|本期目录/Table of Contents|

[1]夏天,高心怡,徐向阳,等.填料投加强化AnMBR性能研究进展[J].应用与环境生物学报,2017,23(2):392-399.[doi:10.3724/SP.J.1145.2016.05018]
 XIA Tian,GAO Xinyi,XU Xiangyang,et al.Review on the performance enhancement of an anaerobic membrane bioreactor by adding filters[J].Chinese Journal of Applied & Environmental Biology,2017,23(2):392-399.[doi:10.3724/SP.J.1145.2016.05018]
点击复制

填料投加强化AnMBR性能研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年第2期
页码:
392-399
栏目:
综述
出版日期:
2017-04-25

文章信息/Info

Title:
Review on the performance enhancement of an anaerobic membrane bioreactor by adding filters
作者:
夏天高心怡徐向阳朱亮
1浙江大学环境工程系 杭州 310058 2浙江省水体污染控制与环境安全技术重点实验室 杭州 310058
Author(s):
XIA Tian1 GAO Xinyi1 XU Xiangyang1 2 & ZHU Liang1 2**
1Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China 2Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
关键词:
废水生物处理厌氧膜生物反应器填料强化工艺性能膜污染
Keywords:
biological treatment of wastewater anaerobic membrane bioreactor filter enhanced performance membrane fouling
分类号:
X703.5
DOI:
10.3724/SP.J.1145.2016.05018
摘要:
厌氧膜生物反应器(AnMBR)是厌氧生物反应器和膜过滤技术的结合,具有高效降解有机物、能源回收利用等特点,逐渐应用于高浓度有机废水处理领域,但其稳定性较差、膜污染严重等问题制约其工业化应用. 本文介绍沸石、活性炭、硬硅钙纤维粒子等不同类型填料投加强化AnMBR污染物去除效率、缩短反应器启动时间、提升甲烷产量等的工艺性能研究,分析填料强化工艺电化学作用、吸附作用、强化厌氧污泥颗粒化等的可能机制,指出填料可有效提升工艺性能;综述AnMBR工艺膜垢组成及膜污染形成过程,探讨膜材质、操作条件、微生物代谢产物、污泥浓度及菌群结构、废水水质等膜污染的影响因素,在此基础上分析填料投加减缓膜污染机制,以期进一步控制膜污染、延长膜寿命. 今后应优选开发经济、高效的新型生物填料及新型组合填料,推广其工业化应用,并从厌氧菌群调控与膜污染控制角度构建高效稳定的AnMBR工艺技术体系. (图3 参71)
Abstract:
An anaerobic membrane bioreactor (AnMBR) has dual advantages of anaerobic biological treatment and membrane separation, which combines anaerobic bioreactor and membrane filtration technologies. AnMBR has been applied gradually in the field of high-organic-concentration wastewater treatment with excellent performance for pollutant removal and energy recovery. However, unstable operation and serious membrane fouling have limited its industrial application. It has the advantages of high organic loading, efficient biomass retention, and high quality of effluents. The process has the potential in wastewater treatment and resource utilization, which has significant technical advantages in enhancing resource recycling and industrial wastewater treatment. However, the development of AnMBR has almost stopped because of the issues of effluent instability, membrane pollution, and low energy recovery efficiency. In this study, the enhancement of AnMBR system was illustrated, which included contaminant removal efficiency, shortening the reactor start-up time, and improving methane production, by adding different filters such as zeolites, activated carbon, and xonotlite fiber particles. The related mechanisms after the addition of filters for electro-chemical reaction, adsorption, and strengthening the process of sludge granulation were revealed, which indicated that these filters could effectively enhance the performance of an AnMBR system. The composition and formation of membrane foulants in AnMBR were reviewed, and the function of mitigating membrane fouling by adding filters based on the process and the main factors of membrane fouling in AnMBR were analyzed. Investigating the influencing factors of membrane materials, operating conditions, microbial metabolites, sludge concentration and microbial community, and wastewater characteristics might allow further controlling of membrane fouling and extending membrane life. In the future, developing economic and efficient new bio-fillers and new combination filters, promoting their industrial application, and building an efficient and stable AnMBR system are necessary from the perspective of anaerobic bacteria regulation and membrane pollution control.

