|本期目录/Table of Contents|

[1]凡慧,马诗淳,王春芳,等.产氢细菌FSC-15对稻草秸秆厌氧发酵产甲烷的影响[J].应用与环境生物学报,2017,23(2):251-255.[doi:10.3724/SP.J.1145.2016.04007]
 FAN Hui,MA Shichun,et al.Effect of the hydrogen-producing bacterium FSC-15 on methanogenesis during rice straw anaerobic fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(2):251-255.[doi:10.3724/SP.J.1145.2016.04007]
点击复制

产氢细菌FSC-15对稻草秸秆厌氧发酵产甲烷的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年第2期
页码:
251-255
栏目:
研究论文
出版日期:
2017-04-25

文章信息/Info

Title:
Effect of the hydrogen-producing bacterium FSC-15 on methanogenesis during rice straw anaerobic fermentation
作者:
凡慧马诗淳王春芳黄艳刘星施国中邓宇
1农业部沼气科学研究所 成都 610041 2农业部农村可再生能源开发利用重点实验室 成都 610041
Author(s):
FAN Hui1 2 MA Shichun1 2 WANG Chunfang1 2 HUANG Yan1 2 LIU Xing1 2 SHI Guozhong1 2 & DENG Yu1 2**
1Biogas Institute of Ministry of Agriculture, Chengdu 610041, China 2Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
关键词:
产氢细菌秸秆厌氧发酵甲烷产量微生物群落甲烷杆菌
Keywords:
hydrogen-producing bacteria straw anaerobic fermentation methane yield microbial community Methanobacteriaceae
分类号:
TQ920.1 : TK63
DOI:
10.3724/SP.J.1145.2016.04007
摘要:
产氢细菌是厌氧发酵过程中重要的功能微生物. 将分离自纤维素降解产甲烷复合菌系FSC的产氢细菌FSC-15回补至复合菌系,通过监测氢气产量、甲烷产量、脂肪酸浓度及秸秆降解效率,探究产氢细菌对水稻秸秆水解产甲烷代谢及微生物群落结构的影响. 结果显示:添加菌株FSC-15使FSC中纤维素、半纤维素和木质素降解率分别提高了17.33%、28.61%和47.21%,对复合菌系FSC中秸秆降解效率有一定促进作用. 培养第3天,氢气产量相比复合菌系FSC提高了41.18%,为产甲烷菌提供更充足的底物,使甲烷产量提高1倍. 高通量测序结果显示,Ruminococcaceae和Methanobacteriaceae分别是水稻秸秆厌氧发酵产甲烷体系中水解纤维素和产甲烷的主要类群,Methanobacteriaceae是厌氧发酵体系挥发酸含量较高时产甲烷的主要物种,补加产氢细菌FSC-15对厌氧降解纤维素产甲烷菌系中的细菌群落结构无明显影响,但可以改变古菌的物种多样性及丰度. 本研究证明向水稻秸秆厌氧发酵体系补加功能微生物能有效提高体系甲烷产量,可为调控水稻秸秆厌氧消化技术提供理论支撑. (图6 表2 参18)
Abstract:
Hydrogen-producing bacteria play an important role in the anaerobic fermentation process. In this study, the hydrogen-producing bacterium FSC-15 was added back to a cellulose-degrading methanogenic community (FSC) from which it was isolated, to explore the effect of hydrogen-producing bacteria on the methanogenesis and microbial community structure in rice straw degradation. We determined the composition of the rice straw before and after degradation by the Van Soest method, and calculated the degradation rates. We monitored the hydrogen yield and methane yield by gas chromatography. We measured organic acid metabolism by liquid chromatography. We monitored the composition changes of microbiota in straw degradation by 16S rDNA sequence analysis. FSC-15 increased the degradation rates of cellulose, hemicellulose, and lignin by 17.33%, 28.61%, and 47.21%, respectively. Therefore, FSC-15 promoted the straw degradation rates of FSC, and accelerated organic matter hydrolysis and hydrogen production in the initial stage. On the 3rd day, the hydrogen yield increased by 41.18% compared with FSC, which could provide an adequate substrate for methanogens and enhance the rate of straw anaerobic digestion and methanogenesis, and the methane yield doubled. The result of high-throughput sequencing showed that Ruminococcaceae and Methanobacteriaceae dominated in the FSC community, which functions in cellulose degradation and methanogenesis, respectively. Furthermore, Methanobacteriaceae prevailed in the high-acid condition. FSC-15 had no obvious effect on the microbial community structure of bacteria in the composite system, but could influence the abundance and variety of Archaea. FSC-15 was expected to boost the rate and yield of methane in the anaerobic digester and it also had an effect on the microbial community structure of Archaea. These results showed that the yield of methane was effectively improved by adding functional microorganisms to the rice straw anaerobic fermentation system, providing theoretical support for the technology of rice straw anaerobic digestion.

