|本期目录/Table of Contents|

[1]陈 勇,张 敏** 渠晓东 王佰梅 朱龙基.潘大水库水环境时空格局演变动态[J].应用与环境生物学报,2016,22(06):1082-1088.[doi:10.3724/SP.J.1145.2016.01012]
 CHEN Yong,ZHANG Min**,et al.The spatial-temporal pattern dynamics of the water environment in Panjiakou–Daheiting Reservoir[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):1082-1088.[doi:10.3724/SP.J.1145.2016.01012]
点击复制

潘大水库水环境时空格局演变动态()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年06期
页码:
1082-1088
栏目:
“生态系统的格局与恢复”专栏论文
出版日期:
2016-12-25

文章信息/Info

Title:
The spatial-temporal pattern dynamics of the water environment in Panjiakou–Daheiting Reservoir
作者:
陈 勇1 2 张 敏1** 渠晓东1 王佰梅3 朱龙基3
陈 勇1, 2 张 敏1** 渠晓东1 王佰梅3 朱龙基3 1中国水利水电科学研究院水环境研究所 北京 100038 2三峡大学水利与环境学院 宜昌 443002 3海河流域水资源保护局 天津 300170
Author(s):
CHEN Yong1 2 ZHANG Min1** QU Xiaodong1 WANG Baimei3 & ZHU Longji3
1Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China 2College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China 3Water Resource Protection Bureau of Haihe River Basin, Tianjin 300170, China
关键词:
饮用水水源地京津冀水环境 时空演变营养盐
Keywords:
drinking water source Beijing-Tianjin-Hebei water environment spatial-temporal patterns nutrients
分类号:
X524
DOI:
10.3724/SP.J.1145.2016.01012
摘要:
潘家口、大黑汀水库(简称潘大水库)是京津冀区域的重要饮用水水源地,研究其水环境状况对保障受水区的供水安全具有重要意义. 基于2006-2014年潘大水库水环境因子的调查,采用单因子评价法对水库水环境状况的时空格局演变动态进行分析. 结果表明,总氮、总磷是潘大水库的主要污染物,总氮总体为劣V类水水平,总磷总体为V类水水平. 其它水环境指标均未超过国家《地表水环境质量标准》(GB3838-2002)中III类水的标准. 空间上,潘家口水库坝上氮磷营养盐均有沿程下降趋势,表明主要受上游污染输入的影响,后随污染物的不断消耗而逐渐下降. 但到了潘家口坝下,由于下池、洒河桥等区域新的污染物的汇入,大黑汀水库的污染再次加重. 时间上,潘家口水库总氮总体呈逐年上升趋势,2011年之后下降;大黑汀水库在2012年之后总氮呈下降趋势. 两库总磷总体上均呈逐年上升趋势,其中,大黑汀水库2011-2013年虽有缓慢下降趋势,但2014年恢复到较高含量水平. 氨氮含量并未发现明显的时间变化规律,大黑汀水库一直维持在II类水水平附近,而潘家口水库自2010年一直呈下降趋势,近两年亦稳定在II类水水平. 硝态氮含量与总氮含量变化趋势相似. 而高锰酸盐指数一直呈逐年上升趋势,维持在III类水的标准范围内. 溶解氧含量一直维持在I类水的水平. 本研究表明,潘大水库氮磷污染严重,呈逐年恶化趋势,受上游污染及下池、洒河桥外源输入的影响,洒河桥及以下区域呈现除总氮外的水环境因子沿程上升趋势. (图8 表1 参27)
Abstract:
Panjiakou–Daheiting Reservoirs (Pan-Da Reservoir) are the important drinking water source of Beijing-Tianjin-Hebei area. Understanding the water environment of the reservoirs is of great significance to guarantee water supply security. In this study, we analyzed the spatial-temporal pattern dynamics of the water environment in Pan-Da Reservoir using the method of single-factor evaluation, based on the observations from 2006 to 2014. The results showed that total nitrogen (TN) and total phosphorus (TP) were the main pollutants in the reservoir. At present, TN concentration was generally below class V criteria according to GB3838-2002 Surface Water Environment Quality Standard; TP concentration was generally nearly class V; the other parameters were not over class III. Spatially, nitrogen and phosphorus nutrients showed a decreasing trend from the upper to the lower reach, indicating that the nutrients of the reservoir were mainly influenced by the pollutants input from the upstream. In the downstream, the pollution aggravated in Daheiting Reservoir due to the new pollutants input from Xiachi and Saheqiao areas. Temporally, TN concentration showed an increasing trend in Panjiakou Reservoir before 2011, but decreased gradually after that, while TN concentration in Daheiting Reservoir decreased from 2012. TP concentration displayed an overall increasing trend for the two reservoirs, though that in Daheiting Reservoir first decreased slowly from 2011 to 2013 then increased to a high level in 2014. Ammonia nitrogen concentration did not show any obvious temporal rules, and generally met the class II water criteria. Nitrate nitrogen concentration showed a similar trend to TN concentration. The permanganate index increased year by year, though never over the class III criteria. Dissolved oxygen was always within the class I criteria. In general, nitrogen and phosphorus pollution is deteriorating year by year in Pan-Da Reservoir. The water environment factors except total nitrogen presents a rising trend from Saheqiao to Daheiting Reservoir, due to the upstream pollution and the new pollutants input from Xiachi and Saheqiao.

