|本期目录/Table of Contents|

[1]冯德枫,包维楷.土壤碳氮磷化学计量比时空格局及影响因素研究进展[J].应用与环境生物学报,2017,23(02):400-408.[doi:10.3724/SP.J.1145.2016.04018]
 FENG Defeng,& BAO Weikai**.Review of the temporal and spatial patterns of soil C:N:P stoichiometry and its driving factors[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):400-408.[doi:10.3724/SP.J.1145.2016.04018]
点击复制

土壤碳氮磷化学计量比时空格局及影响因素研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年02期
页码:
400-408
栏目:
综述
出版日期:
2017-04-25

文章信息/Info

Title:
Review of the temporal and spatial patterns of soil C:N:P stoichiometry and its driving factors
作者:
冯德枫包维楷
1中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室,中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049
Author(s):
FENG Defeng1 2 & BAO Weikai1**
1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
土壤碳氮磷计量比时空变化格局土层深度海拔纬度演替
Keywords:
soil C:N:P stoichiometry temporal and spatial pattern soil depth elevation latitude succession
分类号:
S154.1
DOI:
10.3724/SP.J.1145.2016.04018
摘要:
土壤碳氮磷化学计量比(C:N:P)可以反映有机质质量和含量,其研究对于理解生态学过程和生态系统对气候变化与干扰的响应十分重要. 综述了土壤C:N:P随土层深度、海拔、纬度和演替梯度上的时空变化格局及其影响因素:土壤N:P和C:P随土壤深度而递减,但土壤C:N随土层深度的变化趋势还有争论;土壤C:N随海拔变化并非呈现简单的线性关系而是复杂多变的;在全球和区域尺度上,土壤C:N随纬度增加而增大,而土壤C:P则减小;在演替过程中,受到所选择的演替阶段及其时间序列范围和环境特征等因素影响,土壤C:N:P的演替变化趋势存在明显的争论. 综合分析表明:1)对土壤C:N关注多,而N:P与C:P研究较贫乏;2) 土壤C:N:P的时空变化格局规律还不完全清楚;3)土壤C:N:P受气候、土壤、植被以及人为活动的影响是清楚的,但其机制并不清楚. 因此,未来需要更多地聚焦土壤N:P与C:P的变化格局规律,关注土壤C:N:P变异的多种(生物、物理与化学)作用机制研究及其与生态系统结构和功能动态变化的关系,并通过整合植物-凋落物-土壤系统的化学计量学研究,为深入揭示营养元素的生物化学耦合循环规律提供新证据. (表3 参112)
Abstract:
Soil C:N:P stoichiometry, which could reflect the quality and quantity of soil organic matter, is very important for understanding the ecological processes and ecosystem responses to climate change and disturbance. However, the temporal–spatial pattern of soil C:N:P stoichiometry and its potential driving factors are not yet known. In order to identify such patterns and driving factors, we mainly reviewed the variation patterns and relative driving factors of soil C:N:P stoichiometric ratios along soil depth, elevation, latitude, and succession gradient. Both soil N:P and C:P ratios significantly declined with increasing soil depth, whereas the vertical pattern of soil C:N ratio was controversial. The relationship between soil C:N ratio and elevation was complicated and not in a simple linear form. Soil C:N ratio increased, but soil C:P ratio decreased with increasing latitude at global and regional scales. Inconsistent patterns of soil C:N:P stoichiometry were noted with succession dynamics owing to the fact that current succession studies included various time sequence ranges and site characteristics. We concluded that (1) the number of studies on soil C:N ratio are more than those on soil N:P and C:P ratios; (2) the temporal–spatial pattern of soil C:N:P stoichiometric ratios are yet unknown; and (3) how influencing factors such as climate, soil types, vegetation, and environmental disturbances regulate the temporal–spatial pattern of soil stoichiometric ratios is yet unknown. Finally, we suggest that further studies that combine the ecological stoichiometry in plant and litter with soil and should focus on the controlling mechanism of soil C:N:P stoichiometry patterns and their relations to structural and functional dynamics in ecosystems.