参考文献/References:

1 Ziemiński K, Fr?c M. Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms [J]. AJB, 2014, 11 (18): 4127-4139
2 Shah FA, Mahmood Q, Shah MM, Pervez A, Asad SA. Microbial ecology of anaerobic digesters: the key players of anaerobiosis [J]. Sci World J, 2014, 2014: 183752
3 Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review [J]. Rev Environ Sci Biol, 2008, 7 (2): 173-190
4 Parawira W, Read JS, Mattiasson B, Bj?rnsson L. Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion [J]. Biomass Bioenerg, 2008, 32 (1): 44-50
5 Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. MMBR, 1997, 61 (2): 262-280
6 杨昱翀, 周妍沁, 杨鹏, 孟祥光. 纤维素水解研究进展[J]. 化学研究与应用, 2013, 25 (7): 921-928 [Yang YC, Zhou YQ, Yang P, Meng XG. Recent developments on hydrolysis of cellulose [J]. Chem Res Appl, 2013, 25 (7): 921-928]
7 Zhang YP, Lynd LR. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation [J]. Proc Natl Acad Sci USA, 2005, 102 (20): 7321-7325
8 文少白, 李勤奋, 侯宪文, 李光义, 邓晓. 微生物降解纤维素的研究概况[J]. 中国农学通报, 2010, 26 (1): 231-236 [Wen SB, Li QF, Hou XW, Li GY, Deng X. Recent advances in microbial degradation of cellulose [J]. Chin Agric Sci Bull, 2010, 26 (1): 231-236]
9 Sasaki D, Morita M, Sasaki K, Watanabe A, Ohmura N. Acceleration of cellulose degradation and shift of product via methanogenic co-culture of a cellulolytic bacterium with a hydrogenotrophic methanogen [J]. J Biosci Bioeng, 2012, 114 (4): 435-439
10 丁福贵, 任春丽, 张炳宏,董亚萍, 张卫红. 投加产氢菌对猪粪厌氧发酵产沼气的影响[J]. 中国沼气, 2014, 32 (4): 34-36 [Ding FG, Ren CL, Zhang BH, Dong YP, Zhang WH. The effect of dosing hydrogen producing bacteria on biogas fermentation of pig manure [J]. China Biogas, 2014, 32 (4): 34-36]
11 ?cs N, Bagi Z, Rákhely G, Minárovics J, Nagy K, Kovács KL. Bioaugmentation of biogas production by a hydrogen-producing bacterium [J]. Bioresour Technol, 2015, 186: 286-293
12 刘星, 马诗淳, 黄艳, 周正, 张辉, 邓宇. 一株厌氧发酵木糖产氢细菌的分离及其产氢特性研究[J]. 中国沼气, 2015 (4): 3-9 [Liu X, Ma SC, Huang Y, Zhou Z, Zhang H, Deng Y. Isolation of a xylose degradation bacteria and its hydrogen production characteristics [J]. China Biogas, 2015 (4): 3-9 ]
13 马诗淳. 沼气发酵微生物代谢调控技术研究[D]. 北京: 中国农业科学院, 2009 [Ma SC. Research on metabolic regulation of microbe in biogas fermention [D]. Beijing: Chinese Academy of Agriculture Sciences, 2009 ]
14 Hungate RE. A roll tube method for cultivation of strict anaerobes [J]. Method Microbiol, 1969, 3B: 117-132
15 张文静. 烃类厌氧降解过程中互营细菌的分布特征和系统发育研究[D]. 北京: 中国农业科学院, 2011 [Zhang WJ. Distribution of syntrophism bacteria and phylogenic study in the process of anaerobic crude oil degradation [D]. Beijing: Chinese Academy of Agriculture Sciences, 2011 ]
16 Van Soest PU, Wine RH. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents [J]. J Assoc Off Anal Chem, 1967, 50 (1): 50-55
17 司振书, 江成. 瘤胃微生物对纤维素的降解及其应用[J]. 微生物学杂志, 2004, 23 (6): 61-64 [Si ZS, Jiang C. The degradation of cellulose by rumen microbial and its application [J]. J Microbiol, 2004, 23 (6):61-64]
18 陈青. 荒漠生物结皮微生物群落组成研究[D]. 银川: 宁夏大学, 2014 [Chen Q. Investigation of microbial communities structure in biological soil crusts of desert [D]. Yinchuang: Ningxia University, 2014 ]

更新日期/Last Update: 2017-04-25