|本期目录/Table of Contents|

[1]陈丽茹,邵景侠,李秧秧.施用氮、磷对油松幼苗叶形态与解剖结构的影响[J].应用与环境生物学报,2017,23(2):364-369.[doi:10.3724/SP.J.1145.2016.03026]
 CHEN Liru,SHAO Jingxia** & LI Yangyang.Effects of nitrogen and phosphorus application on needle morphological and anatomical structure in Chinese pine seedlings[J].Chinese Journal of Applied & Environmental Biology,2017,23(2):364-369.[doi:10.3724/SP.J.1145.2016.03026]
点击复制

施用氮、磷对油松幼苗叶形态与解剖结构的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年第2期
页码:
364-369
栏目:
研究论文
出版日期:
2017-04-25

文章信息/Info

Title:
Effects of nitrogen and phosphorus application on needle morphological and anatomical structure in Chinese pine seedlings
作者:
陈丽茹邵景侠李秧秧
1西北农林科技大学林学院 杨凌 712100 2西北农林科技大学生命学院 杨凌 712100 3西北农林科技大学水土保持研究所 杨凌 712100
Author(s):
CHEN Liru1 SHAO Jingxia2** & LI Yangyang3
1College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi 2College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi 3Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi
关键词:
油松幼苗当年生针叶形态解剖结构氮磷施用
Keywords:
Chinses pine seedling current-year needles morphology anatomical structure nitrogen and phosphorus application
分类号:
S7791.254.01
DOI:
10.3724/SP.J.1145.2016.03026
摘要:
施用氮和磷素对油松生长有一定的促进作用,为进一步了解其对针叶形态与解剖结构的影响,采用田间小区实验,设置4种处理,即对照(不施氮和磷)、施氮(+ N,每次20 kg/hm2,连续施用7次,下同)、施磷(+ P,每次10 kg/hm2)及氮磷共施(+ NP,每次N 20 kg/hm2 + P 10 kg/hm2),对油松当年生针叶开展研究. 结果显示:施氮、施磷或氮磷共施增加了油松的地径、冠幅和地上部生物量,施氮或磷后叶氮或磷含量显著增加. 对叶长、宽、厚和表面积施氮影响不大但施磷显著增加. 施氮显著增加了叶中柱和转输组织的面积及所占比例,而施磷显著增加了表皮层、树脂道腔、中柱、转输组织、木质部和韧皮部的面积,同时树脂道腔、中柱和转输组织面积所占横截面积比例也有显著增加. 施氮影响22个形态和解剖结构参数中的4个,而施磷对14个参数都有显著影响,表明施磷对油松针叶形态和解剖结构的影响大于施氮. 主成分分析表明施磷主要影响光合和树脂生产能力,而施氮或施磷均增加了转输组织功能. 本研究表明磷是油松幼苗生长的主要限制因子,因此生产实践中要重视磷肥的使用. (图3 表3 参27)
Abstract:
Nitrogen and phosphorus are the major nutrients that affect vegetation growth and productivity, and their rational application can promote the growth of Chinese pine seedlings; however, their effects on the needle morphology and anatomical structure are unclear. The effects of nitrogen and phosphorus application on the morphological and anatomical traits of current-year needles in Chinese pine seedlings were studied through four treatments with seven applications per treatment: CK (no fertilizer use), N application (+ N, 20 kg/hm2 per application), P application (+ P, 10 kg/hm2 per application), and both N and P application (+ NP, 20 kg/hm2 N + 10 kg/hm2 P per application). The results showed that the application of nitrogen, phosphorus, or nitrogen and phosphorus increased the stem diameter, crown size, and aboveground biomass. Nitrogen or phosphorus application increased current-year needle nitrogen or phosphorus content significantly. Nitrogen application had little effect on the length, width, thickness, and surface area of the current-year needles; however, phosphorus application increased the needle length, width, thickness, and surface area. Nitrogen application significantly increased the area and the proportion of the central cylinder as well as the transfusion tissue of current-year needles, whereas phosphorus significantly increased the surface area of the epidermis, resin duct cavities, central cylinder, transfusion tissue, xylem, and phloem, and proportion of the resin duct cavities; the central cylinder and transfusion tissue also increased significantly. Nitrogen application affected 4 of 22 morphological and anatomical structure parameters, whereas phosphorus application had an obvious influence on 14 of 21 parameters, indicating that phosphorus application had a stronger effect on the needle morphology and anatomical structure than nitrogen application. Principal components analysis showed that phosphorus application mainly stimulated photosynthesis and resin production, and nitrogen or phosphorus application increased the function of the transfusion tissue. These results suggest that phosphorus is the major limiting factor for the growth of Chinese pine seedlings, and that phosphorus application should be highlighted in practice.