参考文献/References:

1 Sterner RW, Elser JJ. Ecological stoichiometry: the biology of elements from molecules to the biosphere [M]. Princeton: Princeton University Press, 2002
2 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34 (1): 2-6 [He JS, Han XG. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems [J]. J Plant Ecol, 2010, 34 (1): 2-6]
3 于贵瑞, 李轩然, 赵宁, 何念鹏, 王秋凤. 生态化学计量学在陆地生态系统碳-氮-水耦合循环理论体系中作用初探[J]. 第四纪研究, 2014, 34 (4): 881-890 [Yu GR, Li XR, Zhao N, He NP, Wang QF. Theoretical linkage between ecological stoichiometry with the coupled of carbon, nitrogen and water in terrestrial ecosystems [J]. J Quatern Sci, 2014 34 (4): 881-890]
4 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28 (8): 3937-3947 [Wang SS, Yu GR. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements [J]. Acta Ecol Sin, 2008, 28 (8): 3937- 3947]
5 Kaye JP, Binkley D, Rhoades C. Stable soil nitrogen accumulation and flexible organic matter stoichiometry during primary floodplain succession [J]. Biogeochemistry, 2003, 63 (1): 1-22
6 Kirkby CA, Richardson AE, Wade LJ, Battenb GD, Blanchard C, Kirkegaard JA. Carbon-nutrient stoichiometry to increase soil carbon sequestration [J]. Soil Biol Biochem, 2013, 60: 77-86
7 Janssen BH. Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials [J]. Plant Soil, 1996, 181 (1): 39-45
8 Aitkenhead J, Mcdowell W. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales [J]. Glob Biogeochem Cy, 2000, 14 (1): 127-138
9 Dise NB, Matzner E, Forsius M. Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe [J]. Environ Pollut, 1998, 102: 453-456
10 Gundersen P, Callesen I, De Vries W. Nitrate leaching in forest ecosystems is related to forest floor CN ratios [J]. Environ Pollut, 1998, 102 (1): 403-407
11 Lovett MG, Weathers CK, Arthur AM. Control of nitrogen loss from forested watersheds by soil carbon: nitrogen ratio andtree species composition [J]. Ecosystems, 5 (7): 712-718
12 Klemedtsson L, Von Arnold K, Weslien P, Gundersen P. Soil CN ratio as a scalar parameter to predict nitrous oxide emissions [J]. Global Change Biol, 2005, 11 (7): 1142-1147
13 Callesen I, Raulund-Rasmussen K, Westman CJ, Tau-Strand L. Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate change and soil texture [J]. Boreal Environ Res, 2007, 12: 681-692
14 Gundersen P, Sevel L, Christiansen JR, Vesterdal L, Hansen K, Bastrup-Birk A. Do indicators of nitrogen retention and leaching differ between coniferous and broadleaved forests in Denmark? [J]. For Ecol Manage, 2009, 258 (7): 1137-1146
15 Vesterdal L, Schmidt I K, Callesen I, Nilsson LO, Gundersen P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species [J]. For Ecol Manage, 2008, 255 (1): 35-48
16 Fanelli G, Lestini M, Sauli AS. Floristic gradients of herbaceous vegetation and P/N ratio in soil in a Mediterranean area [J]. Plant Ecol, 2008, 194 (2): 231-242
17 Zhang LX, Bai YF, Han XG. Application of N:P stoichiometry to ecology studies [J]. Acta Bot Sin, 2003, 45 (9): 1009-1018
18 曾冬萍, 蒋利玲, 曾从盛, 王维奇, 王纯. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013, 33 (18): 5484-5492 [Zeng DP, Jiang LL, Zeng CC, Wang WQ, Wang C. Reviews on the ecological stoichiometry characteristics and its applications [J]. Acta Ecol Sin, 2013, 33 (18): 5484-5492]