参考文献/References:

1 Per F, Arne W, Sandro C, Jonathan H, Ternes TA, Adriano J. Tracing the limits of organic micropollutant removal in biological wastewater treatment [J]. Water Res, 2016, 95: 240-249
2 Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in south wales, UK. Water Res, 2008, 42 (13): 3498-3518
3 Rahman SM, Eckelman MJ, Onnis-Hayden A, Gu AZ. Life cycle assessment of advanced nutrient removal technologies for wastewater treatment. Environ Sci Technol, 2016, 50 (6): 3020-3030
4 Pervin HM, Dennis PG, Hui JL, Tyson GW, Batstone DJ, Bond PL. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. Water Res, 2013, 47 (19): 7098-7108
5 Chen X, Guo J, Xie GJ, Liu Y, Yuan Z, Ni BJ. A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: a model-based investigation of feasibility. Water Res, 2015, 85: 295-303
6 Hoffmann R, Drescher SR. Anaerobic digestion of animal waste: effect of mode of mixing [J]. Water Res, 2005, 39 (15): 3597-3606
7 Fenu A, Guglielmi G, Jimenez J, Spèrandio M, Saroj D, Lesjean B, Brepols C, Thoeye C, Nopens I. Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to mbr specificities. Water Res, 2010, 44 (15): 4272-4294
8 Smith AL, Stadler LB, Cao L, Love NG, Raskin L, Skerlos SJ. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ Sci Technol, 2014, 48 (10): 5972-5981
9 Ramos C, Garc AA, Diez V. Performance of an AnMBR pilot plant treating high-strength lipid wastewater: biological and filtration processes [J]. Water Res, 2014, 67C: 203-215
10 Bakonyi P, Nemestóthy N, Simon V, Bélafi-Bakó K. Fermentative hydrogen production in anaerobic membrane bioreactors: a review [J]. Bioresour Technol, 2014, 156 (4): 357-363
11 Xiao X, Huang Z, Ruan W, Yan LT, Miao HF, Ren HY, Zhan MX. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor [J]. Bioresour Technol, 2015, 193: 234-242
12 Gouveia J, Plaza F, Garralon G, Fdz-Polanco F, Pe?a M. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions [J]. Bioresour Technol, 2015, 185: 225-233
13 Smith AL, Skerlos SJ, Raskin L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater [J]. Water Res, 2013, 47 (4): 1655-1665
14 Yu D, Liu J, Sui Q, Wei Y. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater [J]. Bioresour Technol, 2015, 203: 62-70
15 Montalvo S, Guerrero L, Robles M, Mery C, Huili?ir C, Borja R. Start-up and performance of UASB reactors using zeolite for improvement of nitrate removal process [J]. Ecol Eng, 2014, 70 (70): 437-445
16 Ba YE, Li ZF. Study of the treatment of coking wastewater by biological nitrogen removal with physical-chemical process [J]. Adv Mater Res, 2011, 383-390: 3729-3733
17 Yu HQ, Tay JH, Fang HHP. Effects of added powdered and granular activated carbons on start-up performance of UASB reactors [J]. Environ Technol, 1999, 20 (10): 1095-1101
18 王冰, 韩洪军, 刘硕, 马文成. 颗粒活性炭加速厌氧反应器污泥颗粒化的研究[J]. 中国给水排水, 2011, 27 (11): 72-74 [Wang B, Han H, Liu S, Ma WC. Speeding up sludge granulation in anaerobic reactor by adding granular activated carbon [J]. China Water, Wastewater, 2011, 27 (11): 72-74]
19 Xu S, He C, Luo L, Fan L, He P, Cui L. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester [J]. Bioresour Technol, 2015, 196: 606-612
20 Lee JY, Lee SH, Park HD. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors [J]. Bioresour Technol, 2016, 205: 205-212
21 韩剑宏, 倪文, 江翰. 投加硬硅钙纤维粒对UASB低温运行的影响[J]. 中国给水排水, 2003, 19 (10): 14-17 [Han JH, Ni W, Jiang H. Influence of addition of xonotlite fibrous particle on UASB operation at low temperature[J]. China Water Wastewater, 2003, 19 (10): 14-17]
22 Zhu L, Lin HZ, Qi JQ, Xu XY, Qi HY. Effect of H 2 on reductive transformation of p-ClNB in a combined ZVI-anaerobic sludge system [J]. Water Res, 2012, 46 (19): 6291-6299
23 Zhu L, Gao KT, Jin J, Lin HZ, Xu XY. Analysis of ZVI corrosion products and their functions in the combined ZVI and anaerobic sludge system [J]. Environ Sci Pollut Res Int, 2014, 21 (22): 12747-12756
24 Mandal T, Dasgupta D, Mandal S, Datta S. Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process [J]. J Hazard Mater, 2010, 180 (1-3): 204-211
25 Zhang W, Zhang X, Wang D, Koga Y, Rouse JD, Furukawa K. Trace elements enhance biofilm formation in UASB reactor for solo simple molecule wastewater treatment [J]. Bioresour Technol, 2011, 102 (19): 9296-9299