参考文献/References:

1 徐宏宇, 王少明. 潘家口水库淤积与水质变化[J]. 海河水利, 1995 (5): 48-50 2 孔令金. 潘家口水库泥沙淤积及防治[J]. 水利水电技术, 1996 (3): 1-5 3 姜乃森, 侯长远, 辛吉望. 滦河潘家口水库上游流域考察报告[J]. 海河水利, 1994 (3): 6-9, 13 4 李伟森, 袁淑琴, 赵国华. 潘家口水库上游滦河流域的水源现状及其发展趋势与防治对策的初步研究[J]. 天津职业大学学报, 1998 (2): 44-48 5 聂锋. 试论潘家口水库网箱养鱼的适度规模[J]. 河北渔业, 1997 (6): 26-28 6 王少明. 引滦枢纽工程1995年度水环境状况评价及趋势分析[J]. 水利水电科技进展, 1996, 16 (5): 32-34 7 王少明, 邢海燕, 王立明. 潘家口和大黑汀水库水质变化趋势分析[J]. 水资源保护, 2003 (2): 25-27 8 Donagaksju J, Lin C, Luo Y, Kang J, Wang SM, Brown LR, Munn MD. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People’s Republic of China: chlorophyll-a model and sources of phosphorus and nitrogen [J]. Agric Water Manage, 2007, 94 (1): 43-53 9 Huang JJ, Xiang WY. Investigation of point source and non-point source pollution for Panjiakou Reservoir in North China by modelling approach [J]. Water Qual Res J Can (IWA Publishing), 2015, 50 (2): 1-15 10 张树猛, 徐文祥. 潘家口水库网拦库湾养鱼可行性分析[J]. 水利渔业, 1998 (5): 46-48 11 李颂军, 张树猛, 徐文祥. 潘家口水库网箱养鲢、鳙总结[J]. 水利渔业, 1999, 19 (5): 32-33 12 徐士忠. 加强潘大水库水源地保护为津唐地区经济社会可持续发展服务[J]. 海河水利, 2009 (2): 6-7, 9 13 吕艳, 翟卫东, 邢海燕, 李素萍. 潘家口、大黑汀水库富营养化趋势分析及对策[J]. 河北水利, 2012 (10): 38 14 臧常娟, 黄岁樑, 吴敏, 杜胜蓝, 高峰, 林超, 郭勇, 罗阳. 投饵养鱼对潘家口水库围隔中浮游植物及水质的影响[J]. 环境科学学报, 2011, 31 (3): 525-532 [Zang CJ, Hang SL, Wu M, Du SL, Gao F, Lin C, Guo Y, Luo Y. Effect of fish stocking with bait on phytoplankton and water quality in Panjiakou Reservoir enclosures [J]. Acta Sci Circumst, 2011, 31 (3): 525-532] 15 国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002 16 蒋科伟, 韩鹏程, 周禛. 宜兴油车水库水质现状分析与保护对策研究[J]. 环境科学与管理, 2015, 40 (8): 150-153 [Jiang KW, Han PC, Zhou Z. Water quality of Yixing Youche Reservoir and protection countermeasures [J]. Environ Sci Manage, 2015, 40 (8): 150-153] 17 张宁. 北庙水库水源地水资源现状及保护措施探讨[J]. 保山学院学报, 2015 (2): 21-25 18 马玲玲, 周林飞, 王铁良. 基于BP神经网络的大伙房水库水质综合评价[J]. 