19 程滨, 赵永军, 张文广, 安树青. 生态化学计量学研究进展[J]. 生态学报, 2010, 30 (6): 1628-1637 [Cheng B, Zhao YJ, Zhang WG, An SS. The research advances and prospect of ecological stoichiometry [J]. Acta Ecol Sin, 2010, 30 (6): 1628-1637]
20 刘超, 王洋, 王楠, 王根轩. 陆地生态系统植被氮磷化学计量研究进展[J]. 植物生态学报, 2012, 36 (11): 1205-1216 [Liu C, Wang Y, Wang N, Wang GX. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review [J]. Chin J Plant Ecol, 2012, 36 (11): 1205-1216]
21 邢伟, 刘寒, 刘贵华. 生态化学计量学在水生态系统中的研究与应用[J]. 植物科学学报, 2015, 33 (5): 608-619 [Xing W, Liu H, Liu GH. Ecological stoichiometry in aquatica ecosystems: studies and applications [J]. Plant Sci J, 2015, 33 (5): 608-619]
22 洪江涛, 吴建波, 王小丹. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响[J]. 应用生态学报, 2013, 24 (9): 2658-2665 [Hong JT, Wu JB, Wang XD. Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants [J]. Chin J Appl Ecol, 2013, 24 (9): 2658-2665]
23 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29 (6): 1007-1019 [Zeng DH, Cheng GS. Ecological stoichiometry: a science to explore the complexity of living systems [J]. Acta Phytoecol Sin, 2005, 29 (6): 1007-1019]
24 邬畏, 何兴东, 周启星. 生态系统氮磷比化学计量特征研究进展[J]. 中国沙漠, 2010, 30 (2): 296-302 [Wu W, He XD, Zhou QX. Review on N:P stoichiometry in ecosystem [J]. J Desert Res, 2010, 30 (2): 297-302]
25 邵梅香, 覃林, 谭玲. 我国生态化学计量学研究综述[J]. 安徽农业科学, 2012, 40 (11): 6918-6920 [Shao XX, Qin L, Tan L. Review of researches on ecological stoichiometry in China [J]. J Anhui Agric Sci, 2012, 40 (11): 6918-6920]
26 Batjes NH. Total carbon and nitrogen in the soils of the world [J]. Eur J Soil Sci, 1996, 47 (2): 151-163
27 Schipper LA, Percival HJ, Sparling GP. An approach for estimating when soils will reach maximum nitrogen storage [J]. Soil Use Manage, 2004, 20 (3): 281-286
28 Tian H, Chen G, Zhang C, Melillo JM, Hall CA. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data [J]. Biogeochemistry, 2010, 98 (1-3): 139-151
29 Watt MS, Palmer DJ. Use of regression kriging to develop a carbon : nitrogen ratio surface for New Zealand [J]. Geoderma, 2012, 183: 49-57
30 Vejre H, Callesen I, Vesterdal L, Raulund-Rasmussen K. Carbon and nitrogen in Danish forest soils—contents and distribution determined by soil order [J]. Soil Sci Soc Am J, 2003, 67 (1): 335-343
31 Shi XZ, Yu DS, Sun WX, Wang HJ, Zhao QG, Gong ZT. Reference benchmarks relating to great groups of genetic soil classification of China with soil taxonomy [J]. Chin Sci Bull, 2004, 49 (14): 1507-1511
32 Cools N, Vesterdal L, De Vos B, Vanguelova E, Hansen K. Tree species is the major factor explaining C:N ratios in European forest soils [J]. For Ecol Manage, 2014, 311: 3-16
33 Gusewell S. N : P ratios in terrestrial plants: variation and functional significance [J]. New Phytol, 2004, 164 (2): 243-266
34 Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. PNAS, 2004, 101 (30): 11001-11006
35 Cleveland CC, Liptzin D. C : N : P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? [J]. Biogeochemistry, 2007, 85 (3): 235-252
