seedlings [J]. Aqu Bot, 2001, 69 (2): 147-164 16 冷琴, 杨雅玲. 国产白茅属 Imperata Cyrillo(禾本科)部分生物学特性的研究[J]. 南京大学学报(自然科学), 2002, 38 (5): 703-715 [Leng Q, Yang YL. Major biological characters of Imperata cyrillo (Poaceae) from China [J]. J Nanjing Univ (Nat Sci), 2002, 38 (5): 703-715] 17 King SE, Grace JB. The effects of soil flooding on the establishment of cogongrass (Imperata cylindrica), a nonindigenous invader of southeastern United States [J]. Wetlands, 2000, 20 (2): 300-306 18 仲启铖. 温度和水位对滨海围垦湿地碳过程的影响——以崇明东滩为例[D]. 上海: 华东师范大学, 2014 [Zhong QC. The Effects of temperature and ground water on the carbon processes in coastal reclaimed wetland: a case study at Dongtan of Chongming Island [D]. Shanghai: East China Normal University, 2014] 19 杨允菲, 李建东. 松嫩平原不同生境芦苇种群分株的生物量分配与生长分析[J]. 应用生态学报, 2003, 14 (1): 30-34 [Yang YF, Li JD. Biomass allocation and growth analysis on the ramets of Phragmites communis populations in different habitats in the Songnen Plains of China [J]. Chin J Appl Ecol, 2003, 14 (1): 30-34] 20 Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2: nutrients and water: a quantitative review [J]. Aust J Plant Physiol, 2000, 27 (6): 595-607 21 Hermans C, Hammond JP, White PJ, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation [J]. Trends Plant Sci, 2006, 11 (12): 610-617 22 毕作林, 熊雄, 路峰, 贺强, 赵欣胜. 黄河三角洲湿地芦苇种群水深生态幅研究[J]. 山东林业科技, 2007 (4): 1-3 [Bi ZL, Xiong X, Lu F, He Q, Zhao XS. Studies on ecological amplitude of reed to the environmental gradient of water depth [J]. Shandong For Sci Technol, 2007 (4): 1-3] 23 Macdonald GE. Cogongrass (Imperata cylindrica)—biology, ecology, and management [J]. Crit Rev Plant Sci, 2004, 23 (5): 367-380 24 高芳磊, 王浩东, 郭宏宇, 马成仓. 盐地碱蓬和芦苇苗期的竞争作用[J]. 湿地科学, 2015, 13 (5): 582-586 [Gao FL, Wang HD, Guo HY, Ma CC. Competition between Seedlings of Suaeda salsa and Phragmites australis [J]. Wetl Sci, 2015, 13 (5): 582-586]

相似文献/References:

[1]李有志,张灿明,谢永宏,等.三江平原小叶章和芦苇幼苗生长对低光胁迫的响应[J].应用与环境生物学报,2009,15(01):53.[doi:10.3724/SP.J.1145.2009.00053]
 LI Youzhi,ZHANG Canming,XIE Yonghong,et al.Growth Responses of Deyeuxia angustifolia and Phragmites communis Seedlings to Low-light Stress in the Sanjiang Plain*[J].Chinese Journal of Applied & Environmental Biology,2009,15(06):53.[doi:10.3724/SP.J.1145.2009.00053]
[2]王萌,王玉彬,陈章和.芦苇的种质资源及在人工湿地中的应用[J].应用与环境生物学报,2010,16(04):590.[doi:10.3724/SP.J.1145.2010.00590]
 WANG Meng,WANG Yubin,CHEN Zhanghe.Germplasm Resource of Phragmites adans and Its Application in Constructed Wetlands[J].Chinese Journal of Applied & Environmental Biology,2010,16(06):590.[doi:10.3724/SP.J.1145.2010.00590]
[3]韦菊阳,陈章和.梭鱼草和芦苇人工湿地对重金属和营养的去除率比较[J].应用与环境生物学报,2013,19(01):179.[doi:10.3724/SP.J.1145.2013.00179]
 WEI Juyang,CHEN Zhanghe.Removal of Heavy Metal Elements and Nutrients by Pontederia cordata and Phragmites australis Constructed Wetlands[J].Chinese Journal of Applied & Environmental Biology,2013,19(06):179.[doi:10.3724/SP.J.1145.2013.00179]
[4]欧强,王江涛,周剑虹,等.滨海湿地不同水位梯度下的土壤CO2通量比较[J].应用与环境生物学报,2014,20(06):992.[doi:10.3724/SP.J.1145.2014.05027]
 OU Qiang,WANG Jiangtao,ZHOU Jianhong,et al.Comparison of soil CO2 flux among different water levels in coastal wetlands[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):992.[doi:10.3724/SP.J.1145.2014.05027]
[5]秦汉,秦家亮,黄国印,等.常温氢氧化钠预处理芦苇酶解发酵产油[J].应用与环境生物学报,2016,22(01):120.[doi:10.3724/SP.J.1145.2015.05012]
 QIN Han,QIN Jialiang,HUANG Guoyin,et al.Cellulosic biofuels production from alkali-pretreated phragmites at room temperature[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):120.[doi:10.3724/SP.J.1145.2015.05012]
[6]戚志伟,高艳娜,樊同,等.崇明东滩围垦湿地芦苇生态特征与水盐因子的关系[J].应用与环境生物学报,2016,22(05):739.[doi:10.3724/SP.J.1145.2016.05042]
 QI Zhiwei,GAO Yanna,et al.Relationship between ecological characteristics of Phragmites australis and water-salt indicators in the reclaimed wetland at Dongtan of Chongming Island, China[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):739.[doi:10.3724/SP.J.1145.2016.05042]
[7]李沙沙,樊同,张超,等.长江口芦苇和互花米草叶面积生长对立地增温的响应[J].应用与环境生物学报,2018,24(06):1247.[doi:10.19675/j.cnki.1006-687x.2018.01010]
 LI Shasha,et al..Response of the leaf area growth of Phragmites australis and Spartina alterniflora to elevated temperatures at the Yangtze River estuary[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1247.[doi:10.19675/j.cnki.1006-687x.2018.01010]

更新日期/Last Update: 2016-12-30