参考文献/References:

1 吴中伦. 中国松属的分类与分布[J]. 植物分类学报, 1956, 5 (3): 131-164 [Wu ZL. The taxonomic revision and phytogeographical study of Chinese pines [J]. J Syst Evol, 1956, 5 (3): 131-164]
2 徐化成. 油松地理变异和种源选择[M]. 北京: 中国林业出版社, 1991: 21-30 [Xu HC. Geographic variation and provenance selection of Pinus tabulaeformis [M]. Beijing: Chinese Forestry Press, 1991: 21-30]
3 Mart?nez-Vilalta J, Sala A, Piňol J. The hydraulic architecture of Pinaceae-a review [J]. Plant Ecol, 2004, 171: 3-13
4 Sultan SE. Evolutionary implications of phenotypic plasticity in plants [J]. Evol Biol, 1987, 21: 127-178
5 Robakowski P, Montpied P, Dreyer E. Plasticity of morphological and physiological traits in response to different levels of irradiance in seedlings of silver fir (Abies alba Mill) [J]. Trees, 2003, 17 (5): 431-441
6 Gebauer R, Volarik D, Urban J, Bsrja I, Nagy NE, Eldhuset TD, Krokene P. Effect of thinning on anatomical adaptations of norway spruce needles [J]. Tree Physiol, 2011, 31 (10): 1103-1113
7 Grill D, Tausz M, P?llinger U, Jiménez MS, Morales D. Effect of drought on needleanatomy of Pinus canariensis [J]. Flora, 2004, 199: 85-89
8 López R, Climent J, Gil L. From desert to cloud forest: the non-trivial phenotypic variation of Canary Island pine needles [J]. Trees, 2008, 22: 843-849
9 López R, Climent J, Gil L. Intraspecific variation and plasticity in growth and foliar morphology along a climate gradient in the Canary Island pine [J]. Trees, 2010, 24: 343-350
10 Utriainen J, Holopainen T. Influence of nitrogen and phosphorus availability and ozone stress on Norway spruce seedlings [J]. Tree Physiol, 2001, 21 (7): 447-456
11 Kivimaenpaa M, Sellden G, Sutinen S. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics [J]. Environ Pollut, 2005, 137 (3): 466-475
12 Lin JX, Jach ME, Ceulemans R. Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2 [J]. New Phytol, 2001, 150 (3): 665-674
13 Luomala EM, Laitinen K, Sutinen S, Kellomaki S, Vapaavuori E. Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature [J]. Plant Cell Environ, 2005, 28 (6): 733-749
14 张明明, 高瑞馨. 针叶植物叶片比较解剖及生态解剖研究综述[J]. 森林工程, 2012, 28 (2): 9-13 [Zhang MM, Gao RX. Research review on comparative anatomy and ecological anatomy of conifers blade [J]. For Eng, 2012, 28 (2): 9-13]
15 Ishii H, Ooishi M, Maruyama Y, Koike T. Acclimation of shoot and needle morphology and photosynthesis of two Picea species to differences in soil nutrient availability [J]. Tree Physiol, 2003, 23 (7): 453-461
16 Makoto K, Koike T. Effects of nitrogen supply on photosynthetic and anatomical changes in current-year needles of Pinuskoraiensis seedlings grown under two irradiances [J]. Photosynthetica, 2007, 45 (1): 99-104