36 Yang Y, Luo Y. Carbon : nitrogen stoichiometry in forest ecosystems during stand development [J]. Global Ecol Biogeogr, 2011, 20 (2): 354-361
37 Xu XF, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems [J]. Global Ecol Biogeogr, 2013, 22 (6): 737-749
38 Bui EN, Henderson BL. C: N: P stoichiometry in Australian soils with respect to vegetation and environmental factors [J]. Plant Soil, 2013, 373: 553-568
39 Li Y, Wu JS, Liu SL, Shen JL, Huang DY, Su YR, Wei WX, Syers JK. Is the C: N: P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? [J]. Global Biogeochem Cy, 2012, 26 (4): GB4002. doi: 10. 1029/2012GB004399
40 王建林, 钟志明, 王忠红, 陈宝雄, 余成群, 胡兴祥, 沈振西, 大次卓嘎, 张宪洲. 青藏高原高寒草原生态系统土壤碳氦比的分布特征[J]. 生态学报, 2014, 34 (22): 6678-6691 [Wang JL, Zhong ZM, Wang ZH, Chen BX, Yu CC, Hu XX, Shen ZX, Daci ZG, Zhang X. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai -Tibetan Plateau [J]. Acta Ecol Sin, 2014, 34 (22): 6678-6691]
41 王建林, 钟志明, 王忠红, 陈宝雄, 张宪洲, 沈振西, 胡兴祥, 大次卓嘎. 青藏高原高寒草原生态系统土壤氮磷比的分布特征[J]. 应用生态学报, 2013, 24 (12): 3399-3406 [Wang JL, Zhong ZM, Wang ZH, Chen BX, Zhang XZ, Shen ZX, Hu XX, Daci ZG. Soil N/P ratio distribution characteristics of alpine grassland ecosystem in Qinhai -Tibetan Plateau [J]. Chin J Appl Ecol, 2013, 24 (12): 3399-3406]
42 Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD. Rhizosphere stoichiometry: are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level? [J]. New Phytol, 2014, 201 (2): 505-517
43 Li H, Li J, He YL, Li SJ, Liang ZS, Peng CH, Polle A, Luo ZB. Changes in carbon, nutrients and stoichiometric relations under different soil depths, plant tissues and ages in black locust plantations [J]. Acta Physiol Plant, 2013, 35 (10): 2951-2964
44 丁小慧, 宫立, 王东波, 伍星, 刘国华. 放牧对呼伦贝尔草地植物和土壤生态化学计量学特征的影响[J]. 生态学报, 2012, 32 (15): 4722-4730 [Ding XH, Gong L, Wang DB, Wu X, Liu GH. Grazing effects on eco-stoichiometry of plant and soil in Hulunbeir, Inner Mogolia [J]. Acta Ecol Sin, 2012, 32 (15): 4722-4730]
45 罗亚勇, 张宇, 张静辉, 卡召加, 尚伦宇, 王少影. 不同退化阶段高寒草甸土壤化学计量特征[J]. 生态学杂志, 2012, 31 (2): 254-260 [Luo YY, Zhang Y, Zhang JH, Ka ZJ, Shang LY, Wang SY. Soil stoichiometry characteristics of alpine meadow at its different degradation stages [J]. Chin J Ecol, 2012, 31 (2): 254-260]
46 朱秋莲, 邢肖毅, 张宏, 安韶山. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33 (15): 4674-4682 [Zhu QL, Xing YY, Zhang H, An SS. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region [J]. Acta Ecol Sin, 2013, 33 (15): 4674-4682]
47 Walker T, Adams AR. Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils [J]. Soil Sci, 1958, 85 (6): 307-318
48 杨雪栋, 孙卫国, 宝音陶格涛. 内蒙古荒漠草原小针茅群落土壤养分的化学计量学特征[J]. 中国草地学报, 2012, 34 (5): 30-34 [Yang XD, Sun WG, Baoyintaogetao. Characteristics of soil stoichiometry of Stipa klemenzii community in desert steppe of Inner Mongolia [J]. Chin J Grassl, 2012, 34 (5): 30-34]
49 Oades JM. The retention of organic-matter in soils [J]. Biogeochemistry, 1988, 5 (1): 35-70
50 Fan HB, Wu JP, Liu WF, Yuan YH, Hu L, Cai QK. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations [J]. Plant Soil, 2015, 392 (1-2): 127-138
51 Wenjie L, Shengyun C, Xiang Q, Frank B, Thomas S, Zhaoye Z, Weijun S, Tongzuo Z, Jiawen R, Dahe Q. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau [J]. Environ Res Lett, 2012, 7 (3): 035401