沈阳农业大学学报, 2014, 45 (5): 637-640 [Ma LL, Zhou LF, Wang TL. Comprehensive evaluation of water quality in Dahuofang Reservoir based on BP Neural Network [J]. J Shenyang Agric Univ, 2014, 45 (5): 637-640] 19 孙福强, 顾军农, 赵顺萍, 李玉仙. 丹江口水库与密云水库水质对比及对现行工艺的影响分析[J]. 给水排水, 2013 (4): 39-43 20 Kocum E, Nedwell DB, Underwood GJC. Regulation of phytoplankton primary production along a hypernutrified estuary [J]. Mar Ecol Progr Ser, 2002, 231: 13-22 21 Ye L, Han XQ, Xu YY, Cai QH. Spatial analysis for spring bloom and nutrient limitation in Xiangxi Bay of Three Gorges Reservoir [J]. Environ Monitor Assess, 2007, 127 (1-3): 135-145 22 王少明. 潘、大水库环境污染现状及治理[J]. 水利电力劳动保护, 1997 (3): 34-36 23 李宁. 矿产资源型县域经济转型研究—以迁西为例[D]. 天津: 河北工业大学, 2010 [Li N. Research economic transformation of resource-based county-taking Qianxi as an exampl. Tianjin: Hebei University of Technology] 24 王家齐. 高原深水湖泊磷污染源解析及控制技术研究——以贵州红枫湖为例[D]. 南京: 南京大学, 2012 [Wang JQ. Study of source attdbution and control technology of phosphate pollution for deep-water lake-a case study of Hongfenghu Lake in Guizhou [D]. Nanjing: Nanjing University, 2012] 25 林怡雯, 蔡晔, 司蔚, 李月娥. 太湖饮用水源地金墅港、渔洋山水质综合评价[J]. 环境监控与预警, 2015, 7 (1): 41-44 [Lin YW, Cai Y, Si W. Li YE. Water quality assessment of drinking water source (Jinshugang, Yuyangshan) of Taihu Lake [J]. Environ Monitor Forewarn, 2015, 7 (1): 41-44] 26 周绪申, 齐向华, 罗阳, 王乙震, 孔凡青, 张俊, 郭丽峰. 潘家口-大黑汀水库水环境现状分析[C]//中国科学技术协会. 湖泊保护与生态文明建设——第四届中国湖泊论坛论文集. 合肥: 安徽科学技术出版社, 2014: 433-440 27 夏永秋, 李跃飞, 张心昱, 林静慧, 王书伟, 周伟, 颜晓元. 太湖地区稻作系统不同水体硝态氮同位素特征及污染源[J]. 中国环境科学, 2014, 34 (2): 505-510 [Xia YQ, Li YF, Zhang XY, Lin JH, Wang SW, Zhou W, Yan XY. Nitrogen isotopic characteristics and source attribution of nitrate in different water bodies in the paddy rice system of the Taihu Lake region [J]. China Environ Sci, 2014, 34 (2): 505-510]

更新日期/Last Update: 2016-12-30