17 Palom?ki V, Holopainen T. Effects of phosphorus deficiency and recovery fertilization on growth, mineral concentration, and ultrastructure of Scots pine needles [J]. Can J For Res, 1994, 24 (12): 2459-2468
18 吴春芳, 贾小明, 许晓英. 磷营养对侧柏、樟子松、油松抗旱性的影响[J]. 西北林学院学报, 2005, 20 (1): 53-56 [Wu CF, Jiao XM, Xu XY. Influence of phosphorus nutrition on the drought resistance of Platycladus orientalis, Pinus sylvestris var. mongolica and P. tabulaeformis [J]. J Northwest For Univ, 2005, 20 (1): 53-56]
19 李化山, 汪金松, 法蕾, 赵秀海. 模拟氮沉降对油松幼苗生长的影响[J]. 应用与环境生物学报, 2013, 19 (5): 774-780 [Li HS, Wang JS, Fa L, Zhao XH. Effect of simulated nitrogen deposition on seedling growth of Pinus tabulaeformis [J]. Chin J Appl Environ Biol, 2013, 19 (5): 774-780]
20 Wang GL, Liu F. Carbon allocation of Chinese pine seedlings along a nitrogen addition gradient [J]. For Ecol Manage, 2014, 334: 114-121
21 张林, 金冬梅. 针叶树种叶面积的主要测定方法[C]//马克平主编. 中国生物多样性保护与研究进展VIII 第八届全国生物多样性保护与持续利用研讨会论文集. 北京: 气象出版社, 2010: 293-297 [Zhang L, Jin DM. Principal method of measuring leaf area of conifer trees [C]//Ma KP. Advances in biodiversity conservation and research in China VIII: proceedings of the eighth national symposium on the conservation and sustainable use of biodiversity in China [M]. Beijing: China Meteorological Press, 2010: 293-297]
22 李和平. 植物显微技术[M]. 北京: 科学出版社, 2009: 9-48 [Li HP. Plant Microscopy Techniques [M]. Beijing: Beijing Science Press, 2009: 9-48]
23 Faustino LI, Bulfe NML, Pinazo MA, Monteoliva SE, Graciano C. Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area [J]. Tree Physiol, 2013, 33: 241-251
24 刘文飞, 樊后保, 张子文, 杨跃霖, 王启其, 徐 雷. 杉木人工林针叶养分含量对模拟氮沉降增加的响应[J]. 应用与环境生物学报, 2008, 14 (3 ): 319-323 [Liu WF, Fan HB, Zhang ZW, Yang YL, Wang QQ, Xu L. Foliar nutrient contents of chinese fir in response to simulated nitrogen deposition [J]. Chin J Appl Environ Biol, 2013, 19 (5): 774-780]
25 Canny MJ. Transfusion tissues of pine needles as a site of retrieval of solutes from thetranspiration stream [J]. New Phytol, 1993, 123: 227-232
26 Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima [J]. New Phytol, 2005, 165: 839-846
27 Oldham AM, Sillett SC, Tomescu AMF, Koch GW. The hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy [J]. Am J Bot, 2010, 97 (7): 1087-1097

相似文献/References:

[1]李化山,汪金松,法蕾,等.模拟氮沉降对油松幼苗生长的影响[J].应用与环境生物学报,2013,19(05):774.[doi:10.3724/SP.J.1145.2013.00774]
 LI Huashan,WANG Jinsong,FA Lei & ZHAO Xiuhai.Effects of Simulated Nitrogen Deposition on Seedling Growth of Pinus tabulaeformis[J].Chinese Journal of Applied & Environmental Biology,2013,19(2):774.[doi:10.3724/SP.J.1145.2013.00774]

更新日期/Last Update: 2017-04-25