52 刘兴华, 陈为峰, 段存国, 王凯, 王海翠. 黄河三角洲未利用地开发对植物与土壤碳、氮、磷化学计量特征的影响[J]. 水土保持学报, 2013, 27 (2): 204-208 [Liu XH, Chen WF, Duan CG, Wang K, Wang HC. Effect of exploitation of unutilizaed land on ecological stichiometry characteristics of palnt and soil carbon, nitrogen and phosphrus in the Yellow river delta [J]. J Soil Water Conserv, 2013, 27 (2): 204-208]
53 王维奇, 曾从盛, 钟春棋, 仝川. 人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J]. 环境科学, 2010, 31 (10): 2411-2416 [Wang WQ, Zeng CS, Zhong CQ, Tong C. Effect of human disturbance on ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in Minjiang river estuarine wetland [J]. Environ Sci, 2010, 31 (10): 2411-2416]
54 魏巍, 曹文侠, 祁娟, 张德罡, 师尚礼. 放牧干扰对高寒杜鹃灌丛草地地下养分库化学计量特征的影响[J]. 中国生态农业学报, 2012, 20 (8): 1024-1029 [Wei W, Cao WX, Qi J, Zhang DG, Shi SL. Influence of grazing disturbance on stoichiometric characteristics of alpine Rhododendron shrublands underground soil nutrient pool [J]. Chin J Eco-Agric, 2012, 20 (8): 1024-1029]
55 Zhang ZS, Lu XG, Song XL, Guo Y, Xue ZS. Soil C, N and P stoichiometry of Deyeuxia angustifolia and Carex lasiocarpa wetlands in Sanjiang Plain, Northeast China [J]. J Soils Sed, 2012, 12 (9): 1309-1315
56 Wenjie L, Shengyun C, Qian Z, Zhizhong S, Jiawen R, Dahe Q. Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau [J]. Environ Res Lett, 2014, 9 (11): 114013
57 Tischer A, Potthast K, Hamer U. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador [J]. Oecologia, 2014, 175 (1): 375-393
58 Dumig A, Knicker H, Schad P, Rumpel C, Dignac M F, Kogel-Knabner I. Changes in soil organic matter composition are associated with forest encroachment into grassland with long-term fire history [J]. Eur J Soil Sci, 2009, 60 (4): 578-589
59 Yang Y, Fang J, Guo D, Ji C, Ma W. Vertical patterns of soil carbon, nitrogen and carbon: nitrogen stoichiometry in Tibetan grasslands [J]. Biogeosci Discuss, 2010, 7 (1): 1-24
60 Callesen I, Liski J, Raulund-Rasmussen K, Olsson MT, Tau-Strand L, Vesterdal L, Westman CJ. Soil carbon stores in Nordic well-drained forest soils - relationships with climate and texture class [J]. Glob Change Biol, 2003, 9 (3): 358-370
61 Dawud SM, Raulund-Rasmussen K, Domisch T, Finér L, Jaroszewicz B, Vesterdal L. Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? [J]. Ecosystems, 2016, 19 (4): 654-660
62 Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Horneier J. Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest [J]. J Plant Nutr Soil Sci, 2008, 171 (2): 220-230
63 Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment [J]. Global Change Biol, 2011, 17 (6): 2211-2226
64 Dieleman WIJ, Venter M, Ramachandra A, Krockenberger AK, Bird MI. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage [J]. Geoderma, 2013, 204 (204-205): 59-67
65 Schawe M, Glatzel S, Gerold G. Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: Podzolization vs. hydromorphy [J]. Catena, 2007, 69 (2): 83-90
66 Zimmermann M, Meir P, Silman MR, Fedders A, Gibbon A, Malhi Y, Urrego DH, Bush MB, Feeley KJ, Garcia KC, Dargie GC, Farfan WR, Goetz BP, Johnson WT, Kline KM, Modi AT, Rurau NMQ, Staudt BT, Zamora F. No differences in soil carbon stocks across the tree line in the Peruvian Andes [J]. Ecosystems, 2010, 13 (1): 62-74