26 Khanh D, Quan L, Zhang W, Hira D, Furukawa K. Effect of temperature on low-strength wastewater treatment by UASB reactor using poly (vinyl alcohol)-gel carrier [J]. Bioresour Technol, 2011, 102 (24): 11147-11154
27 Liu Y, Xu HL, Yang SF, Tay JH. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res, 2003, 37 (3): 661-673
28 王硕, 徐巧, 付强, 李激. 好氧颗粒污泥特性、应用及形成机理研究进展[J]. 应用与环境生物学报, 2014, 20 (4): 732-742 [Wang S, Xu Q, Fu Q, Li J. Characteristics, application and formation mechanisms of aerobic granular sludge: recent advances [J]. Chin J Appl Environ Biol, 2014, 20 (4): 732-734]
29 Huang Z, Ong SL, Ng HY. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of hrt and srt on treatment performance and membrane fouling. Water Res, 2011, 45 (2):705-713
30 Mahlangu TO, Thwala JM, Mamba BB, D’Haese A, Verliefde ARD. Factors governing combined fouling by organic and colloidal foulants in cross-flow nanofiltration [J]. J Membr Sci, 2015, 491: 53-62
31 Taheri AH, Sim LN, Chong TH, Akhondi E, Fane AG. The fouling potential of colloidal silica and humic acid and their mixtures [J]. J Membr Sci, 2013, 433 (1): 112-120
32 Yamamura H, Kimura K, Higuchi K, Watanabe Y, Ding Q, Hafuka A. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water [J]. Water Res, 2015, 87: 218-224
33 Kola A, Ye Y, Le-Clech P, Chen V. Transverse vibration as novel membrane fouling mitigation strategy in anaerobic membrane bioreactor applications. J Membr Sci, 2014, 455 (4): 320-329
34 Lin H, Wei P, Zhang M, Chen J, Hong H, Ye Z. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives [J]. Desalination, 2013, 314: 169-188
35 Miyoshi T, Yuasa K, Ishigami T, Rajabzadeh S, Kamio E, Ohmukai Y, Saeki D, Ni J, Matsuyama H. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors [J]. Appl Surf Sci, 2015, 330: 351-357
36 She Q, Wang R, Fane AG, Tang CY. Membrane fouling in osmotically driven membrane processes: a review [J]. J Membr Sci, 2015, 499: 201-233
37 Ramon GZ, Hoek EMV. Transport through composite membranes, part 2: Impacts of roughness on permeability and fouling [J]. J Membr Sci, 2013, 425-426 (1): 141-148
38 Gao DW, Zhang T, Tang CYY, Wu WM, Wong CY, Lee YH, Yeh DH, Criddle CS. Membrane fouling in an anaerobic membrane bioreactor: Differences in relative abundance of bacterial species in the membrane foulant layer and in suspension [J]. J Membr Sci, 2010, 364 (1-2): 331-338
39 An YY, Yang FL, Bucciali B, Wong FS. Municipal Wastewater Treatment Using a UASB Coupled with Cross-Flow Membrane Filtration [J]. J Environ Eng, 2009, 135 (2): 86-91
40 Lew B, Tarre S, Beliavski M, Dosoretz C, Green M. Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment [J]. Desalination, 2009, 243 (1-3): 251-257
41 Huang Z, Ong SL, Ng HY. Performance of submerged anaerobic membrane bioreactor at different SRTs for domestic wastewater treatment [J]. J Biotechnol, 2013, 164 (1): 82-90
42 Saddoud A, Ellouze M, Dhouib A, Sayadi S. Anaerobic membrane bioreactor treatment of domestic wastewater in Tunisia [J]. Desalination, 2007, 207 (1-3): 205-215
43 Herrera-Robledo M, Morgan-Sagastume JM, Noyola A. Biofouling and pollutant removal during long-term operation of an anaerobic membrane bioreactor treating municipal wastewater [J]. Biofouling, 2010, 26 (1): 23-30
44 Martinez-Sosa D, Helmreich B, Netter T, Paris S, Bischof F, Horn H. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions [J]. Bioresour Technol, 2011, 102 (22): 10377-10385
45 Meabe E, Déléris S, Soroa S, Sancho L. Performance of anaerobic membrane bioreactor for sewage sludge treatment: Mesophilic and thermophilic processes [J]. J Membr Sci, 2013, 446 (11): 26-33
46 Cerón-Vivas A, Morgan-Sagastume JM, Noyola A. Intermittent filtration and gas bubbling for fouling reduction in anaerobic membrane bioreactors. J Membr Sci, 2012, 423-424: 136-142
47 Jeison D, Lier JBV. Cake layer formation in anaerobic submerged membrane bioreactors (ansmbr) for wastewater treatment. J Membr Sci, 2006, 284 (1-2): 227-236
48 Martinez-Sosa D, Helmreich B, Netter T, Paris S, Bischof F, Horn H. Pilot-scale anaerobic submerged membrane bioreactor (ansmbr) treating municipal wastewater: the fouling phenomenon and long-term operation. Water Sci Technol, 2011, 64 (9): 1804-1811