67 Unger M, Leuschner C, Homeier J. Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests (NE Ecuador) [J]. Plant Soil, 2010, 336 (1-2): 443-458
68 Whitaker J, Ostle N, Nottingham AT, Ccahuana A, Salinas N, Bardgett RD, Meir P, Mcnamara NP. Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient [J]. J Ecol, 2014, 102 (4): 1058-1071
69 张广帅, 邓浩俊, 杜锟, 林勇明, 马瑞丰, 俞伟, 王道杰, 吴承祯, 洪伟. 泥石流频发区山地不同海拔土壤化学计量特征——以云南省小江流域为例[J]. 生态学报, 2016, 36 (3): 675-687 [Zhang GS, Deng HJ, Du K, Lin YM, Ma RF, Yu W, Wang DJ, Wu CZ, Hong W. Soil stoichiometry characteristics at different elevation gradients of a mountain in an area with high frequency debris flow: a case study in Xiaojiang Watershed, Yunnan [J]. Acta Ecol Sin, 2016, 36 (3): 675-687]
71 Leuschner C, Moser G, Bertsch C, Roderstein M, Hertel D. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador [J]. Basic Appl Ecol, 2007, 8 (3): 219-230
72 Bockheim JG, Munroe JS, Douglass D, Koerner D. Soil development along an elevational gradient in the southeastern Uinta Mountains, Utah, USA [J]. Catena, 2000, 39 (3): 169-185
73 Xu X, Zhou Y, Ruan H, Luo Y, Wang J. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China [J]. Soil Biol Biochem, 2010, 42 (10): 1811-1815
74 He X, Hou E, Liu Y, Wen D. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China [J]. Sci Rep, 2016, 6: 24261
75 张鹏, 张涛, 陈年来. 祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J]. 应用生态学报, 2009, 20 (3): 518-524 [Zhang P, Zhang T, Chen NL. Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains [J]. Chin J Appl Ecol, 2009, 20 (3): 518-524]
76 薛晓娟, 李英年, 杜明远, 刘安花, 张法伟, 王建雷. 祁连山东段南麓不同海拔土壤有机质及全氮的分布状况[J]. 冰川冻土, 2009, 31 (4): 60-67 [ Xue XJ, Li YN, Du MY, Liu AH, Zhang FW, Wang JL. Soil organic matter and total nitrogen changing with altitudes on the southern foot of eastern Qilian Mountains [J]. J Glaciol Geocryol, 2009, 31(4): 60-67]
77 王琳, 欧阳华, 彭奎, 周才平, 张锋, 白军红, 彭奎. 贡嘎山东坡土壤有机质及氮素分布特征[J]. 地理学报英文版, 2004, 14 (4): 481-487 [Wang L, Ouyang H, Zhou CP, Zhang F, Bai JH, Peng K. Distribution characteristics of soil organic matter and notrogen on the eastern slope of Mt. Gongga [J]. Acta Geogr Sin, 2004, 14 (4): 481-487]
78 Han W, Fang J, Guo D, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China [J]. New Phytol, 2005, 168 (2): 377-385
79 Yuan ZY, Chen HYH, Reich PB. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus [J]. Nat Commun, 2011, 2: 344
80 曾全超 李鑫, 董扬红, 李娅芸, 程曼, 安韶山. 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征[J]. 自然资源学报, 2015, 30 (5): 870-879 [Zeng QC, Li X, Dong YH, Li YY, Cheng M, An SS. Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the Loess Plateau [J]. J Nat Resour, 2015, 30 (5): 870-879]
81 张向茹, 马露莎, 陈亚南, 杨佳佳, 安韶山. 黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究[J]. 土壤学报, 2013, 50 (4): 818-825 [Zhang XR, Ma LS, Chen YN, Yang JJ, An SS. Ecological stoihiometry characteristics of Robinia pseudoacacia forest soil in different latitudes of Loess Plateau [J]. Acta Pedologica Sinica, 2013, 50 (4): 818-825]
82 李婷, 邓强, 袁志友, 焦峰. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36 (8): 2988-2996 [Li T, Deng Q, Yuan ZY, Jiao F. Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau [J]. Environ Sci, 2015, 36 (8): 2988-2996]
83 Yang YH, Fang JY, Ji CJ, Datta A, Li P, Ma WH, Mohammat A, Shen HH, Hu HF, Knapp BO, Smith P. Stoichiometric shifts in surface soils over broad geographical scales: evidence from China’s grasslands [J]. Global Ecol Biogeogr, 2014, 23 (8): 947-955
84 Marleau JN, Jin Y, Bishop JG, Fagan WF, Lewis MA. A stoichiometric model of early plant primary succession [J]. Am Nat, 2011, 177 (2): 233-245
85 Moe SJ, Stelzer RS, Forman MR, Harpole WS, Daufresne T, Yoshida T. Recent advances in ecological stoichiometry: insights for population and community ecology [J]. Oikos, 2005, 109 (1): 29-39
86 Sistla SA, Schimel JP. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change [J]. New Phytol, 2012, 196 (1): 68-78
87 Walker LR. Soil nitrogen changes during primary succession on a floodplain in Alaska, USA [J]. Arctic Alpine Res, 1989, 21 (4): 341-349
88 Kaye JP, Resh SC, Kaye MW, Chimner RA. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees [J]. Ecology, 2000, 81 (12): 3267-3273
89 Yang Y, Wang GX, Shen HH, Yang Y, Cui HJ, Liu Q. Dynamics of carbon and nitrogen accumulation and C:N stoichiometry in a deciduous broadleaf forest of deglaciated terrain in the eastern Tibetan Plateau [J]. For Ecol Manage, 2014, 312: 10-18
90 Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii [J]. Ecology, 1995, 76 (5): 1407-1424
91 Knops JMH, Tilman D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment [J]. Ecology, 2000, 81 (1): 88-98
92 林丽, 张法伟, 李以康, 韩道瑞, 郭小伟, 曹广民. 高寒矮嵩草草甸退化过程土壤碳氮储量及C/N化学计量学特征[J]. 中国草地学报, 2012, 34 (3): 42-47 [Li L, Zhang FW, Li YK, Han DR, Guo XW, Cao GM. The soil carbon and nitrogen storage and C/N metrological characteristics of chemistry in Kobresia humilis meadow in degradation succession stages [J]. Chin J Grassl, 2012, 34 (3): 42-47]
93 李玉强, 赵哈林, 赵学勇, 张铜会, 移小勇, 左小安. 科尔沁沙地沙漠化过程中土壤碳氮特征分析[J]. 水土保持学报, 2005, 19 (5): 73-76, 182 [Li YQ, Zhao HL, Zhao XY, Zhang TH, Yi XY, Zuo XA. Characteristics of soil carbon and nitrogen during desertification process in Horqinsandy land [J]. J Soil Water Conserv, 2005, 19 (5): 73-76, 182]
94 刘颖茹, 杨持, 朱志梅, 刘美玲. 我国北方草原沙漠化过程中土壤碳、氮变化规律研究[J]. 应用生态学报, 2004, 15 (9): 1604-1606 [Liu YR, Yang C, Zhu ZM, Liu ML. Soil C and N dynamics during desertification of grassland in northern China [J]. Chin J Appl Ecol, 2004, 15 (9): 1604-1606]
95 银晓瑞, 梁存柱, 王立新, 王炜, 刘钟龄, 刘小平. 内蒙古典型草原不同恢复演替阶段植物养分化学计量学[J]. 植物生态学报, 2010, 34 (1): 39-47 [Yin XR, Liang CZ, Wang LX, Wang W, Liu ZL, Liu XP. Ecological stoichiometry of plant nutrients at different restoration succession stages in typical steppe of Inner Mongolia, China [J]. J Plant Ecol, 2010, 34 (1): 39-47]
96 Schipper LA, Sparling GP. Accumulation of soil organic C and change in C:N ratio after establishment of pastures on reverted scrubland in New Zealand [J]. Biogeochemistry, 2011, 104 (1-3): 49-58
97 Hooker TD, Compton JE. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment [J]. Ecol Appl, 2003, 13 (2): 299-313