49 Wen X, Sui P, Huang X. Exerting ultrasound to control the membrane fouling in filtration of anaerobic activated sludge--mechanism and membrane damage. Water Sci Technol, 2008, 57 (5): 773-779
50 Lin H, Chen J, Wang F, Ding L, Hong H. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment. Desalination, 2011, 280 (1-3): 120-126
51 Allie Z, Jacobs EP, Maartens A, Swart P. Enzymatic cleaning of ultrafiltration membranes fouled by abattoir effluent. J Membr Sci, 2003, 218 (1-2): 107-116
52 Poele ST, Graaf JVD. Enzymatic cleaning in ultrafiltration of wastewater treatment plant effluent. Desalination, 2005, 179 (1-3): 73-81
53 Yu W, Graham N, Yang Y, Zhou Z, Campos LC. Effect of sludge retention on UF membrane fouling: the significance of sludge crystallization and EPS increase [J]. Water Res, 2015, 83 (7071): 319-328
54 俞言文, 朱亮, 戚韩英, 徐向阳, 田志娟. 废水处理系统中生物聚集体胞外多聚物研究进展[J]. 应用与环境生物学报, 2012, 18 (2): 338-343 [Yu YW, Zhu L, Qi HY, Xu XY, Tian ZJ. Advances in Extracellular Polymeric Substances of Bio-aggregates in Biological Wastewater Treatment System [J]. Chin J Appl Environ Biol, 2012, 18 (2): 338-343]
55 Yi D, Yu T, Li Z, Wei Z, Zhang J. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor [J]. Bioresour Technol, 2015, 192: 105-114
56 Yu T, Li Z, Lu Y. Changes in characteristics of soluble microbial products and extracellular polymeric substances in membrane bioreactor coupled with worm reactor: Relation to membrane fouling [J]. Bioresour Technol, 2012, 122 (5): 62-69
57 Kim HC, Dempsey BA. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM [J]. J Membr Sci, 2013, 428 (428): 190-197
58 Tian Y, Li Z, Ding Y, Lu Y. Identification of the change in fouling potential of soluble microbial products (SMP) in membrane bioreactor coupled with worm reactor [J]. Water Res, 2013, 47 (6): 2015-2024
59 Xu Q, Yun Y, Chen V, Wen X. Evaluation of fouling formation and evolution on hollow fibre membrane: Effects of ageing and chemical exposure on biofoulant [J]. Water Res, 2015, 68 (68): 182-193
60 吴志超, 王志伟, 顾国维, 俞国平. 厌氧膜生物反应器污泥组分对膜污染的影响[J]. 中国环境科学, 2005, 25 (2): 226-230. [Wu ZC, Wang ZW, Gu GW, Yu GP. Influence of sludge compositon on membrane fouling in membrane coupled anaerobic bioreactor [J]. China Environl Sci, 2005, 25 (2): 226-230]
61 Adem Yurtsever, ?zer ??nar, Erkan Sahinkaya. Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors. J Membr Sci, 2016, 511: 228-237
62 Farizoglu B, Uzuner S. The investigation of dairy industry wastewater treatment in a biological high performance membrane system. Biochem Eng J, 2011, 57 (1): 46-54
63 Salahi A, Gheshlaghi A, Mohammadi T, Madaeni SS. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination, 2010, 262 (1-3): 235-242
64 Ding A, Liang H, Qu F, Bai LM, Li GB, Ngo HH, Guo WS. Effect of granular activated carbon addition on the effluent properties and fouling potentials of membrane-coupled expanded granular sludge bed process [J]. Bioresour Technol, 2014, 171: 240-246
65 Dong Q, Parker W, Dagnew M. Impact of FeCl3dosing on AnMBR treatment of municipal wastewater [J]. Water Res, 2015, 80: 281-293
66 Yu Z, Song Z, Wen X, Huang X. Using polyaluminum chloride and polyacrylamide to control membrane fouling in a cross-flow anaerobic membrane bioreactor [J]. J Membr Sci, 2015, 479: 20-27
67 Deng L, Guo W, Ngo HH, Zhang X, Wang XC, Zhang Q, Chen R. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system [J]. Bioresour Technol, 2016, 208: 87-93
68 Ajmani GS, Goodwin D, Marsh K, Fairbrother DH, Schwab KJ, Jacangelo JG, Haiou H. Modification of low pressure membranes with carbon nanotube layers for fouling control. Water Res, 2012, 46 (17): 5645-5654
69 Wang S, Liang S, Liang P, Zhang X, Sun J, Wu S, Huang X. In-situ combined dual-layer cnt/pvdf membrane for electrically-enhanced fouling resistance. J Membr Sci, 2015, 491: 37-44
70 Mao-Sheng YE, Zhang HM, Yang FL, Cui X. Anti-fouling characteristics of the novel precoating reagent in dynamic membrane bioreactor. Environ Sci, 2007, 28 (28): 2494-2499
71 Zhang J, Xu Z, Shan M, Zhou B, Li Y, Li B, Niu J, Qian XM. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci, 2013, 448 (24): 81-92