98 Smal H, Olszewska M. The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus [J]. Plant Soil, 2008, 305 (1-2): 171-187
99 Compton JE, Boone RD. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests [J]. Ecology, 2000, 81 (8): 2314-2330
100 Ritter E, Vesterdal L, Gundersen P. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce [J]. Plant Soil, 2003, 249 (2): 319-330
101 陆媛, 陈云明, 曹扬, 宋超. 黄土高原子午岭辽东栎林植物和土壤碳氮磷化学计量学特征[J]. 水土保持学报, 2015, 29 (3): 196-201 [Lu Y, Chen YM, Cao Y, Song C. C, N and P stoichiometric characteristics of plant and soil in Quercus liaotungensis forest on Ziwuling mountain of Loess Plateau [J]. J Soil Water Conserv, 2015, 29 (3): 196-201]
102 曹娟, 闫文德, 项文化, 谌小勇, 雷丕锋. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J]. 林业科学, 2015, 51 (7): 1-8 [Cao JJ, Yan WD, Xiang WH, Chen XY, Lei PF. Stoichiometry characterization of soil C, N, and P of Chinese Fir Plantations at three different ages in Huitong, Hunan Province, China [J]. Sci Silv Sin, 2015, 51 (7): 1-8]
103 Shi S, Peng C, Wang M, Zhu Q, Yang G, Yang Y, Xi T, Zhang T. A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation [J]. Plant Soil, 2016, 407: 323-340
104 刘万德, 苏建荣, 李帅锋, 张志钧, 李忠文. 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征[J]. 生态学报, 2010, 30 (23): 6581-6590 [Liu WD, Su JR, Li SF, Zhang ZJ, Li ZW. Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province [J]. Acta Ecol Sin, 2010, 30 (23): 6581-6590]
105 刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华. 南亚热带森林不同演替阶段植物与土壤中N, P的化学计量特征[J]. 植物生态学报, 2010, 34 (1): 64-71 [Liu XZ, Zhou GY, Zhang DQ, Chu GW, Yan JH. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China [J]. Journal of Plant Ecology, 2010, 34 (1): 64-71]
106 Wardle DA, Walker LR, Bardgett RD. Ecosystem properties and forest decline in contrasting long-term chronosequences [J]. Science, 2004, 305 (5683): 509-513
107 郭子武, 陈双林, 杨清平, 李迎春. 雷竹林土壤和叶片N, P化学计量特征对林地覆盖的响应[J]. 生态学报, 2012, 32 (20): 6361-6368 [Guo ZW, Chen SL, Yang QP, Li YC. Responses of N and P stoichiometry on mulching management in the stand of Phyllostachys praecox [J]. Acta Ecol Sin, 2012, 32 (20): 6361-6368]
108 Jiao F, Wen ZM, An SS, Yuan Z. Successional changes in soil stoichiometry after land abandonment in Loess Plateau, China [J]. Ecol Eng, 2013, 58: 249-254
109 La Mantia T, Gristina L, Rivaldo E, Pasta S, Novara A, Rühl J. The effects of post-pasture woody plant colonization on soil and aboveground litter carbon and nitrogen along a bioclimatic transect [J]. For-Biogeosci For, 2013, 6 (6): 238-246
110 郭虎波, 吴建平, 袁颖红, 刘文飞, 樊后保, 许鲁平, 张子文, 孟庆银. 氮沉降对杉木人工林土壤化学计量特征的影响[J]. 福建林业科技, 2014, 41 (1): 1-5 [Guo HB, Wu JP, Yuan YH, Liu WF, Fan HB, Xu LP, Zhang ZW, Meng QY. Effects of N deposition on soil stoichiometric characteristics of Chinese fir plantation [J]. J Fujian For Sci Technol, 2014, 41 (1): 1-5]
111 Blanco-Canqui H, Lal R. No-tillage and soil-profile carbon sequestration: an on-farm assessment [J]. Soil Sci Soc Am J, 2008, 72 (3): 693-701
112 Gao Y, He NP, Yu GR, Chen WL, Wang QF. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: a case study in China [J]. Ecol Eng, 2014, 67: 171-181

更新日期/Last Update: 2017-04-25