相似文献/References:

[1]李久安,周后珍,刘庆华,等.废水生物强化处理技术研究进展[J].应用与环境生物学报,2011,17(02):273.[doi:10.3724/SP.J.1145.2011.00273]
 LI Jiuan,ZHOU Houzhen,LIU Qinghua,et al.Progress in Bioaugmention Technology Research for Biological Treatment of Wastewaters[J].Chinese Journal of Applied & Environmental Biology,2011,17(2):273.[doi:10.3724/SP.J.1145.2011.00273]
[2]俞言文,朱亮,戚韩英,等.废水处理系统中生物聚集体胞外多聚物研究进展[J].应用与环境生物学报,2012,18(02):338.[doi:10.3724/SP.J.1145.2012.00338]
 YU Yanwen,ZHU Liang,QI Hanying,et al.Advances in Extracellular Polymeric Substances of Bio-aggregates in Biological Wastewater Treatment System[J].Chinese Journal of Applied & Environmental Biology,2012,18(2):338.[doi:10.3724/SP.J.1145.2012.00338]
[3]徐宏英,张婵,苏槟楠,等.厌氧颗粒污泥特性对其初期吸附有机污染物性能的影响[J].应用与环境生物学报,2013,19(05):862.[doi:10.3724/SP.J.1145.2013.00862]
 XU Hongying**,ZHANG Chan,SU Bingnan& WANG Muhua.Effects of Anaerobic Granular Sludge Characteristics on Initial Adsorption of Organic Pollutants[J].Chinese Journal of Applied & Environmental Biology,2013,19(2):862.[doi:10.3724/SP.J.1145.2013.00862]
[4]董晶晶,吴迪,马柯,等.好氧颗粒污泥工艺强化脱氮研究进展[J].应用与环境生物学报,2018,24(01):177.[doi:10.19675/j.cnki.1006-687x.2017.02008]
 DONG Jingjing,WU Di,MA Ke,et al.Review on enhanced denitrification of aerobic granular sludge technology[J].Chinese Journal of Applied & Environmental Biology,2018,24(2):177.[doi:10.19675/j.cnki.1006-687x.2017.02008]

更新日期/Last Update: 2017-04-25